Hacking of the AES with Boolean Functions

Michel Dubois and Eric Filiol

Operational Cryptology and Virology Laboratory, 38 rue des Docteurs Calmette et Gurin, 53000 Laval, France

Keywords:

Abstract:

Block Cipher, Boolean Function, Cryptanalysis, AES.

One of the major issues of cryptography is the cryptanalysis of cipher algorithms. Some mechanisms for
breaking codes include differential cryptanalysis, advanced statistics and brute-force. Recent works also at-
tempt to use algebraic tools to reduce the cryptanalysis of a block cipher algorithm to the resolution of a
system of quadratic equations describing the ciphering structure. In our study, we will also use algebraic tools
but in a new way: by using Boolean functions and their properties. A Boolean function is a function from
F}' — F> with n > 1. The arguments of Boolean functions are binary words of length n. Any Boolean function
can be represented, uniquely, by its algebraic normal form which is an equation which only contains additions
modulo 2—the XOR function—and multiplications modulo 2—the AND function. Our aim is to describe the
AES algorithm as a set of Boolean functions then calculate their algebraic normal forms by using the Moe-
bius transforms. After, we use a specific representation for these equations to facilitate their analysis and
particularly to try a combinatorial analysis. Through this approach we obtain a new kind of equations system.

1 INTRODUCTION

The block cipher algorithms are a family of cipher al-
gorithms which use symmetric key and work on fixed
length blocks of data.

Since Novembre 26, 2001, the block cipher algo-
rithm “Rijndael”, became the successor of DES under
the name of “Advanced Encryption Standard” (AES).
Its designers, Joan Daemen and Vincent Rijmen used
algebraic tools to give to their algorithm an unequaled
level of assurance against the standard statistical tech-
niques of cryptanalysis. The AES can process data
blocks of 128 bits, using cipher keys with lengths of
128, 192, and 256 bits (NIST, 2001).

One of the major issues of cryptography is the
cryptanalysis of cipher algorithms. Cryptanalysis is
the study of methods for obtaining the meaning of
encrypted information, without access to the secret
information that is normally required. Some mech-
anisms for breaking codes include differential crypt-
analysis, advanced statistics and brute-force.

Recent works like (Murphy and Robshaw, 2002),
attempt to use algebraic tools to reduce the cryptanal-
ysis of a block cipher algorithm to the resolution of a
system of quadratic equations describing the cipher-
ing structure. As an example, Nicolas Courtois and
Josef Pieprzyk have described the AES-128 algorithm
as a system of 8000 quadratic equations with 1600
variables (Courtois and Pieprzyk, 2002). Unfortu-

Dubois, M. and Filiol, E.
Hacking of the AES with Boolean Functions.
DOI: 10.5220/0006091305990609

nately, these approaches are infeasible because of the
difficulty of solving large systems of equations.

We will also use algebraic tools but in a new way
by using Boolean functions and their properties. Our
aim is to describe a block cipher algorithm as a set of
Boolean functions then calculate their algebraic nor-
mal forms by using the Moebius transforms.

In our study, we will test our approach on the
AES algorithm. Our goal is to describe it under the
form of systems of Boolean functions and to calcu-
late their algebraic normal forms by using the Moe-
bius transforms. The system of equations obtained
is more easily implementable and could open new
ways to cryptanalysis of the AES. We have devel-
oped a proof of concept of our approach in python
language. The resulting programs are open source
and available on github at the following address:
https://github.com/archoad/BooleanAES.

2 BOOLEAN FUNCTIONS

2.1 Definition

Let be the set B = {0,1} and B, = {B,A,V,—} a
Boolean algebra, then B} = (x1,x2,---,X,) such that
x; € By and 1 £ i < n, is a subset of B, containing all
n-tuples of 0 and 1. The variable x; is called Boolean

599

In Proceedings of the 3rd International Conference on Information Systems Security and Privacy (ICISSP 2017), pages 599-609

ISBN: 978-989-758-209-7

Copyright (© 2017 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved

ForSE 2017 - 1st International Workshop on FORmal methods for Security Engineering

variable if she only accepts values from B, that is
to say, if and only if x; = 0 or x; = 1 regardless of
1<i<n.

