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Abstract: Procedural generation of large virtual worlds remains a challenge, because current procedural methods mainly
focus on generating assets for a single content domain, such as height maps, trees or buildings. Furthermore
current approaches for multi-domain content generation, i.e. generating complete virtual environments, are
often too ad-hoc to allow for varying design constraints from creatives industries such as the development of
video games. In this paper, we propose a multi-domain procedural generation method that uses modularized,
single-domain generation methods that interact on the data level while operating independently. Our method
uses a blackboard architecture specialized to fit the needs of procedural content generation. We show that our
approach is extensible to a wide range of use cases of virtual world generation and that manual or procedural
editing of the generated content of one generator is automatically communicated to the other generators, which
ensures a consistent and coherent virtual world. Furthermore, the blackboard approach automatically reasons
about the generation process which allows 52% to 98% of the activations, i.e. executions of the single-domain
content generators, to be discarded without compromising the generated content, resulting in better performing
large world generation.

1 INTRODUCTION

As consumer expectations put increasing pressure on
the video game industry to improve the visual qual-
ity of games, game content production today focuses
on increasing the visual detail and quantity of game
assets used in virtual worlds. The creation of game
content, including but not limited to 2D art, 3D geom-
etry (trees, terrain, etc.) and sounds, largely remains a
manual process by human artists. Using more artists
to produce a larger but still coherent virtual world
becomes increasingly infeasible, not to mention the
associated increase in production costs. Procedural
content generation (PCG) is the generation of (game)
assets through the use of algorithms (Togelius et al.,
2013a). This allows for a large increase in the size
and diversity of produced content without an associ-
ated increase in cost.

However, previous work on PCG focuses primar-
ily on single-domain content generation, i.e. algo-
rithms that only generate one specific type of as-
set. Multi-domain content generation integrates these
methods but producing coherent content at a larger
scale remains challenging, and focuses mostly on ad-

hoc solutions for specific use cases (Smelik et al.,
2011; Dormans, 2010; Kelly and McCabe, 2007). Al-
though these methods generate varying types of con-
tent in an integrated manner, the generation process
targets a specific mixture of content and generates it
in a specific sequence and manner. This makes these
solutions less suitable for creativity industries, such as
game development, because each project comes with
highly varying design constraints and targeted con-
tent domains. Although the motivation for this work
stems from the game development domain, our work
is more broadly applicable to other domains such as
animation, movies, simulation, etc.

In this paper, we introduce a blackboard architec-
ture as a solution to this problem that allows PCG
methods to cooperate while manipulating highly het-
erogeneous data to create a coherent virtual world.
Our approach is extensible with any PCG method and
allows edits of the generated content to be automat-
ically communicated to other content and procedu-
ral generators. Furthermore, our approach supports
artists and designers by allowing the reuse of inte-
grated PCG methods across different use cases.

The remainder of this paper is as follows. In Sec-
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tion 2 we give an overview of previous approaches
for multi-domain content generation and the concepts
and extensions for blackboard systems. In Section 3
we elaborate upon our architecture. Then we show
several design considerations when using our ap-
proach to generate virtual worlds in Section 4. In Sec-
tion 5 we evaluate the extensibility of our approach,
as well as the editability of the generated content and
the generation performance. Finally, we present the
conclusions and future work in Section 6.

2 RELATED WORK

We introduce a multi-domain content generation ap-
proach based on blackboard systems. The discussion
of single-domain procedural methods lies beyond the
scope of this work, for an overview of procedural
methods we refer to a recent survey book (Shaker
et al., 2016).

