
Hypervisor based Memory Introspection: Challenges, Problems and
Limitations

Andrei Lutas1, Daniel Ticle1 and Octavian Cret2
1Bitdefender, 1 Cuza Voda Str., City Business Center, Bitdefender, 400107, Cluj-Napoca, Romania

2Computer Science Department, Technical University of Cluj-Napoca,
26-28 Gh. Baritiu Str., 400027, Cluj-Napoca, Cluj, Romania
{vlutas, dticle}@bitdefender.com, octavian.cret@cs.utcluj.ro

Keywords: Hypervisor, Introspection, Challenges, Limitations, Solutions.

Abstract: Hypervisor-based memory introspection is a well-known topic, in both academia and the industry. It is ac-
cepted that this technique brings great advantages from a security perspective, but it is known, as well, that this
comes at greater implementation complexity and performance penalty. While the most obvious challenges,
such as the semantic gap, have been greatly discussed in the literature, we aim to elaborate on the engineer-
ing and implementation challenges encountered while developing a hypervisor-based memory introspection
solution and to offer theoretical and practical solutions for them.

1 INTRODUCTION

Traditionally, one thinks about security as a piece of
software that runs inside the operating system (OS),
providing services such as file scanning or application
monitoring. Due to the increasing complexity of mal-
ware and attacks, security solutions had to rely more
on isolation, thus certain components were moved
from the user space into the kernel space, making at-
tacks more challenging. Lately, an increasing number
of attacks rely on complex techniques such as exploits
and privilege escalation that can easily render a secu-
rity solution inert. Thanks to the latest advances in
hardware virtualization, designers can now take ad-
vantage of features such as hardware-enforced isola-
tion and use several extensions in order to provide in-
creased security in a hardware-isolated environment.

Garfinkel and Rosennblum first proposed the
memory introspection technique in 2003 (Garfinkel
and Rosenblum, 2003). It involves moving the se-
curity solution outside the OS, thus isolating it from
possible attacks from within the virtual machine. The
main challenge of this technique, the semantic gap,
was thoroughly discussed in papers such as (Carbone
et al., 2009), (Baliga et al., 2008), (Cozzie et al.,
2008), (Dolan-Gavitt et al., 2009) or (Lin et al., 2011),
but creating an HVI (hypervisor-based memory intro-
spection) solution involves some low-level engineer-
ing challenges that have not been discussed in detail
so far.

In this paper, we aim at detailing on engineer-
ing challenges encountered while developing a real-
time hypervisor-based memory introspection engine.
This is a very serious engineering challenge that re-
quires complex knowledge from many domains: OS,
computer security, low-level programming, etc. We
have personally faced these challenges while develop-
ing U-HIPE (Lutas et al., 2015a): a hypervisor-based
memory introspection engine, capable of protecting
both the kernel space of the OS and the user space
of the applications. The next section contains a brief
introduction in the virtualization fields. The third sec-
tion details how memory introspection works, while
the fourth section will detail on some of the most im-
portant engineering challenges encountered. The con-
clusions are drawn in section five.

2 HARDWARE VIRTUALIZATION
A BRIEF OVERVIEW

Hardware-based virtualization has first been intro-
duced in 1960, in the experimental IBM M44/44X. In
2005, it was introduced in x86 CPUs, as the SVM (Se-
cured Virtual Machine) extensions on AMD (AMD
Corporation, 2005) and VT-x (Virtualization Exten-
sions) on Intel (Intel Corporation, 2016b). The key
role of virtualization is to allow multiple guest OSs, or
virtual machines (named from here on VMs or guests)

Lutas, A., Ticle, D. and Cret, O.
Hypervisor based Memory Introspection: Challenges, Problems and Limitations.
DOI: 10.5220/0006125802850294
In Proceedings of the 3rd International Conference on Information Systems Security and Privacy (ICISSP 2017), pages 285-294
ISBN: 978-989-758-209-7
Copyright c© 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

285



to run concurrently on a host system. A virtual-
machine monitor, named from here on VMM or hy-
pervisor, controls all these VMs. A hypervisor gen-
erally uses a trap & emulate architecture, where the
CPU generates an event (VM exit) whenever it needs
special handling from the hypervisor. Examples of
VM exits include executing a privileged instruction,
accessing restricted I/O ports or MSRs, an external
interrupt or accessing restricted memory pages. Af-
ter finishing handling the event, the hypervisor returns
the control to the interrupted guest via a VM entry.

The core structure of any hypervisor is the
VMCS on Intel (Virtual-Machine Control Structure)
or VMCB (Virtual Machine Control Block) on AMD
(named from here on VMCS) which represents a vir-
tual CPU (or VCPU). The VMCS contains all the es-
sential information about the VCPUs: the host state,
the guest state, the guest control area, VM exit and
entry control and VM exit information. This structure
contains the saved state of the guest or hypervisor on
VM entries and VM exits, and control fields that con-
figure how the CPU should handle various events and
instructions.