A Boolean function of degree n with n > 1 is a
function f defined from B5 — B, that is to say built
from Boolean variables and agreeing to return values
only in the set B={0,1}.

For example, the function f(x;,x;) = x; A—x; de-
fined from f822 — B, is a Boolean function of degree
two with:

£(0,0)=0
F0,1)=0
F(1,0)=1
f(1,1)=0

Let n and m be two positive integers. A vec-
tor Boolean function is a Boolean function f defined
from BY — By'.

Finally, we can define a random Boolean function
as a Boolean function f whose values are independent
and identically distributed random variables, that is to
say:

V(xlaxb"' 7-xl‘l) S Q;SL

P[f(}ﬂ,XQ,“-,xn):O]:*

The number of Boolean functions is limited and
depends on n. Thus, there is 22" Boolean functions.
Similarly, the number of vector Boolean functions is
limited and depends on n and m. Thus, there exists
(2’")2n vector Boolean functions.

If we take, for example, n = 2 then there exists

(22)2 = 16 Boolean functions of degree two. These
16 Boolean functions are presented in the table 1.
Among the Boolean functions of degree 2, the best
known are the functions OR, AND and XOR.

The support supp(f) of a Boolean function is the
set of elements x such that f(x) # 0, the Hamming
weight wt(f) of a Boolean function is the cardinal
from its support and we have:

wi(f)=[{xe By | flx)=1}]

A Boolean function is called balanced if wt(f) =
2"~1. Similarly, a Boolean vector function B} — By’
is said to be balanced if wr(f) = 2"~™ (Carlet, 2010b).

For example, the support of the function
Sf(x1,x2) = x1 V xz, corresponding to logical OR is
supp(f) = {(0,1),(1,0),(1,1)} and its weight is
wt (f) = 3.

600

Table 1: The 16 Boolean functions of degree 2.

Jo 0

Si X1 Ax2
| xiAx
5 X

fa | 1 Ax
fs X2

Jo x1 ¥Yx
Nii x1 V2
fs | (V)
fo | ~(x1¥Yx)
f1o)
fii | x1V-x
f12 —X]
fiz | x1Vx
fia | ~(x1 Ax2)
fis 1

2.2 Representations

There are multiple representations of Boolean func-
tions. We’ll look at the most common—the truth
table—and that we will use later—a representation in
GF(2).

2.2.1 The Truth Table

The different values taken by a Boolean function may
be presented in the form of a table called truth table.
The truth table characterizes a Boolean function.

2.2.2 Representation in GF(2)

A Boolean function can also be presented in the form
of a series of conjunctions including disjunctions,
negations and/or variables. This is called the con-
junctive normal form. Thus, the sequence f = (aV
b) A (—aV b) is the conjunctive normal form of the f
function. Conversely, a Boolean function can be pre-
sented in the form of a series of disjunctions includ-
ing conjunctions, negations and/or variables. This
is called the disjunctive normal form. Thus, the se-
quence g = (aAD)V (—aAb) is the disjunctive normal
form of the function g.

Now let the representation of Boolean functions in
GF(2).

The set B = {0,1} associated with A, V and —
operations is the Boolean algebra B, = {B,A,V,—}
with the truth tables of the operations described in
figure (see fig. 1). If we introduce the two binary op-
erations @ and e defined by the truth tables in fig-
ure (see fig. 2), then B, and the Galois field GF(2)
are similar. More specifically, the Boolean algebra

a1 |0

Figure 1: Rules for Boolean algebra with two elements.

e |01 @0 |1
00O 00| 1
101 1160

Figure 2: Truth tables of e and .

(B,A,V,—) and the field (GF(2),,®) are related by
the following transformation formulas:

aNb=aeb

aeb=aAb
aVb=a®bD(aeb)
a®b=(aN—b)V(-aNb)

a=a®1

We can now define a Boolean function as a func-
tion f:) — IF> with I the set of binary vectors of
length n > 1. The Hamming weight wH (x) of the bi-
nary vector x € [is the number of non-zero coordi-
nates, that is to say the size of the set {i e N | x; #
0}. The Hamming weight of a Boolean function
f :F5 — Iy is the size of its support. Finally, the
Hamming distance between two Boolean functions f
and g is the size of the set {x € [} | f(x) #g(x)}.

