Ambulatory Devices Measuring Cardiorespiratory Activity with Motion

Marcel Młyńczak, Marek Żyliński, Wiktor Niewiadomski, Gerard Cybulski

2017

Abstract

Holter-type devices with sets of sensors, enabling long-term measurement of quantitative respiratory parameters, were designed and constructed. Pneumonitor 2 was intended for physiologic and athletic applications, and Pneumonitor 3 for sleep studies. Both allow simultaneous, comfortable, ambulatory monitoring of cardiorespiratory activity, such as ECG, impedance pneumography (IP), and motion; the second device also allows pulse oximetry and uses improved setting with combined receiving ECG and IP electrodes. Preliminary results showed that our prototypes provide signals reliable to monitor heart and breathing activity quantitatively. We tested the devices in different conditions, including walking, stair-climbing, cycle ergometer training, natural daily activity, and sleep. They can quantitatively measure respiratory flows, volumes, and minute ventilation using IP after calibration. They are also able to estimate tachogram from ECG. They allow the detection of subject activity and body position via accelerometer and gyroscope, which is helpful during IP calibration and interpretation. Pneumonitor 3 also enables measurement of blood saturation with a pulse wave (pulse oximetry).

References

  1. Bouten, C. V., Sauren, A. A., Verduin, M., and Janssen, J. (1997). Effects of placement and orientation of bodyfixed accelerometers on the assessment of energy expenditure during walking. Med Biol Eng Comput, 35(1):50-56.
  2. Collop, N. A., Anderson, W. M., Boehlecke, B., Claman, D., Goldberg, R., Gottlieb, D., Hudgel, D., Sateia, M., and Schwab, R. (2007). Clinical guidelines for the use of unattended portable monitors in the diagnosis of obstructive sleep apnea in adult patients. J Clin Sleep Med, 3(7):737-747.
  3. Ermes, M., Parkka, J., Mantyjarvi, J., and Korhonen, I. (2008). Detection of daily activities and sports with wearable sensors in controlled and uncontrolled conditions. IEEE T Inf Technol B, 12(1):20-26.
  4. Grossman, P. and Taylor, E. W. (2007). Toward understanding respiratory sinus arrhythmia: relations to cardiac vagal tone, evolution and biobehavioral functions. Biol Psychol, 74(2):263-285.
  5. Hoyer, D., Frasch, M., Eiselt, M., Hoyer, O., and Zwiener, U. (2001). Validating phase relations between cardiac and breathing cycles during sleep. IEEE Eng Med Biol, 20(2):101-106.
  6. McNicholas, W. (1997). Impact of sleep in respiratory failure. Eur Respir J, 10(4):920-933.
  7. Miller, M. R., Crapo, R., Hankinson, J., Brusasco, V., Burgos, F., Casaburi, R., Coates, A., Enright, P., van der Grinten, C. M., Gustafsson, P., et al. (2005). General considerations for lung function testing. Eur Respir J, 26(1):153-161.
  8. Mlynczak, M., Niewiadomski, W., Zylinski, M., and Cybulski, G. (2015). Assessment of calibration methods on impedance pneumography accuracy. Biomed EngBiomed Te, 61(6):587-593.
  9. Mlynczak, M. C., Niewiadomski, W., Zylinski, M., and Cybulski, G. P. (2014). Ambulatory impedance pneumography device for quantitative monitoring of volumetric parameters in respiratory and cardiac applications. In Computing in Cardiology, pages 965-968.
  10. Roebuck, A., Monasterio, V., Gederi, E., Osipov, M., Behar, J., Malhotra, A., Penzel, T., and Clifford, G. (2013). A review of signals used in sleep analysis. Physiol Meas, 35(1):R1.
  11. Seppa, V. P., Hyttinen, J., Uitto, M., Chrapek, W., and Viik, J. (2013). Novel electrode configuration for highly linear impedance pneumography. Biomed Eng-Biomed Te, 58(1):35-38.
  12. Seppa, V.-P., Viik, J., and Hyttinen, J. (2010). Assessment of pulmonary flow using impedance pneumography. IEEE T Bio-Med Eng, 57(9):2277-2285.
  13. Task Force, E. S. C. (1996). Heart rate variability standards of measurement, physiological interpretation, and clinical use. Eur Heart J, 17:354-381.
  14. Vuorela, T., Seppa, V. P., Vanhala, J., and Hyttinen, J. (2010). Design and implementation of a portable long-term physiological signal recorder. IEEE T Inf Technol B, 14(3):718-725.
Download


Paper Citation


in Harvard Style

Młyńczak M., Żyliński M., Niewiadomski W. and Cybulski G. (2017). Ambulatory Devices Measuring Cardiorespiratory Activity with Motion . In Proceedings of the 10th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 1: BIODEVICES, (BIOSTEC 2017) ISBN 978-989-758-216-5, pages 91-97. DOI: 10.5220/0006111700910097


in Bibtex Style

@conference{biodevices17,
author={Marcel Młyńczak and Marek Żyliński and Wiktor Niewiadomski and Gerard Cybulski},
title={Ambulatory Devices Measuring Cardiorespiratory Activity with Motion},
booktitle={Proceedings of the 10th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 1: BIODEVICES, (BIOSTEC 2017)},
year={2017},
pages={91-97},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006111700910097},
isbn={978-989-758-216-5},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 10th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 1: BIODEVICES, (BIOSTEC 2017)
TI - Ambulatory Devices Measuring Cardiorespiratory Activity with Motion
SN - 978-989-758-216-5
AU - Młyńczak M.
AU - Żyliński M.
AU - Niewiadomski W.
AU - Cybulski G.
PY - 2017
SP - 91
EP - 97
DO - 10.5220/0006111700910097