2.1 Multi-Domain Content Generation

A prominent approach to multi-domain content gen-
eration is the waterfall model used in urban con-
texts (Parish and Müller, 2001; Kelly and McCabe,
2007) and game level generation (Dormans, 2010;
Hartsook et al., 2011). Both the work by Parish and
Kelly integrate several procedural methods (road net-
work generation, plot subdivision and building gen-
eration) sequentially to create a complete and coher-
ent virtual city scene. Dormans combines the genera-
tive grammars to generate both mission and space of
game levels, where the mission is generated first and
the space is mapped onto it. However, the rules used
in the system are game-specific and as such cannot be
easily reused. In a similar approach, Hartsook uses
procedurally generated or manually authored stories
or narratives to generate the spatial layout of a game
level. Waterfall model approaches, however, assume
a predefined order between generators. This imposes
constraints from each layer to the next, which in turn
reduces the re-usability of the system. The sequen-
tial and tightly coupled nature of such systems makes
them hard to extend to new use cases with new gener-
ators. Furthermore, editing content at a certain level
requires that content at lower levels should be en-
tirely regenerated, although creating (non-extensible)
ad-hoc editing operations is still possible (e.g. the
work by Kelly).

Alternative approaches to multi-domain content
generation include data flow systems (Silva et al.,
2015; Ganster and Klein, 2007), combining procedu-
ral models into a meta-procedural model (Gurin et al.,

2016a; Gurin et al., 2016b; Grosbellet et al., 2015;
Genevaux et al., 2015), declarative modelling (Sme-
lik et al., 2010; Smelik et al., 2011), answer set pro-
gramming (Smith and Mateas, 2011) and evolution-
ary algorithms (Togelius et al., 2013b). Silva aug-
ments generative grammars by representing them as
a data flow graph. This allows them to add additional
content domains such as lights and textures as well
as new filtering, grouping and aggregation features.
Although the data flow approach splits the procedu-
ral generation process into separate nodes, an addi-
tional requirement for data flow graphs is that ev-
ery node needs to know in advance how it will in-
teract with other nodes. This adds overhead to cre-
ating nodes as the designer potentially needs to re-
visit previous nodes. Furthermore, all editing opera-
tions need to be translated from the content domain
into the procedural graph domain which requires ad-
ditional expertise from the user. The work by Guerin,
Grosbellet and Genevaux on meta-procedural mod-
els focuses on two separate directions. Firstly, meta-
procedural modeling of geometric decoration details
involves generating details such as leaves, pebbles
and grass tufts for pre-authored environments. Sec-
ondly, meta-procedural modeling of terrains involves
generating terrain height maps, waterways, lakes and
roads in an integrated manner. This is achieved by
using a common geometric representation set, i.e. el-
evation functions, which allows these different terrain
features to be integrated. Both methods impose a spe-
cific ordering or structure on the generated content,
which means that they are incapable of handling dif-
ferent domains. Smelik combines the generation of
different aspects of a virtual world, including road
networks, vegetation and terrain. Instead of a water-
fall model, all generation occurs independently and
is subsequently combined using a conflict resolution
system. Their editor provides an intuitive way of edit-
ing for their specific content. However, adding new
generators to their system is difficult. Smith defines
the design space of the procedural generation prob-
lem as an Answer Set Program (ASP). By formally
declaring the design space, they can define new pro-
cedural methods for a variety of content domains. To-
gelius formalizes the entire game level into a single
data model and use multi-objective evolution to gen-
erate balanced strategy game levels. Both the evolu-
tionary and ASP approach additionally require a for-
malization of the underlying data model. Changing
the underlying constraints or adding new procedural
methods also means updating the data model manu-
ally. Additionally edits to the generated content can-
not be communicated back to such systems.
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2.2 Blackboard Systems

The blackboard system is a technique from the do-
main of Artificial Intelligence (AI) used to model
and solve ill-defined and complex problems (Corkill,
1991). Analogous to a real blackboard on which sev-
eral researchers work on a problem, the system uses
knowledge sources specialized in different tasks. A
control system ensures that the knowledge sources are
triggered at the right time to avoid conflicts.

Blackboard systems are a good solution for de-
sign problems as they can handle problems that have
to work on heterogeneous data. Blackboards are
therefore used in semantic problem solving (Ver-
borgh et al., 2012), game design (Treanor et al.,
2012; Mateas and Stern, 2002) and poetry genera-
tion (Misztal-Radecka and Indurkhya, 2016). Previ-
ous work does not include the use of blackboards for
procedural generation of virtual worlds.