Among the classic representation of Boolean
functions, the most frequently used in cryptography is
the polynomial representation in n-variable on GF (2).
This representation is of the form (Carlet, 2010a):

flx)= @ ar <Hx,->
IEP(N) iel

= EBaixl

I€P(N)

P(N) denotes the set of powers of N = {1,--- ,n}.
Each coordinate x; appears in this polynomial with
an exponent equal to at least one, because in F,
we havex” = x. This representation is described in
Fz[xl)T 7-x}’l]/(x% @xb e 7.?6% @xn)

This representation of Boolean functions in
GF(2) is called Reed-Muller expansion or polyno-
mials of Zhegalkin ((O’Donnel, 2014) page 169) or,
more commonly, algebraic normal form (ANF). The
degree of ANF'(f) is the highest degree of monomials

Hacking of the AES with Boolean Functions

of ANF (f) with non-zero coefficients. Finally, the al-
gebraic normal form of a Boolean function exists and
is unique.

In summary, any Boolean function can be repre-
sented uniquely by its algebraic normal form as the
equation:

Flxr, - xn) = ao+
arxy +axxy + -+ apXpt+
aipx1 X2 + -+ ap—1 pXn—1Xn+
arn,...nX1x2 ... Xp

Consider an example. Let the function f described
by the truth table of the table 2

Table 2: Truth table of the function f.

xi x2 x3 | f(x)
0O 0 O 0
0 O 1 1
0 1 0 0
0 1 1 0
1 0O O 0
1 0 1 1
1 1 0 0
1 1 1 1

The weight of the function f is wt(f) = 3. So we
can reduce f to the sum of 3 atomic functions fi, f>
and f3. The function f; = 1 if and only if 1 x| =
1, 14 x =1 and x3 = 1. From this we can deduce
that the ANF of the function f; can be obtained by
expanding the product (1 ®x;)(1®x;)x3. Applying
this reasoning to the functions f, and f;3 we get the
following equation:

ANF (f) = (1@ x1)(1 ®x2)x3 Dx1 (1 ©x2)x3 O x1x2%3
= X1X2X3 D X1X3 D X3

3 MECHANISM OF THE
EQUATIONS

After this brief presentation of Boolean functions, we
have the necessary tools for the development of sys-
tems of Boolean equations describing the Advanced
Encryption standard.

3.1 Moebius Transform

We have just seen how to generate normal algebraic
form (ANF) of a Boolean function. The presented

601

ForSE 2017 - 1st International Workshop on FORmal methods for Security Engineering

method is not easily automatable in a computer pro-
gram. So we will prefer the use of the Moebius trans-
form.

The Moebius transform of the Boolean function f
is defined by (McCarty, 1986):

TM(f): T =T,
u= @f(v)modZ

v<u
with v < wu if and only if Vi,v;, =1 = u; = 1.
From there, we can define the normal algebraic
form of a Boolean function f in n variables:

&P TM (u)x|" - xiir
u=(uy - un) €F}

To better understand the mechanisms involved in
the use of the Moebius transform, take an example
with the MajParmi3. This function from IE"% — Fy is
characterized by the truth table 3.

Table 3: The truth table of the function Ma jParmi3.

X1 X2 X3 MP3
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Calculating the Moebius transform of the function
we get the result of the table 4.

Table 4: Calculating the Moebius transform for Ma jParmi3.

x| x| x compute of mz(f) mt(f)
0ojo0oj{0|0 —- O0]0|O0]O 0
ojo0o{1j]0 —- 0]0|0]O0 0
oj1{0|]0 — 0]0]0]O0 0
011 1 1 = 1 1 1 1 1
1{0j0|0 — 00010 0
1101 I — 1 1 1 1 1
1 1|01 — 1 1 1 1 1
1 1 1 1 - 11010 0

After the Moebius transform of the function ob-
tained, we take the F3 for which 7M(MajParmi3) #
0. In our case we have the triplets (0,1,1), (1,0,1),
(1,1,0) from which we can deduce the equation:

MajParmi3 (x1,x2,x3) = xpx3 + X1x3 + X1X2

With the addition corresponding to a XOR and mul-
tiplication to a AND.