VT-x and SVM were further extended with mem-
ory virtualization capabilities a second level address
translation, that allows the hypervisor to directly con-
figure a mapping from guest-physical addresses to
host-physical addresses. The second level address
translation (SLAT), named EPT on Intel (Extended
Page Tables) and NPT (Nested Page Tables) on AMD,
has a structure similar to that of the legacy IA page ta-
bles, with entries containing control bits that config-
ure read, write or execute access. A VM has its own
SLAT structure just like a regular process has its own
page table hierarchy. The SLAT is fully controlled by
the hypervisor, and thus enables it to enforce page-
level access restrictions over the guest-physical mem-
ory, without interfering with the guest page tables.
When SLAT is in use, there are three different types
of addresses on a host system: guest-virtual addresses
(1) are those addresses normally used by programs in-
side the VM; these translate via the legacy IA page ta-
bles into guest-physical addresses (2), which are fur-
ther translated into host-physical addresses (3) using
the SLAT, which are then accessed by the hardware.
Figure 1 shows the memory translation mechanisms
in a virtualized system.

3 VIRTUAL MACHINE
INTROSPECTION

Hypervisor-based VM introspection is a technique of
analysing the state and behaviour of a VM from the

Figure 1: Address translation with SLAT active.

outside (from hypervisor’s level). It involves access-
ing the hardware state (CPU registers) and the phys-
ical memory of the analysed VM. However, this in-
formation is not sufficient one needs to correlate this
low-level data with OS specific structures and events
in order to gain knowledge about the VM state. This
process is known as bridging the semantic gap, and
several solutions were proposed for it, as mentioned
in section 1. Once meaningful structures have been
identified inside the guest VM, the hypervisor could
configure, using the SLAT, restricted access for cer-
tain structures. In general, the process of protecting
memory sits at the heart of hypervisor based intro-
spection, and the challenges that are discussed here
refer mainly to it. In addition, the VM introspection
can be done both on-premise (for instance, memory
analysis of a live VM or a dump for forensics) and in
real-time (where the guest behaviour is continuously
monitored and where performance is critical). In this
paper, we will focus on the second approach.

By using the SLAT, the introspection solution can
enforce restricted access to various areas of the mem-
ory. For example, kernel code-pages could be marked
as being non-writeable, thus preventing rootkits (ad-
vanced kernel malware) (G. Hoglund and J. Butler,
2005) from placing inline hooks inside them. On the
other hand, the introspection solution may enforce no-
execute policy on certain areas such as the stacks or
heaps, thus intercepting any attempt to execute code
from those areas, which are almost always indicative
of an attack. No-read policies can also be used, for ex-
ample, to hide code or data that the introspection so-
lution protects inside the guest (for example, from an
in-guest security solution). The normal flow of events
on a protected VM looks like the one depicted in Fig-
ure 2. There are two main possibilities for handling
each event intercepted by the introspection logic: it
will either be emulated if it is considered legitimate or
blocked, if it is deemed to be malicious. While block-
ing an attack is simple (the faulting instruction can
simply be skipped), legitimate accesses must be emu-
lated. In general, there are two types of such cases:

1. Benign accesses inside protected structures. In
some cases, the introspection logic wishes to al-
low certain components (usually belonging to the

ICISSP 2017 - 3rd International Conference on Information Systems Security and Privacy

286



OS itself) to access the protected structure;

2. If the protected structure is less than 4K (mini-
mum page size), and since the protection works
by restricting access for 4K guest-physical pages
inside the SLAT, there may be cases where the
software accesses other structures located inside
the same page with the protected structure;

Creating a security solution than runs outside the
protected VM is a very complex task, but there are
several reasons why it is worth implementing:

1. Hardware-enforced isolation. A traditional secu-
rity solution runs within the VM, and is suscepti-
ble to attacks: even if it runs in the most privileged
mode inside the OS kernel, an attack may employ
complex techniques such as privilege escalation
(ref, a) in order to gain higher privileges. When
the malware runs at the same privilege level as the
security solution, it can easily bypass or disable it.

2. Ability to monitor CPU-level events. Certain
events cannot be monitored from within the VM.
For example, it is not possible to be notified when
a hardware register is being modified. When run-
ning inside a hypervisor, there are multiple CPU-
level events that the introspection logic can inter-
cept in order to provide security; for instance, the
system call registers may be modified by rootkits
in order to place a system-wide syscall hook.

3. Ability to monitor memory without interfeering
with the OS. It is not possible to monitor memory
accesses inside the VM without heavily interfer-
ing with the OS. When running inside a hypervi-
sor, one can leverage the SLAT in order to place
restrictions on guest-physical pages, beyond the
OS capabilities.

4. Increased usage of virtualized environments.
Cloud service providers heavily rely on virtualiza-
tion, which offers the capability of securing mul-
tiple VMs without having to install a security so-
lution in each one of them.

It is therefore clear that hypervisor-based introspec-
tion is a solution to current security, scalability and
deployability demands. In addition, CPU vendors

Figure 2: Introspection events handling flow.

keep adding new features that can help improve per-
formance for such an application: virtualization ex-
ception, VM functions and probably more are yet to
be revealed (D. Durham, 2014).