3 BLACKBOARD SYSTEM FOR
PROCEDURAL GENERATION

Current multi-domain content generation approaches
are hard to extend, impose a predefined order of gen-
eration procedures implicitly constraining the whole
generation process or regenerate large parts when
editing content at a certain level. To solve these prob-
lems, we introduce a blackboard architecture that al-
lows PCG methods to cooperate while manipulating
highly heterogeneous data to create coherent virtual
worlds.

Figure 1: Overview of the blackboard system.

Figure 1 shows an overview of the proposed
method. Our system consists of four main compo-
nents: the blackboard, a query system, PCG knowl-
edge sources (KS) and a scheduler. The PCG knowl-
edge sources create new content based on existing
content or data on the blackboard. Using the query
system they can access this data and additional con-
textual information if needed. The execution of each
PCG knowledge source is triggered by the occurrence
of the necessary input data, i.e. the input type. Data

generation is not immediately executed however. In-
stead the execution of a PCG knowledge source is
temporarily buffered in an event called a knowledge
source activation. All knowledge source activations
are collected by the scheduler. The scheduler can then
process the order of execution of the events and filter
out unnecessary activations where needed. The re-
maining activations are executed and change the state
of the data on the blackboard. In the following sub-
sections, we will discuss each component in greater
detail.

3.1 Blackboard and Data Model

The blackboard stores all the data, i.e. all generated
content instances and additional input information. In
contrast to previous work using data models where
the designer needs to manually create and manage
them, we instead opt to automatically generate our
model based on the input and output data types of the
knowledge sources. The model is automatically cre-
ated, before the content generation process is started,
using the selected knowledge sources that were cho-
sen to generate the virtual world. This model is used
to structure the generated data and to help inform the
scheduler (which will be discussed in Section 3.4).
Figure 2 provides an example of our data model as it
was built for the evaluation.

Figure 2: Overview of the blackboard data model.

As each knowledge source will generate new con-
tent based on previous content from the blackboard,
this implies a dependency from one piece of content
to another. These dependencies are encoded as the
edges of a directed graph used to store the generated
data. For example, the placement of trees might de-
pend on the placement of the road network, to avoid
placing a tree on a road instead of next to it.

Our data model allows cyclical dependencies in
the resulting content. This increases the expressive-
ness of the overall system as content generated fur-
ther in the generation process can affect and improve
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earlier generated content (Togelius et al., 2013a). Al-
though we support cyclical dependencies at all levels
of our system, our use cases do not extensively test
the robustness of including cycles, as cycles can intro-
duce potential deadlocks or infinite knowledge source
activations that create an unstable virtual world. We
suggest careful design of the virtual world generator,
taking care to avoid these unstable situations. A de-
tailed exploration of cyclic dependencies will be ad-
dressed in future work.

3.2 Query System

The query system is used to access and retrieve infor-
mation from the blackboard. It supports direct queries
(e.g. retrieve terrain height map) or contextual queries
(e.g. retrieve terrain only from Arctic biomes). The
query system is currently implemented as a basic
database with basic select and where clauses. Queries
are executed based on data type, this means that a for-
mal model is needed for all PCG knowledge sources
to interact in a coherent manner.

The contextual queries are performed by search-
ing the directed graph for ancestors and children
based on the required information. Additionally, a
contextual query might encode a requirement for the
parameters of a piece of data instead of its relation to
other nodes inside the graph. For example, a terrain
data request could contain the added context of only
requiring data of a minimal elevation.

3.3 PCG Knowledge Sources

PCG knowledge sources encapsulate procedural
methods, preferably single-domain algorithms such
as L-systems or coherent noise generators as these im-
prove re-usability. Additionally, we distinguish three
types of PCG behaviour: (1) addition of new con-
tent instances, (2) modification of existing content in-
stances and (3) deletion of existing content instances.
A PCG knowledge source is required to implement
one or more of these behaviours to be supported by
the blackboard system. As stated earlier, a knowl-
edge source does not immediately execute when it re-
trieves data from the scheduler, instead it produces a
knowledge source activation. Knowledge source ac-
tivations store their operation (i.e. addition, modifica-
tion or deletion) in an event and send it to the sched-
uler for execution. The separation into three types al-
lows us to reason about what the generators plan to do
and optimize the order or even remove some unnec-
essary activations (see next section). However, this
requires the PCG knowledge sources to be stateless,
i.e. they should not remember what content instances

were previously generated by them, as manipulating
the order or occurrence of activations would create a
mismatch between the internal state of each knowl-
edge source and the state of the blackboard.