602

f(b1) = 1©b15b16 ©b14 Db14b16 Db13 D b13b1s
D b13b15b16 Dby D bbby ©brby B bybs
D bybsby ®b1b3Db1b3bs B b1by D b1bybs

1 1 0000000000000000
bisb1e 0 0000000000000011
b1a 0 0000000000000100
b1ab1e 0 0000000000000101
b13 0 0000000000001000
b13b1s 0 0000000000001010
b13b15b16 0 0000000000001011
by 0 0001000000000000
b3by 0 0011000000000000
byby 0 0101000000000000
brbs 0 0110000000000000
bab3by 0 0111000000000000
b1b3 0 1010000000000000
b1b3by 0 1011000000000000
b1by 0 1100000000000000
b1babs 0 1110000000000000

Figure 3: File for the bit b;.
3.2 Formatting Equations

To facilitate the analysis and in particular to try a com-
binatorial study we will implement a specific presen-
tation for equations thus obtained.

The AES algorithm takes 128 bits as input and
provides 128 bits as output. So we will have Boolean
functions F2128 — F2128. The guiding principle is to
generate a file by bit, we will have at the end 128 files.
Each file containing the Boolean equation of the con-
cerned bit.

In each file, the Boolean equation is presented un-
der the form of lines containing sequences of 0 and 1.
Each line describes a monomial of the equation and
the transition from one line to another means apply-
ing a XOR.

In order to facilitate understanding of the chosen
mechanism we describe the realization of file corre-
sponding to one bit »; from his equation to the file
formalism in figure (see fig. 3).

4 APPLICATION TO AES

4.1 Presentation of the AES

Since November 26, 2001, the block encryption algo-
rithm “Rijndael”, in its 128-bit version, became the
DES successor under the name of Advanced Encryp-
tion Standard (AES).

Issued from a competition launched by the Na-
tional Institute of Standards and Technology (NIST)

in 1997, Rijndael (Daemen and Rijmen, 1999) has
crossed all the stages of selection and is now a U.S.
federal standard recorded under the FIPS 197 num-
ber (NIST, 2001). Inscribed on the suite B of the Na-
tional Security Agency (NSA), the AES is intended,
promoted by the U.S. Government, to become a stan-
dard for secure exchange of classified information,
into the United States and between the United States
and their partners (CNSS, 2012). Indeed, originally
reserved for the encryption of sensitive unclassified
information—article 6 of (NIST, 2001)—the scope of
the AES has evolved and became effective October
first, 2015, the encryption algorithm for the informa-
tion classified up to TOP secret in the United States—
Annex B of (CNSS, 2012). Similarly, it is, today, the
symmetric block cipher algorithm most commonly
used in occident!.

AES is a symmetric block cipher algorithm. It en-
crypts and decrypts data from one key blocks.

Unlike the DES, based on a Feistel network, the
AES relies on a network of substitutions and permu-
tations (SP-network). The latter consists of non-linear
substitution functions contained in one S-Box and lin-
ear permutation functions we can be group into a P-
Box. Each box takes a block of text and the key as
input and return a block of ciphertext as output. The
information flow in a set of several P-Box and S-Box
suite forming a round.

The inputs and outputs of the AES are 128-bit
blocks and the length of the key can be 128, 192 or
256 bits. The basic unit of the algorithm is the byte.
Input data blocks are converted into tables of four
columns and four rows, each box containing a byte,
i.e. 4x4 %8 = 128 bits per table.

For encryption and decryption operations, the
AES algorithm uses a function of round composed of
four different functions. The first performs a substi-
tution of bytes using a substitution table or S-box, the
second executes a sliding of the rows of the states ar-
ray from different offsets, the third performs a mix-
ture of the columns of the states array and finally, the
fourth adds the round key to the states array. The
second and the third function form the P-box of the
round.

The ciphering operations rely on four predefined
functions: AddRoundKey, SubBytes, ShiftRows and
MixColumns. Each of these functions is performed on
the states array. Encryption cycle includes an initial
transformation, some intermediate rounds and a final
round.

The number of rounds in the AES is dependent

Russia, for example, uses encryption algorithms defined
by the standards GOST 28147-89, GOST R 34.10 - 2001,
etc...