4 CHALLENGES AND
SOLUTIONS

As discussed earlier, creating a hypervisor-based
memory introspection solution has significant advan-
tages: isolation, greater visibility inside the monitored
system and the possibility to provide CPU and mem-
ory protection that would otherwise be very difficult
to achieve. Aside the obvious challenge of the seman-
tic gap, there are several other low-level engineering
challenges that arise when developing such a solution.

4.1 Accessing the Guest Memory

Challenges. As already detailed in the previous sec-
tion, the SLAT mechanism introduces a new level
of address translation and has to deal with access-
ing guest-virtual and guest-physical memory. In both
cases, the translation of the accessed memory must
be handled by the introspection logic (Lutas et al.,
2015b), in order to ensure that the page is present and
to obtain the final host-physical address.

Mapping and translation events can described by
two functions: f for mappings and g for transla-
tions. We first define the function fhpa that maps
host-physical memory. This function needs to find a
free region inside the hypervisor virtual address space
and add a new entry for it, thus making it accessible.
Translation Lookaside Buffer (TLB) invalidations on
all the physical CPUs would further be required, ei-
ther when mapping or unmapping the desired page.
Once such a function is available, we need a function
fgpa that maps guest-physical memory. In order to
do that, we also need a function ggpa that translates
the given guest-physical address into a host-physical
address using the SLAT tables. This involves walk-
ing each level of translation and validating the results
at each step. Finally, in order to map guest-virtual
memory, we need fgpa together with a new function,
ggva capable of translating the guest-virtual address
into a guest-physical address, using the guest legacy
IA page tables. If we monitor a guest OS running
in long mode, the legacy IA page tables will be four
levels deep, meaning that mapping one guest-virtual
page v would lead to the following sequence of func-
tion calls:

fgva(v) = fgpa(ggva(v)) (1)

Hypervisor based Memory Introspection: Challenges, Problems and Limitations

287



Each translation involves more mappings: trans-
lating the guest-virtual address v into a guest-physical
address p involves 4 physical address mappings, one
for each level of translation (page map level 4, page
directory pointer table, page directory and page table)
assuming long-mode paging:

ggva(v) = fgpa(pml4)+ fgpa(pd p)+
fgpa(pd)+ fgpa(pt) (2)

The fgpa function implies two steps as well:

fgpa(p) = fhpa(ggpa(p)) (3)

The final sequence of function calls is com-
plex, involving mapping five different guest-physical
pages, which in turn translate to mapping five differ-
ent host-physical pages. Such events may be rare in
some scenarios, but when a high-performance, real-
time, user-mode memory introspection solution is de-
sired, the events may be dense enough to pose per-
formance issues. Figure 3 shows the time spent, on
average, inside memory mapping routines on a 64 bit
Windows 8.1 system, in each event, in a normal usage
scenario. It is worth mentioning that some intervals
include each other: for example, the Map GVA inter-
val includes portions of the Translate GVA and Map
GPA intervals, since mapping a guest-virtual page in-
volve multiple physical mappings.

Solutions. There are several optimization options:

1. Keeping the entire host-physical space mapped in-
side the host virtual space. This eliminates the
need to map host-physical memory, as it would be
already mapped at a predetermined address. This
solution considerably improves the performance,
but it has the drawback of using a significant por-
tion of the host virtual address space to map the
guest space. Furthermore, while modern CPUs
use 48 bits of virtual addresses (in long mode),
the width of the physical addresses may exceed
40 bits (it is currently defined to be up to 52 bits),
thus making this approach unscalable.

2. Using caches, as a trade-off between scalability
and keeping pages mapped inside the introspec-
tion memory space. According to our tests, it
is clear that the improvement is significant (see
Figure 4). But caches increase the code-base of
the introspection solution and may be complex to
implement, as they need to be flushed on certain
events (for example, translation modifications).
The caches we implemented simply maintain a
batch of often-accessed pages mapped inside the
introspection solution’s address space, thus avoid-
ing costly translations and memory mappings.

3. Dedicated CPU instructions. This would be the
most efficient solution, bringing native perfor-
mance for guest memory access. Some research
in this direction has already been done (Serebrin
and Haertel, 2008). The CPU could implement
instructions capable of reading guest-physical or
guest-virtual memory. The access would be done
in the context of the current VMCS, thus directly
exposing both the guest CR3 and the SLAT tables
used by that VM. We cannot accurately estimate
the complexity of such a solution, but it should of-
fer native performance, similar to regular memory
accesses (Lutas et al., 2015b).

Figure 3: Percent of time spent in memory-mapping rou-
tines.

Figure 4: Percent of time spent in memory-mapping rou-
tines (with caches).