3.4 Scheduler

The scheduler controls the execution order of PCG
knowledge sources and handles the execution of
knowledge source activations. The execution order is
determined by automatically calculating a priority for
each knowledge source in the system. This priority is
derived from the blackboard data model. The priority
order can be determined by performing a topologi-
cal sort of the directed graph. However, topological
sorts only work on directed acyclic graphs (DAGs).
By condensing cycles in the graph into single vertices,
we can make any directed graph into a DAG.

Based on the determined priorities, the knowl-
edge source activations are collected in a priority
queue. This ensures that when a knowledge source
activates, all work resulting in its input type will be
finished. The next step is merging and removing un-
necessary knowledge source activations, done in ac-
cordance with two rules: (1) deletion cancels addi-
tions and modifications and (2) modification can be
merged with an addition event to form a new altered
addition. Merging activations reduces the amount of
activations to be executed, without changing the re-
sults, thus increasing the generation performance of
the system. This will be evaluated in Section 5.4.

4 DESIGN CONSIDERATIONS

In this section, we will discuss the insights obtained
from the implementation of our use cases. As each
knowledge source encapsulates a procedural method
and only communicates through the data on the
blackboard, it provided ample opportunity to create
reusable modularized behaviours. The scope of our
work is virtual world generation. For this, we pro-
pose a set of reusable abstractions, that we dubbed
knowledge source design patterns. First we will dis-
cuss what considerations can be made in terms of
compartmentalizing generation processing to improve
modularity when designing knowledge sources. Next,
we will provide an overview of the knowledge source
design patterns that were useful when designing use
cases for virtual world generation.

Extensible Multi-domain Generation of Virtual Worlds using Blackboards

85



4.1 Modularity of PCG Knowledge
Sources

Each knowledge source encapsulates a procedural
method capable of generating a specific piece of con-
tent. One could encapsulate any stateless state-of-the-
art procedural method into one of these modules, e.g.
putting an entire L-system and turtle interpreter into a
single module. However, naively encapsulating algo-
rithms will negatively impact performance. The PCG
knowledge sources are only dependent on their in-
put and output data types. For example, a knowledge
source might produce one or more elements of type C
from an input of type A. This knowledge source can
be replaced by two (or more) knowledge sources, e.g.
one knowledge source that produces B from A and
another that produces C from B. As long as the inter-
mediate data type differs from the starting input and
output types no conflicts will arise within the genera-
tion process.

From a design perspective, we can modularize
knowledge sources in three different ways: (1) by out-
put type, (2) by input type and (3) by generation pro-
cess.

1. The output type can be made more generic. By
splitting a knowledge source in two, an intermedi-
ate data type can be created which contains more
generic information which can be reused for sub-
sequent processes. Figure 3 shows an example of
splitting a forest generator into an object distribu-
tion generator and a tree generator. We can then
reuse the locations produced by the object distri-
bution generator to place other objects.

Figure 3: Example of modularization by output type.

2. The input type can also be made more generic.
Instead of making specialized processes for each
input type, it is more beneficial to split these into a
specialized converter to an intermediary type and
create a more generic process for this type. Fig-
ure 4 shows an example of generating bird nests in
trees for both fir and jungle type forests. We can

make a specialized parser that converts this tree
information into a more general tree model, such
as a branch list. From this list a generic bird nest
placer can be used.

Figure 4: Example of modularization by input type.

3. Given the same input and output data types, multi-
ple knowledge sources can be created that contain
different algorithms. For example, a knowledge
source calculating the minimal spanning tree us-
ing Kruskals algorithm, which is faster for sparse
graphs, could be switched out with another one
using Prims algorithm which is faster for denser
and larger graphs.