Hacking of the AES with Boolean Functions

on the key size. Thus, for a 128-bit key, the number
of rounds is 10. Similarly, we have 12 rounds for a
192-bit key and 14 rounds for a 256-bit key.

In the end, the pseudo code of the AES encryption
function can be written as follows, Nb corresponding
to the 32-bits words number and Nr corresponding to
the rounds number used in the algorithm.

1: function CIPHER(byte in[4*Nb], byte out[4*Nb], word
w[Nb*(Nr+1)])
byte state[4,Nb]
state <— in
AddRounkey(state, w[0, Nb-1])
for round=1 step 1 to Nr-1 do
SubBytes(state)
ShiftRows(state)
MixColumns(state)
AddRoundKey(state,
(round+1)*Nb-1])
10: end for
11: SubBytes(state)
12: ShiftRows(state)
13: AddRounkey(state, w[Nr*Nb, (Nr+1)*Nb-1])
14: return state
15: end function

R A R

w[round*Nb,

4.2 The Equations for AES

We will now apply to the AES the mechanism de-
scribed above. The difficulty with our approach is that
the encryption functions of the AES algorithm takes
128 bits as input and provides 128 bits as output. So
we will have Boolean functions F2128 — F2128 and it is
impossible to calculate their truth tables. Indeed, in
this case, we have 2?8 = 3,402823 x 103 possible
combinations of 128-bit blocks and the space storage
needed to archive these blocks is 3,868562 x 10 ter-
abytes.

So we have to find a way to describe the AES en-
cryption functions in the form of Boolean functions
without using their truth table.

4.3 The Equations for Ciphering
Functions

We will now detail the solution implemented for each
of the sub-functions of the AES encryption algorithm.

4.3.1 Solution for SubBytes Function

The function SubBytes is a non-linear substitution
that works on every byte of the states array using a
substitution table (S-Box).

This function is applied independently to each
byte of the input block. So, the S-box of the AES
is a function taking 8 bits as input and providing 8-bit

603

ForSE 2017 - 1st International Workshop on FORmal methods for Security Engineering

as output. So we can describe it as a Boolean func-
tion F — F3. From there, we can calculate the truth
table of the S-Box and use the Moebius transform for
obtain the normal algebraic form of the S-Box. Then
applying the results to the 16 bytes of input block, we
get 128 equations, each describing a block bit.

4.3.2 Solution for ShiftRows Function

In the ShiftRows function, the bytes of the third col-
umn of the state table are shifted cyclically in an off-
set whose size is dependent on the line number. The
bytes of the first line do not suffer this offset.

For this function, we do not need to calculate spe-
cific Boolean function. Indeed, the only change made
consists to shift bytes in the states array. In our files,
this transformation can be easily solved by using a
XOR.

Thus, for example, the second byte of the sta-
tus table becomes the sixth byte after the applica-
tion of ShiftRows. In the end, the equations of
the function ShiftRows for the 128-bit of the block
B=(by...b1y7) are:

(X015 X2, X3, X4, X5, X6, X7, X40, X41 , %42, X43 , X44 , X45 , X465
X47,X80,X81,X82,X83,X84,X85,X86,X87,X120,X121,X122,X123,
X124,X125,X126,X127,X32,X33, X34, X35, X36,X37,X38,X39,X72,

X73,X74,X75,X76,X77,X78,X79,X112,X113,X114,X115,X1165X117,
X118,X119,X24,X25,X26,X27,X28,X29,X30,X31,X64,X65, X665
X67,X685X695X70,X71,X1045X105,X1065X107,X108,X1095X110;

X111,X16,X175X18,X19,X205X21,X22 ,X23,X56,X57 ,X58,X59,X60
X61,X625X63 ,X96,X97,X98,X99,X100,X1015X102,X103 X85 X9,

X10,X11,X12,X13,X14,X15,X48,X49,X50,X51,X52,X53,X54,

X55,X88,X89,X90,X91 ,X92,X93 , X4 , X95)

4.3.3 Solution for MixColumns Function

The function MixColumns acts on the states array, col-
umn by column, treating each column as a polyno-
mial with four terms. Each column is multiplied by a
square matrix. For each column we have:

b, 02 03 01 0l bi
| _ (o1 02 03 o1) b
bl o1 o1 02 03]°(b
b, 03 01 01 02/ \bi3

Thus, for the first byte of the column we have the
equation:

b;ZOZOb;@O3Ob,’+1EBOlobH.zEBOlobH_g,

As in GFZS, 01 is the identity for multiplication,
this equation becomes:

bl’» =020b;D030b; 1 Db;i1rDbiy3

604

We have the same simplification for all equations
describing the multiplication of the column of the
states array by the square matrix. Therefore we only
need to calculate truth tables for multiplication by 02
and 03 in GF}.