4.2 Protecting Pageable Memory

Challenges. Protecting memory inside SLAT works
only for guest-physical pages; however, the OS and
the applications use guest-virtual addresses, which
translate to guest-physical addresses. In order to pro-
vide protection for any given guest-virtual page, the
introspection solution has to first translate it into a
guest-physical page, by using the in-guest legacy IA
page tables. This strategy is effective as long as the
translation does not change; if it does, the introspec-
tion solution must find a way to maintain protection
on the guest-virtual address. There are three cases
that must be handled (Lutas et al., 2015a):

1. Page is removed from memory (swapped-out);

2. Page is brought in memory (swapped-in);

3. Page is moved somewhere else.

Another problem may be maintaining page table
protection among various virtual address spaces: each
process has its own, private virtual address space, rep-
resented by a dedicated page table hierarchy. While

ICISSP 2017 - 3rd International Conference on Information Systems Security and Privacy

288



modern OSs, such as Windows and Linux share the
kernel space amongst all the processes (meaning that
the kernel space is global and identical in every virtual
address space), an attacker may build custom page ta-
ble hierarchies that would lead to malicious transla-
tions. In order to avoid this, introspection logic would
have to intercept CR3 loads and make sure it inter-
cepts the page tables in every existing virtual address
space. This has a significant negative impact on the
performance: the number of CR3 loads will increase
linearly with the number of existing processes.

Solutions. If not handled properly, these situations
may lead to undesired effects, such as loosing pro-
tection on the page or protecting an undesired page.
It is imperative to find a way to intercept such swap
events. The most obvious way to do this is by inter-
cepting the guest page tables. The implementation of
this method is complex and it leads to significant per-
formance penalties, as for every guest-virtual page,
one needs to intercept writes in up to 5 actual guest-
physical pages: one for the actual guest-physical page
that is translated from the protected page and up to
four more writes on each page table that translate the
given guest-virtual address. By intercepting the en-
tire hierarchy of page tables, the introspection logic
ensures that any translation modification would be
trapped via an EPT violation, thus allowing the pro-
tection to be adjusted. On each page table write, the
introspection logic needs to decode the written value,
in order to analyse the modification type. While the
OS may modify several bits inside the entries (for ex-
ample, the accessed or dirty flags), only three types of
events are of particular interest:

1. The new value has the present bit set, while the
old value has the present bit 0: this is a swap-in
operation, meaning that the guest-virtual page has
just been mapped back into the memory; the intro-
spection logic must add protection on the newly
mapped guest-physical page;

2. The new entry has the present bit 0, and the old
entry has the present bit set; this means that the
page is being swapped out, and the introspec-
tion logic has to unprotect the underlying guest-
physical page;

3. Both the new and the old entry have the present bit
set, but the guest-physical addresses are different;
in this case, the introspection logic must unprotect
the old page and add protection on the new page.

4.3 Accessing Swapped-out Memory

Challenges. Inside the kernel mode, most of the crit-
ical data structures are always present in physical

memory they are non-paged, which means that the
OS will never swap them out. Doing kernel intro-
spection is, therefore, usually very straightforward. In
the case of process memory introspection, it is usually
the reverse only the most accessed pages are commit-
ted and present inside the physical memory, while all
the other pages are swapped out. The introspection
logic may need to access such swapped-out pages in
order to properly identify the process-specific struc-
tures, but it cannot do so if these pages are not present
inside the physical memory.

Solutions. Here are some ways to solve this issue:

1. Directly access the swapped out data inside the
swap file. This can be very difficult, since the for-
mat of the swap file is highly specific to the OS
and the introspection logic would need access to
the storage device where the swap file resides;

2. Intercept writes inside the IA page tables entries
that translate the needed page and wait for it to be
swapped in. This has the advantage of simplic-
ity, as it only relies on permission modifications
inside SLAT, but it does not ensure that the page
will ever be swapped in;

3. Forcefully inject a page-fault exception inside the
guest (Lutas et al., 2015a). When employing the
technique from point 2, one can force the needed
page to be swapped in by injecting a page-fault
inside the guest. This adds complexity to the pre-
vious technique, as the page-fault must be injected
with care; the correct process context must be
loaded and the OS must accept the fault. There
are cases, for example high IRQL (M. Rusinovich
and D. Solomon and A. Ionescu, 2012) on Win-
dows, where a page-fault would cause on OS
crash. While in user-mode, the OS will always
accept page-faults. This method has been already
described in detail in (Lutas et al., 2015a).

4.4 4K Granularity

Challenges. As previously mentioned, one of the
key roles of hypervisor-based memory introspection
is memory monitoring. This can be done by using the
SLAT, as it is fully in the hypervisors control. One
way to provide protection and monitor the guest VM
is by modifying guest-physical pages permissions in-
side the SLAT. For example, one could intercept all
write operations inside a given guest-physical page
by setting the write bit to 0. This way, any instruc-
tion or event that would cause a memory store inside
that guest-physical page would trigger a SLAT viola-
tion. The memory introspection logic can analyse the
event and decide whether it is legitimate or not.

Hypervisor based Memory Introspection: Challenges, Problems and Limitations

289



The problem is that the minimum granularity is
the minimum size of an EPT page (4K). In order to
intercept writes inside a smaller range, one has to han-
dle writes outside the given range, as well. While
there are multiple ways to address this issue, the num-
ber of writes inside the 4K page, but outside the pro-
tected range, might induce a significant performance
impact. Depending on the specific of the introspec-
tion logic, this may severely limit either the function-
ality or the performance of the solution. A simple
example is the protection of small, heap or pool al-
located objects, such as processes or threads. These
structures are usually smaller than a single page, and
even inside these structures, one may not wish to in-
tercept writes on every field. A security application
may protect, for example, a field that links the struc-
ture into a global list of such objects, or a field that
contains security related information, in order to pre-
vent malicious modifications. In this case, a word size
or a small multiple of a word size interception would
be useful. However, protecting such a small range
inside the page may incur a significant performance
penalty, as the same page can contain multiple other
structures allocated in it. Even in the same protected
structure, there may be portions that are written very
often. In many cases, the performance impact of in-
tercepting a small range of any structure inside a page
of memory will be difficult to predict: it may be near
zero if that page does not contain any other allocated
structures or it may be extremely high if volatile read-
write structures are allocated there.

