in space, spatial frequency, and orientation optimized 
by two-dimensional visual cortical filters. Journal of 
Optical Society of America, 2(7), pp.1160–1169. 
Engel, S., Zhang, X. & Wandell, B., 1997. Colour tuning 
in human visual cortex measured with functional 
magnetic resonance imaging. Nature, 388(6637), 
pp.68–71. 
Fukushima, K., Miyake, S. & Ito, T., Neocognitron: a 
neural network model for a mechanism of visual 
pattern recognition. In IEEE Transactions on Systems, 
Man, and Cybernetics. p. 826—834. 
Galbally, J., Marcel, S. & Fierrez, J., 2014. Image quality 
assessment for fake biometric detection: Application 
to Iris, fingerprint, and face recognition. IEEE 
Transactions on Image Processing, 23(2), pp.710–724. 
Grigorescu, S.E., Petkov, N. & Kruizinga, P., 2002. 
Comparison of texture features based on Gabor filters. 
IEEE transactions on image processing : a publication 
of the IEEE Signal Processing Society, 11(10), 
pp.1160–1167. 
Hegdé, J. & Van Essen, D.C., 2000. Selectivity for 
complex shapes in primate visual area V2. The 
Journal of neuroscience : the official journal of the 
Society for Neuroscience, 20(5), p.RC61. 
Hermosilla, G. et al., 2012. A comparative study of 
thermal face recognition methods in unconstrained 
environments.  Pattern Recognition, 45(7), pp.2445–
2459. 
Hubel, D.H. & Wiesel, T.N., 1967. Receptive fields and 
functional architecture of monkey striate cortex. 
Journal of Physiology, 195(1), p.215–243. 
Van Kleef, J.P., Cloherty, S.L. & Ibbotson, M.R., 2010. 
Complex cell receptive fields: evidence for a 
hierarchical mechanism. Journal of Physiology, 
588(18), pp.3457–3470. 
Kose, N., Apvrille, L. & Dugelay, J.-L., 2015. Facial 
makeup detection technique based on texture and 
shape analysis. In 2015 11th IEEE International 
Conference and Workshops on Automatic Face and 
Gesture Recognition (FG). Ljubljana: IEEE, pp. 1–7. 
Lampl, L. et al., 2004. Intracellular Measurements of 
Spatial Integration and the MAX operation in complex 
cells of the cat primary visual cortex. Journal of 
Neurophysiology, 92, pp.2704–2713. 
LeCun, Y. et al., 1998.  Gradient-based learning applied to 
document recognition. Proceedings of the IEEE, 86, 
pp.2278–2324. 
Lei, Z. et al., 2007. Face recognition with local gabor 
textons. Advances in Biometrics, pp.49–57. 
Li, J. et al., 2004. Live face detection based on the analysis 
of fourier spectra. In Defense and Security. pp. 296–
303.  
Li, M. et al., 2013. Face recognition using early 
biologically inspired features. In Biometrics: Theory, 
Applications and Systems (BTAS), 2013 IEEE Sixth 
International Conference on. pp. 1–6. 
Lyons, M. et al., 1998. Coding facial expressions with 
Gabor wavelets. 
Proceedings - 3rd IEEE International 
Conference on Automatic Face and Gesture 
Recognition, FG 1998, pp.200–205. 
Maatta, J., Hadid, A. & Pietikäinen, M., 2011. Face 
spoofing detection from single images using micro-
texture analysis. In 2011 International Joint 
Conference on Biometrics (IJCB). pp. 1–7. 
Marcelja, S., 1980. Mathematical description of the 
responses of simple cortical cells. Journal of the 
Optical Society of America, 70, pp.1297–1300. 
McAdams, C.J. & Reid, R.C., 2005. Attention modulates 
the responses of simple cells in monkey primary visual 
cortex.  The Journal of neuroscience : the official 
journal of the Society for Neuroscience, 25, pp.11023–
11033. 
Meyers, E. & Wolf, L., 2008. Using biologically inspired 
features for face processing. International Journal of 
Computer Vision, 76(1), pp.93–104. 
Pan, G., Wu, Z. & Sun, L., 2008. Liveness detection for 
face recognition. Recent Advances in Face 
Recognition, (December), p.236. 
Perlibakas, V., 2006. Face Recognition using Principal 
Component Analysis and Log-Gabor Filters. Analysis, 
3(February 2008), p.23.  
Petkov, N. & Kruizinga, P., 1997. Computational models 
of visual neurons specialised in the detection of 
periodic and aperiodic oriented visual stimuli: bar and 
grating cells. Biological cybernetics, 76, pp.83–96. 
Pisharady, P.K. & Martin, S., 2012. Pose invariant face 
recognition using neuro-biologically inspired features. 
International Journal of Future Computer 
Communications, 1(3), pp.316–320. 
Prokoski, F.J. & Riedel, R.B., 2002. Infrared identification 
of faces and body parts. Biometrics, pp.191–212. 
Raghavendra, R., Raja, K.B. & Busch, C., 2015. 
Presentation Attack Detection for Face Recognition 
Using Light Field Camera. Image Processing, IEEE 
Transactions on, 24(3), pp.1060–1075. 
Ramon, M., Caharel, S. & Rossion, B., 2011. The speed of 
recognition of personally familiar faces. Perception, 
40(4), pp.437–49. 
Riesenhuber, M. & Poggio, T., 1999. Hierarchical models 
of object recognition in cortex. Nat. Neurosci., 
(2(11):1019-25). 
Riesenhuber, M. & Poggio, T., 2000. Models of object 
recognition. Nature Neuroscience, 3, pp.1199–1204. 
Rolls, E.T., 2012. Invariant Visual Object and Face 
Recognition: Neural and Computational Bases, and a 
Model, VisNet. Front Comp Neurosci, 6, p.35. 
Rose, N., 2006. Facial Expression Classification using 
Gabor and Log-Gabor Filters. In 7th International 
Conference on Automatic Face and Gesture 
Recognition, 2006. FGR 2006. pp. 346–350. 
Rust, N.C. et al., 2005. Spatiotemporal elements of 
macaque V1 receptive fields. Neuron, 46, pp.945–956. 
Van De Sande, K., Gevers, T. & Snoek, C., 2010. 
Evaluating color descriptors for object and scene 
recognition.  IEEE Transactions on Pattern Analysis 
and Machine Intelligence, 32(9), pp.1582–1596. 
SC37 ISO/IEC JTC1 & Biometrics, 2014. Information 
Technology—Presentation Attack Detection—Part 3: 
Testing, Reporting and Classification of Attacks, 
Schmid, A.M., Purpura, K.P. & Victor, J.D., 2014.