For example, the equations of the bits b2 to by27
are the following:

b120 = x97 D x96 B X104 D X112 P X121

b121 = x98 © X97 B X105 D X113 B X122

b122 = x99 ® x93 B X106 D X114 B X123

b123 = X100 D X99 B X96 D X107 D X115 D X124 D X120
b124 = x101 D X100 D X96 D X108 B X116 D X125 D X120
b125 = x102 D x101 B X100 D X117 D X126

b126 = x103 D X102 D X96 D X110 D X118 D X127 D X120
b127 = x103 D X96 D X111 D X119 B X120

4.3.4 Solution for The Key Expansion Function

To recall, in the algorithm of the AES-128, Nb = 4
words and Nr = 10 words, with 1 word =4 bytes = 32
bits.

The function AddRoundKey adds a round key to
the state table by a simple bitwise XOR operation.
These rounds keys are computed by a key expansion
function. This latter generates a set of Nb(Nr+ 1) =
44 words of 32 bit that to say 11 keys of 128 bits de-
rived from the first key. The algorithm used for the
expansion of the key involves two functions SubWord
and RotWord together with a round constant Rcon.

The generation of a global Boolean function for
the key expansion algorithm is impossible because the
generation of the key for the round » involves the key
of the round n — 1. This interweaving of rounds keys
does not allow us to generate a global Boolean func-
tion. On the other hand it is possible to generate a
Boolean function corresponding to the calculation of
a key of one round.

The first word w;, of the round key i is calculated
according to the following equation:

wi, = (SW ORW(W(,'_l)})) @ Rcon; ®w(;_yy,

with SW() and RW () respectively corresponding to
the SubWord and RotWord functions.

The following words w;,, w;, and w;, are calcu-
lated according to the following equation:

wi, = Win—l @W(ifl)n
with 1 <n <3.
The SubWord and RotWord functions are built on
the same principle as the SubBytes and ShiftRows

functions, thus we can reuse the methodology final-
ized previously.

In python language, the word generation function
is written according to the following code:

def generateWord(num) :
if (num < 4):
w = generateGenericWord(wordSize*num, ’'x')
if (num >= 4):
if ((num % 4) == 0):
w = generateWord(3)
w = rotWord (w)
w = subWord(w, rconList[(num/4)-1]
w = xorWords (w, generateWord(0))
S
w

= generateWord (num-1)
w = xorWords (w, generateWord (num%4))
return w

In this code, several scenarios are considered. The
function generateWord takes in parameter the word
number to generate, we know that this number is be-
tween 0 and 43. If the number is less than 4, the func-
tion returns the Boolean identity function as the first
key used by the AES is the encryption key. If the num-
ber to modulo 4 is zero, the function returns a Boolean
functions describing the composition of SubWord and
RotWord functions and the application of the XOR with
the Rcon constant. Finally, if the number to modulo 4
is not zero, the function returns the Boolean function
describing the XOR with the corresponding word in the
previous round.

We now have a Boolean function describing a
round expansion of the key. As we have seen, the
key expansion algorithm involves at round »n the keys
of round n — 1. To integrate our Boolean function in
the encryption process of the AES, we must, at every
round, add a temporary variable corresponding to the
key of the previous round.