Solutions. Here is a list of possible solutions:

1. Make sure each protected structure is allocated at
a page boundary. This approach has 3 drawbacks:

• The memory allocator must be intercepted;
• Writes inside the structure can still take place;
• Increased memory usage.

This solution can be a compromise between com-
plexity and performance. However, it may not
be very scalable, as forcing many structures to
be allocated into their own page can cause se-
rious memory consumption. For example, 100
128B sized structures would cause a total of al-
most 400KB of space to be wasted. In addition,
simply intercepting the memory allocator may in-
duce additional performance overhead, although
deterministic and not noticeable, according to our
tests (Lutas et al., 2015a).

2. CPU extensions. Ideally, all the unwanted exits
would be eliminated if the CPU would provide a
bit-level protection mechanism. This is probably
extremely difficult to achieve in today’s hardware,
but a granularity of several bytes (Sahita et al.,

2014) (for example, 128 bytes) would be more
than enough to offer significant performance gain
for existing solutions and to offer the possibility
to protect new structures. We have used the 128B
(2 x cache line size) granularity and we have mea-
sured the potential performance improvement for
various data structures, on Windows; the results
are illustrated in Figure 5

Figure 5: 128 bytes granularity protection stats.

4.5 Accessed and Dirty Bits

Challenges. Whenever the CPU does a page walk,
it sets the accessed and dirty bits (A/D bits) inside
the page tables. These writes trigger a SLAT vio-
lation if the page tables are marked as non-writable.
Handling these events by the introspection logic can
be done either by single stepping the instruction that
triggered it, or by emulating the entire page walk.
The A/D bits may not be of a significant importance
for the introspection logic: in our particular imple-
mentation, we ignore them entirely. In order to asses
the performance impact induced by the page-walker,
we have simulated a high memory pressure scenario,
where large amounts of memory are allocated, used
and freed frequently. We ran the simulation for 10
minutes, on Windows 8.1 x64, and we plotted the
number and percentage of A/D bits induced EPT vi-
olation in each second, creating two histograms: one
with the absolute number of A/D bit induced faults
and one with the fraction of A/D bit induced faults out
of the total number of EPT violations. The results can
be seen in Figure 6 and Figure 7. In figure 7, one can
notice that often the number of page-walker caused
faults exceeds 100,000 per second and many times the
totality of the EPT violations are represented by such
events.

Solutions. Unlike the other challenges discussed
so far, this one is difficult to avoid directly in software.
Here are some of the possible solutions:
1. Always keep A/D bits set. This ensures that once

the CPU sets the A/D bits inside a page table, the
OS will never reset them. This has the disadvan-
tage of being invasive and it may even cause dis-
ruptions to the OS memory manager.

ICISSP 2017 - 3rd International Conference on Information Systems Security and Privacy

290



Figure 6: Frequency of A/D bit induced EPT violations in a
10 minutes time frame.

Figure 7: Fraction of A/D bit induced faults in a 10 minutes
time frame.

2. Hardware Solution. Some CPUs (specifically In-
tel) already provide a dedicated bit inside a VMCS
field that indicates when an EPT violation was
caused by the CPU page walker (AMD Corpora-
tion, 2005, Vol. 3, Ch. 27). It may be possible
to avoid these exits altogether, and simply ignore
the page walker whenever it accesses the page ta-
bles. Just like the other hardware extensions, this
is also speculative with regard to the complex-
ity of the possible implementation, but the im-
provement would be significant: not only would
the A/D bit exits be removed, but a page-walker
would no longer be needed inside the introspec-
tion logic.

4.6 Instruction Decoding

Challenges. When dealing with SLAT faults, the in-
trospection logic must decide whether the access is
legitimate or not. Many times, in order to do so, the
instruction that caused the fault must be analysed, in
order to obtain some information such as the size of
the access or the new value stored in memory, so an
instruction decoder must be part of the introspection
logic. While simply decoding an instruction in or-
der to determine the operands and access size is not
a very computational intensive task, there are some
special cases and events, due to the CISC character
of the x86 instructions set, that need special handling
and cannot be generically treated:

1. IDT (Interrupt Descriptor Table) accesses as part
of an exception or interrupt delivery. There is
no dedicated field inside the VMCS to indicate
this kind of access, and intercepting reads in-
side the page that contains the IDT may lead to
such events. This kind of event could be handled
by checking dedicated VMCS fields indicative of

event delivery, which means that the fault took
place as a result of such an event;