These three types of modularity should ideally be
used together, maximizing the reuse of modules
across different domains. As will be discussed in Sec-
tion 5.4, this will impact the performance of the entire
system.

4.2 Knowledge Source Design Patterns

The different design patterns obtained from the imple-
mentation of our example scenes for evaluation (see
Section 5.2) are:
• The converter simply converts data types from

one type to another. These are typically used to
convert specific types into generic types or vice-
versa (e.g. generic bird nest placer).

• The distributor generates a specific amount of in-
stances from an input type, according to a distri-
bution function. These are typically used for ob-
ject placement in a certain search space.

• The modifier simply modifies data of a certain
type, i.e. manipulating its parameters. For ex-
ample, modifying the height of a mountain at a
certain location.

• The constraint ensures that data has been pro-
duced in the right environment by allowing it to
modify or delete parent data if it does not adhere
to this constraint.
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• The collector collects instances of a specified data
type and puts them into a collection. This is useful
when you want to perform an operation on several
instances of the same data type.

Further identification of these design patterns will
support the applicability of our approach in future
work.

5 EVALUATION

The evaluation of procedural generation methods re-
mains a challenge. Content representation has not
been standardized, i.e. a geometric object can be
represented in a variety of a ways (e.g. voxel repre-
sentation, triangle meshes or billboard images). This
means that comparing the resulting content is often
approximate at best. Furthermore, different procedu-
ral methods can focus on specific features, e.g. gener-
ation performance, content quality, extensibility, etc.

We chose to compare our approach to Esri’s
CityEngine, a state-of-the-art urban city generator, to
give the reader a general idea of what is currently
used in industry. CityEngine is also a good example
of a waterfall approach to multi-domain content gen-
eration; it is a well established commercial tool and
has an advantage over our approach in terms of de-
sign features, interface accessibility and performance.
However, comparing our proof-of-concept in terms of
design features or user interface is out of the scope
of our research. Instead, we aim to show that the
blackboard-based approach is highly extensible and
is more robust when editing generated content.

5.1 Test Cases

We created a number of test cases to evaluate the ex-
tensibility and the generation performance of our sys-
tem. These were created using custom modules for
procedural content generation of virtual worlds: (1)
a generic object placement module allows for objects
to be distributed randomly and allows meshes to be
placed in the scene; (2) a terrain system allows for
complex terrains with customizable and fully inde-
pendent biomes; (3) a vegetation module leverages
L-systems to produce vegetation meshes; and (4) a
road module allows for road networks to be built by
various sources and supports multiple road strategies,
similar to the technique used by Kelly et al. (Kelly and
McCabe, 2007). Covering all possible content gener-
ation algorithms to create virtual worlds would be out
of scope for this paper, however these examples form
a representative sample of virtual world generation in
general.

Example 1: Forest Scene
The forest scene features a generated height map with
variable amount of vegetation objects. By default, the
forest scene contains an equal amount of both trees
and bushes. We can however remove the bushes or
add a third object, e.g. plants. Varying the amount of
object types will be discussed further in Section 5.4.

Figure 5: Forest scene using object placement (left) and L-
systems (right).

Figure 5 shows an example forest scene featuring
50 trees, 100 bushes and 100 plants. By swapping
out knowledge sources the vegetation can be either
created by placing predefined objects, or by creating
meshes at runtime using an L-system.

Example 2: Road Scene
The road scene generates a height map for a desert
environment, with a variable amount of interest point
objects. The interest points are combined into a road
graph according to two strategies based on previous
work (Kelly and McCabe, 2007): (1) straight road,
connecting two points with the shortest possible road,
and (2) minimum elevation difference, roads with
lowest steepness within a maximum allowed exten-
sion versus straight roads.

Figure 6: Road scenes using minimum elevation difference
(left) and straight strategies (right).

Figure 6 shows an example road scene with the
two different strategies. The different road strategies
can be utilized by swapping out knowledge sources.