As an example, the Boolean equation of the bit by
of the fourth word on the 44 words generate by the
key expansion process, is given below:

X109 D X109X111 B X109X110 B X108X109X111 D X108X109X110 D
X108X109X110X111 D X107 D x107X110X111 D X107X109 D
X107X109X110X111 D X107X108X110X111 D X107X108*109X110 D
X107X108X109X110X111 D X106 DX106X110X111 DX106X109X111 D
X106X109X110X111 BX106X108 BX106X108X111 PX106X108X110 D
X106X108X109 D X106X108X109X111 D X106X108X109X110 D
X106X107X111 D X106X107X109X110 D X106X107X108 D
X106X107X108X110X111 D X106X107X108X109X111 D X105X111 D
X105X110X111 DX105%109 D X105%109X110 D X105X108X111 D
X105X108X110 D X105%108*110X111 D X105X108X109*111 D
X105X108X109X110X111 D X105X107 D X105X107X109 D
X105X107X109X111 D X105X107X109X110 D
X105X107X109X110X111 D X105X107X108*111
X105X107X108%109X111 D X105X106X111 D X105X106%109 D
X105X106X108X111 D X105X106X108X109X110 D X105X106X107 D
X105X106X107X110X111 D X105X106X107X109X110 D
X105X106X107X108 D X105X106X107X108X111 P

Hacking of the AES with Boolean Functions

X105X106X107X108X109 D X105X106X107X108X109X111 D X104 D
X104X111 D X104X110 B X104X109%111 D X104X109X110X111 D
X104X108%111 D X104X108X109X111 D X104X108%109X110 D
X104X107X110 D X104X107X110X111 D X104X107X109X111 ©
X104X107X108X111 D X104X107X108X110 D
X104X107X108X110X111 D X104X107X108X109 D
X104X107X108X109X111 P X104X106 P X104X106X109X110X111 D
X104X106X108 D X104X106X108X111 D X104X106X107 D
X104X106X107X110 © X104X106X107X110X111 D
X104X106X107X109X110X111 D X104X106X107X108*110X111 D
X104X106X107X108%109X111 © X104X105X111 D X104X105X109 D
X104X105X109X110X111 D X104X105X108X111
X104X105X108X110 D X104X105X108X109X110X111 D
X104X105X107 D X104X105%107X111 D X104X105X107X110 D
X104X105X107X109 D X104X105X107%109X110 D
X104X105X107X108X111 D X104X105X107X108X110X111 D
X104X105X107X108X109X111 D X104X105X106X110 D
X104X105X106X110X111 D X104X105X106X109 D
X104X105X106X109X110 P X104X105X106X108*111 D
X104X105X106X108X110 P X104X105X106X108X110X111 P
X104X105X106X108X109X111 D X104X105X106X107 D
X104X105X106X107%110 D X104X105X106X107X109%111 D
X104X105%106X107X108 P X104X105X106X107X108*110 P
X104X105X106X107X108X110X111 D
X104X105X106X107X108X109X111 D X0

4.3.5 Global Solution

We have now a Boolean function for each function
SubBytes SB(), ShiftRows SR() and MixColumns
MC(). In the arrangement of one round, these func-
tions are combined. So for a 128-bit block B =
(b1, -+ ,b128) as output of the AddRoundKey function,
the block B’ = (b, - - ,b,5) as output of the combi-
nation of these three functions is such that:

B' = MCoSRoSB(B)

To realize the files as described above, it is nec-
essary to reduce the composition of these three func-
tions in one Boolean equation. To achieve this, we
just have to replace each input variable of a function
by the output value of the previous function using the

following equation:
b= MC(SR(SB(b;))) Vie (1,---,128)

Finally, we can now describe under the form of
Boolean equations the full process of AES encryp-
tion.

4.4 The Equations for Deciphering
Functions

We will now detail the solution implemented for each
of the sub-functions of the AES decryption algorithm.

605

ForSE 2017 - 1st International Workshop on FORmal methods for Security Engineering

4.4.1 Solution for the Round Function

The AES deciphering algorithm uses the Inv-
ShiftRows, InvSubBytes and InvMixColumns
functions. Those functions are respectively the
inverse functions of ShiftRows, SubBytes and
MixColumns functions, used in the ciphering process.
The pseudo code of the decryption function can be
written as follows, Nb corresponding to the 32-bits
words number and Nr corresponding to the rounds
number used in the algorithm.