2. GDT (Global Descriptor Table) or LDT (Local
Descriptor Table) accesses as part of loading a
segment descriptor or setting an accessed bit in-
side a segment descriptor. This kind of events can
be handled by inspecting the faulting instruction -
any instruction that loads a segment, for example,
will also load the underlying descriptor;

3. TSS (Task State Segment) accesses as part of a
task switch or delivery of an interrupt or excep-
tion. Certain branch instructions may lead to a
task switch in certain conditions; this can be in-
ferred from the instruction itself. A more tricky
case is a task switch that takes place as a result of
an exception or interrupt;

4. BTS (Branch Trace Store) and PEBS (Precise
Event Based Sampling) memory stores. These
take place asynchronously and decoding the in-
struction at which boundary the fault took place
will not be helpful. A possible solution is to check
the memory range of the faulted address (which
can be done by inspecting certain MSRs), and see-
ing if it lies within BTS or PEBS region;

5. PT (Processor Trace) stores. These are very sim-
ilar with the BTS/PEBS events, and they may be
detected by checking the faulted address against
the PT memory range.

These events, although peculiar with respect to
SLAT faults, may be expected and properly detected
if the instruction is carefully inspected or if additional
validations are made, but in some cases, it is very dif-
ficult to determine the size of such a memory access.
In the case of IDT, GDT, LDT or TSS, the size of the
access would be obvious (one or two memory words);
in case of a BTS, PEBS or PT store the size may not
be directly obtainable, leading to a possible problem
in handling the fault event. In addition to these events,
there are also instructions that need special handling:

1. XSAVE/XRSTOR instructions. These instruc-
tions operate on multiple register sets and the ac-
cess size cannot be directly determined. Instead,
an introspection logic has to query for enabled
features in XCR0 (Extended Control Register 0)
or IA32 XSS ENABLE. In addition, it has to do
several CPUID queries to determine exactly the
offsets inside de XSAVE area and the size of each
saved component;

2. MPX instructions. BNDLDX and BNDSTX have
the documented side-effect of doing a load or a
store inside the bounds tables. This structure is
somewhat similar to the IA page tables, and it

Hypervisor based Memory Introspection: Challenges, Problems and Limitations

291



is not encoded in the instruction its base can be
extracted from the BNDCFGU (in user-mode) or
BNDCFGS (in kernel-mode) register. It is two
levels deep, so special care must be taken when
checking for bound access, in order to properly
handle both bound directory and bound table ac-
cesses;

3. CET enabled instructions. If Intel Control flow
Enforcement Technology is enabled (Intel Cor-
poration, 2016a), the behaviour of some instruc-
tions changes. The most important modification
appears at the level of procedure call and return
instructions: these access a new CPU structure,
called the Shadow Stack. Procedure calls au-
tomatically store the return address on this new
structure, and return instructions load it, in order
to make sure it hasn’t been altered. The shadow
stack is pointed by a new CPU register, called the
SSP (Shadow Stack Pointer), and this capability
can be enabled for both user and supervisor code.
Initial documentation doesn’t indicate whether a
shadow stack access is flagged in the VMCS, so
specific range checks can be made, in order to see
if the accessed address lies within that range;

4. Scatter-gather instructions. This is a special
class of instructions introduced in the AVX2 and
AVX512F instruction sets that are capable of
accessing multiple separate memory addresses
- these addresses can even reside in separate
pages. For example, the instruction VPSCAT-
TERDD [RAX + ZMM0], ZMM1 can write to up
to 16 different memory locations;

5. String instructions. Instructions such as MOVS
both read and write memory, so special handling
is needed, since they cause both read and write
SLAT faults;

6. Instructions that may trigger another type of VM
exit before doing the memory access. These in-
structions will trigger a VM exit before actual ex-
ecution (before accessing the memory and get-
ting a change to cause a SLAT fault). The in-
trospection logic needs to make sure that on ev-
ery event pertaining the execution of such an in-
struction it will also validate the accessed guest-
virtual address and guest-physical address against
the legacy IA page tables and SLAT permissions.
For example, the guest VM may attempt to exe-
cute XSAVES instruction, which is configured to
cause a VM exit. The hypervisor may emulate the
instruction without fully validating the SLAT, and
thus it may bypass protections established by the
introspection logic. Instructions that can cause a
specific VM exit and that can also access memory

include string I/O instructions, VMX instructions
or descriptor table accesses.
Solution. Although there are many special cases

that must be handled by the introspection logic, usu-
ally there are a small number of instructions that trig-
ger events. In our tests, we have discovered that more
than 95% of all the instructions that ever trigger an
EPT violation are simple MOV instruction. This be-
haviour is constant on both 32 and 64-bit OSs and has
been confirmed on both Windows and Linux.

In addition to the logic handling challenges,
instruction decoding constitutes another problem.
While this can be done quite easily, and there are sev-
eral disassemblers available (i.e. Capstone, distorm,
udis86, etc.), the introspection logic has to repeat this
task on every VM exit. Mapping memory and decod-
ing the instruction on each exit can be very expensive,
so an instruction cache can be used: save tuples (in-
struction pointer, decoded instruction) on each event,
which allows a fast lookup of the faulting instruction
on future events. If a new VM exit is triggered from
an instruction pointer that has already been cached,
the introspection logic can retrieve the decoded in-
struction directly from there, thus significantly im-
proving performance. In addition, the CPU might
provide basic information to the hypervisor, such as
the access size that caused the fault or the instruction
bytes, thus relieving the hypervisor or the introspec-
tion logic from doing costly decodes.