Example 3: Combined Scene
The combined scene is an example of combining
all of the aforementioned techniques. It features a
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generated height map, different biomes (e.g. arctic,
desert and forest), vegetation generation (e.g. using
L-systems) and placement and road network gener-
ation. This example serves as a “complete” virtual
world and a point of comparison with the content pro-
duced by CityEngine.

Figure 7: Example combined scene.

Figure 7 shows an example of the combined scene
with the placement of vegetation and the choice of
road strategy automatically adapting to the biome.
It can be noted that our prototype does not feature
building generation as is the case with CityEngine.
However, CityEngine’s tree representation uses pre-
authored billboards while we use L-systems to gen-
erate full 3D trees with leaves. Thus we argue that
these scenes have a similar scene complexity gener-
ally speaking.

5.2 Extensibility

Current approaches of multi-domain content genera-
tion have limited extensibility. They make choices on
what content should be generated, how and in what
order. This makes them less suitable for the creative
industries, as artists need (nearly) complete control
over their design tools. CityEngine, for example, gen-
erates the road networks first, followed by plot subdi-
vision in the resulting street blocks and finally gen-
erating a building or open area on each plot. This
hampers the usability of such a system for different
domains or projects. For example, this implies that
an artist cannot place one or more buildings first and
add a street connecting them to the street network, or
create a plot subdivision based on the placement of a
set of buildings and roads.

Our blackboard approach however allows a more
flexible way of editing the content generation process
for any combination of content domains, e.g. extend-
ing the system with new generators or changing the
content dependencies, because our blackboard data
model is automatically generated based on the se-
lected knowledge sources. Furthermore, the scene

generation does not happen in concrete steps or in a
set order. Instead the scene is built in small incre-
ments and previously generated content can still be
affected by content that has yet to be generated. This
allows for more innovation than would normally be
possible in a system where rules cannot be depen-
dent on aspects that appear later in the generation or-
der (Togelius et al., 2013a).

Our architecture makes knowledge sources, and
consequently the procedural methods, independent
of each other where communication is handled im-
plicitly through the blackboard, or more specifically
through the data.

5.3 Editing Generated Content

Another key advantage of our approach over waterfall
approaches is that it allows newly generated content
to edit previously generated content without complete
regeneration. In a waterfall-based approach, editing
content in a certain layer causes all subsequent lay-
ers to regenerate as there is no way to communicate
what specifically has changed in that layer and what
parts of depending content should change accord-
ingly. This can be partly alleviated by implementing
ad-hoc solutions where necessary. For example, in
CityEngine, very small translational movements (less
than 1 meter) of a street intersection mostly does not
regenerate all surrounding building blocks but instead
resizes the building plots without having to regenerate
the building. However, even slightly increasing this
movement causes the subdivision to update, which in
turn regenerates the buildings. This means an apart-
ment building on the corner of the street might turn
into a small park.

Obviously when changing content in a scene all
dependent content should change, however the under-
lying problem is that content dependencies in a wa-
terfall model are over-generalized. Content naturally
depends on each other, but we need to model these
dependencies at a more granular level. In our ap-
proach, generation is segmented into several knowl-
edge sources which exposes these content dependen-
cies. This way, changes in the scene do not cause
complete regeneration, but instead allows a more lo-
calized effect where only the properties of the content
that should change do change.

Our generation process triggers knowledge
sources through changes in data on the blackboard,
i.e. additions, modifications and deletions. Thus
any modification of data on the blackboard, i.e. the
generated virtual world, triggers knowledge sources
that depend on that content type and subsequent
knowledge sources, cfr. the data model. Figure 8
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shows an example of the height map being displaced
and the nearby trees automatically updating their
vertical position and orientation (to follow the surface
normal). In this case, only the vertical position
logically depended on the height map, thus the
overall horizontal distribution is maintained and all
trees are still placed correctly on the surface of the
virtual world.

Figure 8: Displacing the height map locally updates the
height and orientation of nearby trees.

Important to note here is that this behaviour is ob-
served irrespective of whether the edit was procedu-
ral or manual. Because the generation process has
been split into different knowledge sources, manual
editing of the resulting content automatically causes
dependent knowledge sources to update their content.
The changes cannot be communicated to the knowl-
edge source that created said piece of content how-
ever. Consequently, if another change happens earlier
in the dependency graph, the first change will be over-
written.

