was done using only two methods, and so more 
methods should be used to explore the MEG 
background activity of the brain. Thus, future lines of 
research will include further signal processing using 
methods such as synchronisation likelihood, transfer 
entropy and mutual information so as to obtain a more 
complete description of the MEG background activity 
with ageing. In addition, statistical analysis will be 
performed to ascertain the significance of the 
obtained results. 
5 CONCLUSIONS 
A study of brain network topology was conducted 
using granger causality and phase slope index, in 
combination with graph theory, on data acquired from 
MEG recordings. The results observed showed that 
both linear and non-linear analysis tools reveal 
different complementary aspects of brain 
connectivity. 
REFERENCES 
Ahonen, A., Hämäläinen, M., Kajola, M., Laine, P., 
Lounasmaa, O., Parkkonen, L., Simola, J. and Tesche, 
C. (1993) '122-channel squid instrument for 
investigating the magnetic signals from the human 
brain', Physica Scripta, vol. T49A, pp. 198-205. 
Akaike, H. (1974) 'A new look at the statistical model 
identification', IEEE Transactions on Automatic 
Control, vol. 19, no. 6, pp. 716-723. 
Bressler, S.L. and Richter, C.G. (2014) ' Interareal 
oscillatory synchronization in top-down neocortical 
processing', Current Opinion in Neurobiology, vol. 
31C, pp. 62-66. 
Bullmore, E. and Sporns, O. (2009) 'Complex brain 
networks: Graph theoretical analysis of structural and 
functional systems', Nature Reviews Neuroscience, vol. 
10, no. 3, pp. 186-198. 
Cao, M., Wang, J., Dai, Z., Cao, X., Jiang, L., Fan, F., Song, 
X., Xia, M., Shu, N., Dong, Q., MPMilham, Milham, 
M., Castellanos, F., Zuo, X. and He, Y. (2013) 
'Topological organization of the human brain functional 
connectome across the lifespan', Developmental 
cognitive neuroscience, vol. 7, pp. 76-93. 
Carlson, N.R., Heth, C.D., Miller, H., Donahoe, W, Buskist, 
J.W and Martin, N.G. (2007) 'BIOLOGY OF 
BEHAVIOR', in PSYCHOLOGY: THE SCIENCE OF 
BEHAVIOR, Boston: Pearson. 
Chowdhury, D. and Stauffer, D. (2000) Principles of 
equilibrium statistical mechanics, Weinheim: Wiley-
VCH. 
Deco, G., Ponce-Alvarez, A., Mantini, D., Romani, G.L., 
Hagmann, P. and Corbetta, M. (2013) 'Resting-state 
functional connectivity emerges from structurally and 
dynamically shaped slow linear fluctuations', The 
Journal of Neuroscience, vol. 33, no. 27, pp. 11239-
11252. 
Dehemer, M. (2010) Structural Analysis of Complex 
Networks, Illustrated edition, Vienna: Springer Science 
& Business Media. 
Escudero, J., Hornero, R., Abasolo, D. and Fernandez, A. 
(2009) 'Blind source separation to enhance spectral and 
non-linear features of magnetoencephalogram 
recordings. Application to Alzheimer's disease', 
Medical Engineering and Physics, vol. 31, pp. 872-879. 
Fornito, A., Zalesky, A. and Breakspear, M. (2015) 'The 
connectomics of brain disorders', Neuroscience, vol. 
16, no. 3, pp. 159-172. 
Friston, K., Moran, R. and Seth, A.K. (2013) 'Analysing 
connectivity with Granger causality and dynamic 
causal modelling.', Current Opinion in Neurobiology, 
vol. 23, pp. 172-178. 
Gao, L., Sommerlade, L., Coffman, B., Zhang, T., Stephen, 
J.M., Li, D., Wang, J., Grebogi, C. and Schelter, B. 
(2015) 'Granger causal time-dependent source 
connectivity in the somatosensory network', Scientific 
Reports 5, vol. 5, no. 10399, pp. 1-10. 
Giedd, J.N. and Rapoport, J.L. (2010) 'Structural MRI of 
pediatric brain development: what have we learned and 
where are we going?', Neuron, vol. 67, pp. 728-734. 
Goldenberg, D. and Galvan, A. (2015) 'The use of 
functional and effective connectivity techniques to 
understand the developing brain', Developmental 
cognitive neuroscience, vol. 12, pp. 156-164. 
Gomez, C., Hornero, R., Mediavilla, A., Fernandez, A. and 
Abasolo, D. (2008) 'Nonlinear forecasting 
measurement of magnetoencephalogram recordings 
from alzheimers disease patients', British Columbia, 
2153-2156. 
Good, C.D., Johnsrude, I.S., Ashburner, J., Henson, R.N., 
Friston, K.J. and Frankowiak, R.S. (2001) 'A voxel-
based morphometric study of ageing in 465 normal 
adult human brains', Neuroimage, vol. 16, pp. 21-36. 
Gow, D.W.J., Segawa, J.A., Ahlfors, S.A. and Lin, F. 
(2008) 'Lexical influences on speech perception: A 
Granger causality analysis of MEG and EEG source 
estimates', NeuroImage, vol. 43, pp. 614-623. 
Haufe, S., Nikulin, V.V., Muller, K.R. and Nolte, G. (2012) 
'A critical assessment of connectivity measures for EEG 
data: a simulation study.', Neuroimage, vol. 64, pp. 120-
133. 
Hsu, H.P., Mehra, V. and Grassberger, P. (2003) 'Structure 
optimization in an off-lattice protein model', Physical 
Reviews E, vol. 68, no. 037703, pp. 1-4. 
Huttenlocher, P.R., De Courten, C., Garey, L.J. and Van der 
Loos, H. (1982) 'Synaptic development in human 
cerebral cortex', International Journal of Neurology, 
vol. 16-17, pp. 144-154. 
Jafarpour, A., Barnes, G., Fuentemilla, L., Duzel, E. and 
Penny, W.D. (2013) 'Population Level Inference for 
Multivariate MEG Analysis', Public Library of Science, 
vol. 8, no. 8, pp. 1-8. 
Lebel, C., Walker, L., Leemans, A., Phillips, L. and Beauli, 
C. (2007) 'Microstructural maturation of the human