4.7 Instruction Emulation

Challenge. Legitimate memory accesses that trig-
ger SLAT faults must be handled by the introspection
logic. There are two possible solutions to this:
1. Instruction Emulation. An instruction emulator

must simulate the behaviour of the emulated in-
struction entirely. Not only is this complex, but
it should also be able to handle every instruc-
tion supported by the target ISA. In the case of
the x86 architecture, the ISA has been greatly ex-
tended over the years and it now contains several
thousand different instructions, some of which are
very complex to handle. The code base of a com-
plete emulator would be of significant size, there-
fore increasing the attack surface and making the
introspection logic or the hypervisor vulnerable
(ref, b). In addition, an emulator would have
to pay extreme attention to special cases such as
cross-page accesses, time of check vs. time of use
or instructions that access multiple pages and are
capable of triggering more that one SLAT fault;

2. Single stepping. This approach has the great
advantage of being generic: it can handle any

ICISSP 2017 - 3rd International Conference on Information Systems Security and Privacy

292



instruction without needing special knowledge
about it. In addition, this mechanism does not
have to specially handle instructions that cause
multiple faults: its incremental nature (granting
permission for each page once it is validated)
ensures that an arbitrary number of concomitant
faults can be handled. This mechanism works by
temporary removing the protection from the ac-
cessed page, thus allowing the instruction to com-
plete successfully. If the instruction would trig-
ger a new fault, the mechanism can be invoked in
a recursive manner. While the protection is dis-
abled, the introspection logic has to make sure
that other VCPUs won’t modify the content of the
pages while the single-stepping occurs. This can
be done in at least two ways:

• Pause all the other VCPUs while the faulting
one single-steps the instruction. This ensures
that only the faulting VCPU runs code while
the protection is removed from SLAT;
• Create a dedicated single-step SLAT that would

be used only while single-stepping the faulting
instruction. This allows use to load a new SLAT
on the VCPU that will single-step the access.

In each case, a significant performance impact
would accompany this technique: at least two sep-
arate VM exits would have to be handled for each
single-stepped instruction - one for the actual event
that triggered the single-stepping and one more when
finishing single-stepping, that would allow us to re-
sume all other VCPUs or restore the original SLAT.
A better approach would be to use an instruction em-
ulator for the most common instructions (for exam-
ple, the MOV instruction, which accounts for more
than 90% of all the VM exits) and use the single-
step mechanism only for unsupported instructions,
thus using the great advantages from both techniques.
A security issue with both emulation and single-
stepping is the cross-VCPU instruction modification
attack (ref, b). Such an attack would leverage multi-
processors systems in order to modify an instruction
at the right moment: after it has generated a VM exit
and has been analysed, but before being emulated or
single-stepped. Such an attack can be prevented by
properly validating the instruction before emulation
or single-stepping.

Since single-stepping is the most desired ap-
proach, the hardware could help into achieving this
more efficiently by allowing the hypervisor to tempo-
rary override SLAT permissions. Such a mechanism
would involve one or more fields in the VMCS that
would contain a guest-physical address together with
the override bits. While enabled, such a mechanism
would allow the faulting instruction to access a given

address if it is in the override list, even if SLAT would
otherwise deny it. The single-stepping mechanism
could be automatically disabled by the CPU once the
faulting instruction has been executed. Therefore,
we would not need an emulator or a specific single-
stepping mechanism, and one could handle any in-
struction by simply writing to some fields inside the
VMCS. In order to handle instructions that cause mul-
tiple faults, several such guest-physical override fields
could be present. In our tests, we discovered that
in more than 57% of the cases, the instruction can
be single-stepped in a single iteration (the instruction
triggers only one SLAT fault), and about 20% of the
instructions trigger two and three faults. The detailed
results can be seen in Figure 8. Less than 1% of the
instructions trigger 5, 6 or 7 faults, and we did not en-
counter any instruction that triggers 8 or more faults.

Figure 8: Probability of multiple SLAT-faults events.

The reason why multiple faults can be triggered
by a single instruction is that multiple guest-physical
pages are accessed when executing any given instruc-
tion. For instance (ignoring the accesses made to
fetch the instruction), an instruction that writes a sin-
gle byte inside a given page may cause five different
guest-physical accesses in long mode: four accesses
inside the IA page tables and one access inside the ac-
tual page. An instruction such as MOVS that makes a
page-boundary access may access 2 pages when read-
ing, 2 pages when writing and up to 16 page tables (2
x 4 + 2 x 4). These cases are rare, however, and if they
occur, they could be handled directly in software.

5 CONCLUSIONS

We presented in this paper low-level engineering
challenges that we have encountered during the de-
velopment of a hypervisor-based memory introspec-
tion engine. While we do not claim that this is a com-
plete list or that the solutions that we implemented
or proposed are the only ones possible, we think they
are representative, relatively easy to implement and
effective.