5.4 Generation Performance

To evaluate the generation performance, we will
broadly compare our system with CityEngine. Ex-
ample 3 from Section 5.2 will be used as a refer-
ence to CityEngine’s urban worlds. We generate a
virtual world of similar size and scene complexity
with both tools and compare the execution times. Our
framework has been implemented on the Unity En-
gine (UnityTechnologies, 2016), and all tests were
performed on an Intel Core i7-5960X 3.00GHz com-
puter with 32GB of RAM.

Esri’s CityEngine (Esri, 2016) creates cityscapes
with an approximate virtual size of 12 km2 about 7500
to 9500 geometric objects in 15 to 30 seconds. Con-
versely, our approach creates a virtual world of ap-
prox. 12 km2 with 8000 geometric objects in about
4 minutes. Although our system performs 10 times
slower than CityEngine, it should be noted that this
is for full regeneration in both cases and comparing a
commercial optimized solution versus a research pro-
totype. When editing the scene, the changes typically

take a couple of milliseconds to at most a couple of
seconds for our system, similar to CityEngine.

It should be noted that the resulting performance
of our system depends on the number of knowledge
source activations. The constant sorting and schedul-
ing of these events introduces an overhead into the
system, and furthermore the design choices, i.e. how
to split up the generation process into knowledge
sources, also impact performance. However, they do
not increase the runtime complexity of the underly-
ing algorithms, e.g. a road generation algorithm of
complexity O(n2) remains O(n2). For example 3, at
8000 geometric objects, we measured on average 6.7
seconds of overhead.

In the next Sections, we discuss the impact of
scheduling and modularization on the generation per-
formance of our blackboards architecture.

Impact of Scheduling on Performance
In order to evaluate the impact of scheduling, we gen-
erate each example scene (see Section 5.2) with and
without event reduction at varying scene complexi-
ties. Figure 9 shows the relative number of reduced
activations due to event reduction.

Figure 9: Reduced activation ratio with event reduction for
all use cases.

We can see that the activation reduction increases
significantly over time for examples 2 and 3, while
example 1 remains fairly constant. This can be ex-
plained by the presence of the road network genera-
tion algorithm in both examples 2 and 3.

Creating a road network in our case involves rela-
tively more knowledge sources than for example for-
est generation, i.e. 6 steps instead of 3: (1) height map
to point cloud, (2) point cloud to interest point, (3)
interest point to point collection, (4) point collection
to abstract road graph, (5) abstract road graph to road
graph with strategy tags and (6) road graph to textured
mesh. Furthermore, the event deletion greatly reduces
vertically, i.e. generators using highly sequential or
a large amount of dependent steps benefit most from
event deletion. In conclusion, the event reduction can
reduce the number of activations from 52% to 98%.
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Figure 10: Overhead ratio with event reduction for all use
cases.

It is clear that event reduction is beneficial for
large scale virtual world generation. However, event
reduction also introduces an overhead into the system.
Figure 10 shows the relative overhead (i.e. the per-
centage of time not spent on generation) for all ex-
ample scenes. We can see that the overhead is be-
tween 13% and 42%. Example 2 can be considered
highly vertical in terms of content generation, con-
versely example 1 and 3 are more horizontal, i.e. sub-
sequent knowledge sources mostly reuse content gen-
erated by a single knowledge source. For example,
the placement of road intersections and tree positions
are both derived from a point cloud generated based
on the height map. From this, we can infer that the
more horizontal, i.e. reusable, the generation process
the lower the overhead.

Impact of Modularization on Performance

One can argue however that modularizing PCG gen-
erators into several smaller modules will significantly
increase the runtime complexity as more modules also
means more events. However, although more events
are indeed created we will show that the overall run-
time can decrease depending on the design.