The most problematic challenges are the hard-
ware limitations that also induce the highest perfor-
mance impact: page granularity protection and ac-
cessed/dirty bits. While we cannot asses the complex-
ity or costs of implementing the proposed extensions

Hypervisor based Memory Introspection: Challenges, Problems and Limitations

293



in hardware, we strongly believe we will see them in
the future assisting memory introspection solutions.

Other challenges relate to instruction decoding
and emulation, and while they can be handled in soft-
ware using caches and emulators, they involve deep
knowledge of the instruction set and behaviour of the
CPU. Problems such as protecting paged memory or
accessing swapped out pages may not appear in a
kernel-mode memory introspection scenario, but are
very common when dealing with user-mode memory
introspection. While the solutions are not necessary
complex, they are neither obvious nor straightforward
to implement and may not be very effective.

We have discussed various possible improvements
that could be made inside the CPU itself in order
to aid memory introspection tasks, and while they
are purely theoretical, they may bring significant im-
provement to such applications, both from the imple-
mentation complexity and performance perspective.
The complexity of implementing these in the CPU,
however, may vary significantly, although emulators
such as Bochs or QEMU and simulation tools such as
PIN may provide an overview on how such extensions
may improve memory introspection. Many hardware
extensions were implemented recently for various al-
gorithms, like AES, SHA or CRC, showing an obvi-
ous trend of moving as much logic as possible on the
chip.

The software improvements that we have dis-
cussed were implemented and tested in U-HIPE and
some of them were presented in papers such as (Lutas
et al., 2015a) and (Lutas et al., 2015b), and, while the
performance increases, so do the attack surface and
the implementation complexity.

It is worth mentioning that currently, introspection
solutions are somewhat ahead of their time: they are
complex software that leverage the latest CPU inno-
vations in order to provide security, although the vast
majority of these extensions were not created for this
specific purpose. We keep seeing significant improve-
ments in hardware, especially in security & virtualiza-
tion fields, and we think that future CPU generations
will include extensions that may help fix at least some
of these issues, making hypervisor-based memory in-
trospection solutions easier the develop, deploy and
much more efficient.

REFERENCES

AMD Corporation (2005). AMD64 Virtualization Code-
named Pacifica Technology. Secure Virtual Machine
Architecture Reference Manual.

Baliga, A., Ganapathy, V., and Iftode, L. (2008). Automatic
Inference and Enforcement of Kernel Data Structure

Invariants. In In Proc. Annual Computer Security Ap-
plications Conference, pages 77–86.

Carbone, M., Cui, W., Lu, L., Lee, W., Peinado, M., and
Jiang, X. (2009). Mapping kernelobjects to enable
systematic integrity checking. In In Proc. The 16th
ACM conference on Computer and communications
security Pages, pages 555–565.

Cozzie, A., Stratton, F., Xue, H., and King, S. T. (2008).
Digging for data structures. In In Proc. 8th USENIX
conference on Operating systems design and imple-
mentation, pages 255–266.

D. Durham (2014). Mitigating Exploits, Rootkits and Ad-
vanced Persistent Threats.

Dolan-Gavitt, B., Srivastava, A., Traynor, P., and Giffin, J.
(2009). Robust signatures for kernel data structures.
In In Proc. 16th ACM conference on Computer and
communications security, pages 566–577.

G. Hoglund and J. Butler (2005). Rootkits: Subverting the
Windows Kernel.

Garfinkel, T. and Rosenblum, M. (2003). A Virtual Ma-
chine Introspection Based Architecture for Intrusion
Detection. In In Proc. Network and Distributed Sys-
tems Security Symposium, pages 191–206.

Intel Corporation (2016a). Control-flow Enforcement Tech-
nology Preview.

Intel Corporation (2016b). Intel R© 64 and IA-32 Architec-
tures Software Developer’s Manual. Number 325462-
060US.

Lin, Z., Rhee, J., Zhang, X., Xu, D., and Jiang, X. (2011).
Graph-based signatures for kernel data structures. In
In Proc. 12th Annual Information Security Sympo-
sium, page Article no. 21.

Lutas, A., Colesa, A., Lukacs, S., and Lutas, D. (2015a). U-
HIPE: hypervisor-based protection of user-mode pro-
cesses in Windows.

Lutas, A., Lukacs, S., Colesa, A., and Lutas, D. (2015b).
Proposed Processor Extensions for Signicant Speedup
of Hypervisor Memory Introspection. In Trust and
Trustworthy Computing, pages 249–267.

M. Rusinovich and D. Solomon and A. Ionescu (2012).
Windows Internals 6th edition.

Sahita, R., Shanbhogue, V., Neiger, G., Edwards, J., Ouziel,
I., Huntley, B., Shwartsman, S., Durham, D. M.,
Anderson, A., and LeMay, M. (2014). Method
and apparatus for fine grain memory protection.
US20150378633.

Serebrin, B. and Haertel, M. (2008). Alternate address
space to permit virtual machine monitor access to
guest virtual address space. US20090187726.

ICISSP 2017 - 3rd International Conference on Information Systems Security and Privacy

294