This test uses example 1, as we stated in Sec-
tion 5.2 the forest scene can be designed with only
trees (single object type), trees and bushes (double
object types) or trees, bushes and plants (triple ob-
ject types). The modularization in all three cases is an
example of modularization by output type (see Sec-
tion 4.1). We will evaluate the performance of ex-
ample 1 for all three configurations (single, double
and triple) with and without the introduced modular-
ization by output type. The configurations are in-
troduced to show the impact of data and knowledge
source reuse facilitated by modularization.

First modularization increases the activation count
by 200% for the single configuration, by 50% for the
double collection and stays about the same for the
triple configuration. The highest increase is the sin-

gle configuration, this is to be expected as we cut up
the generation process in more steps without having
more knowledge sources that take advantage of it (i.e.
reuse). Increasing the amount of object types in our
test case however decreases this disadvantage, with
an object type count of three almost nullifying the in-
crease in activation count from adding extra modules.

Figure 11: Total execution speed-up due to modularization
for different object type amounts.

Figure 12: Generation speed-up due to modularization for
different object type amounts.

Next we take a look at the execution times, both
total (Figure 11) and actual generation (Figure 12).
The results show that in the single configuration the
generation process is considerably slower, although
the generation time does not decrease that much (by
about 20% at 50 000 objects) the total execution time
at least doubles. However when introducing more
object types (i.e. double and triple configurations),
the modularized knowledge sources can be reused by
other knowledge sources thus increasing the perfor-
mance.

Modularization moves work related to converting
from one data type to another into a separate knowl-
edge source. The result of this conversion can be used
by multiple knowledge sources which would other-
wise have to do this conversion themselves. Mov-
ing the conversion into its own knowledge source and
making the input and output as generic as possible
also allows various optimizations which are otherwise
not possible. This means that the extra overhead cre-
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ated by modularization due to the extra activations is
less than the benefit gained from it.

6 CONCLUSIONS AND FUTURE
WORK

To improve the usability of multi-domain content gen-
eration, the selected content domains for generation
as well as the order and manner in which it is gener-
ated should be configurable. We presented an exten-
sible framework for multi-domain content generation
of virtual worlds. We have introduced blackboards
to the domain of procedural generation to alleviate
the current limitations of multi-domain content gen-
eration. Encapsulating the different (single content-
domain) procedural methods into knowledge sources,
allows the system to reason about the generation pro-
cess which in turn allows optimization of the gener-
ation process by eliminating unnecessary generation
executions and ordering the remaining based on pri-
ority in terms of content dependencies.

We provided an overview of the design consider-
ations when using our method for virtual world gen-
eration: modularization and knowledge source design
patterns. We have shown the extensibility of our sys-
tem by implementing a set of 3 different use cases
(forest, road and combined environments) which form
a representative sample set of virtual world genera-
tion. Furthermore, our system facilitates a more sta-
ble way of editing generated content, as changes in
the data only trigger the specific procedural meth-
ods that depend on it. Finally, the generation perfor-
mance of the system depends on the scheduling sys-
tem (i.e. event reduction) and modularization design
paradigms. Event reduction reduced the number of
knowledge source activations by as much as 98% re-
sulting in better performing large world generation.
Although modularization increases the number of ac-
tivations, we proved that the overall runtime can be re-
duced by intelligent data and knowledge source reuse.

For paths for future research, we suggest five pos-
sible extensions. Firstly exploring the behaviour of
dependency cycles in the data model. Secondly, im-
proving the editing of generated content by automat-
ically communicating edits to the knowledge source
that created said changed content. Thirdly improving
the generation performance of the system by for ex-
ample automatic concurrency of the PCG blackboard
architecture. The separation of procedural modelling
methods into knowledge sources should provide op-
portunities for parallelization. Fourthly, data ontolo-
gies could be utilized to provide a formalized data for-
mat, allowing for more optimizations for scheduling

and overall improvement of the coherence of the re-
sulting content. Lastly recursive blackboards could
be used for PCG blackboards, where the knowledge
sources can contain blackboards themselves. This
could be used to enable scoping operations, where
certain knowledge sources are scoped within certain
regions of the virtual worlds. This would allow finer-
grained control over the generation process and allow
different types of constraints in different regions.
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