1: function INVCIPHER(byte in[4*Nb], byte out[4*Nb],
word w[Nb*(Nr+1)])

2: byte state[4,Nb]
3: state <— in

4: AddRounkey(state, w[Nr*Nb, (Nr+1)*Nb-1])
5: for round=Nr-1 step -1 downto 1 do
6: InvShiftRows(state)
7: InvSubBytes(state)
8: AddRoundKey(state, w[round*Nb,

(round+1)*Nb-1])

9: InvMixColumns(state)
10: end for

11: InvShiftRows(state)

12: InvSubBytes(state)

13: AddRounkey(state, w[0, Nb-1])
14: return state

15: end function

The internal mechanisms to the three functions
used in the round during decryption are similar to en-
cryption functions. So we use the same reasoning
as the one implemented earlier to generate the cor-
responding Boolean equations.

4.4.2 Solution for the Key Expansion Function

The key expansion function is the same for both ci-
phering and deciphering process. Boolean equations
we built previously are reusable.

4.4.3 Global Solution

We have now a Boolean equation for each of Inv-
SubBytes ISB(), InvShiftRows ISR() and Inv-
MixColumns IMC() functions. However, unlike the
arrangement of intermediate rounds of the encryp-
tion process, these three functions are not combined
among them. Indeed, the function AddRoundKey no
longer occurs at the end of the round but sits between
InvSubBytes and InvMixColumns functions.

Thus, for ablock B= (by,--- ,b123) and akey K =
(ky,--- ,ki2g) as input of the round, the block B’ =
(b},---,b,g) as output is such that:

B' =IMC(ISBoISR(B) ®AD(K))

606

To reduce the Boolean equations, we will not
therefore be able to combine the equations of Inv-
SubBytes and InvShiftRows. As before, to achieve
this we just have to replace each input variable of a
function with its output value of the previous function
using the following equation:

b, =1ISB(ISR(b;)) Vi€ (1,---,128)

As for the encryption process, we can now de-
scribe under the form of Boolean equations the full
process of the AES decryption.

4.5 Implementation and Proof

We now have two systems of Boolean equations cor-
responding to the encryption process and decryption
of AES. These two systems each have:

e 128 equations, one for each bit block;
e 1280 variables for the input block;
e 1280 variables for the key.

Concerning the variables of keys, the fact that we
have a Boolean equation by round key involve that we
have a set of 128 new variables at each round that is
1280 variables for the AES-128. Each of the variables
of the n round key being described in terms of vari-
ables of the n — 1 round key. Consequently and due
to the XOR bitwise operation between the round key
and the bits resulting from the round function, we are
obliged to insert a new set of 128 variables to describe
the block transformation at each round.

Finally we described the AES encryption and
decryption process in the form of two systems of
Boolean equations with 128 equations and 2560 vari-
ables.

This mechanism allows us then to describe all of
the AES encryption process in the form of files using
the same representation as described above. So we
have 128 files, one by bit of block. In these files, each
line describes a monomial and the transition from one
line to the next is done by the XOR operation.

To implement this mechanism of the description
of the AES encryption algorithm and generate the
128 files, we have developed and used a python script
based on that described earlier in our presentation of
AES?.

The main program, aes_equa.py, offers
the possibility of one hand to generate the
files for AES ciphering and deciphering func-
tions with the generateEncFullFiles() and

2The source file is available at the link https://github.com/
archoad/BooleanAES. This program requires a working
Python environment it is cross-platform and does not use
specific libraries.

generateDecFullFiles () functions and on the
other hand, to control that the encryption and the
decryption obtained from files is consistent.

Thus, the functions controlEncFullFiles()
and controlDecFullFiles performs respec-
tively the encryption and the decryption from
the previously generated files. The function
controlEncFullFiles () takes as input a block of
128 bits of plain text and a 128-bit block of key while
the function controlDecFullFiles () takes as input
a block of 128 bits of cipher text and a a 128-bit block
of key. The selected blocks are those provided as test
vectors in Appendix B of FIPS 197 (NIST, 2001).
The obtained results correspond to those provided in
the FIPS: files we generated well represent the AES
encryption and decryption algorithm.

4.5.1 Results Obtained from the Ciphering

Process
The result obtained by the function
generateEncFullFiles () is shown in
appendix 5.1 and the result obtained by
the controlEncFullFiles() is shown in
the appendix 5.2. The control function

controlEncFullFiles() injects in the Boolean
functions the 128 initial variables corresponding
to the clear text block and the 1280 variables
corresponding to the key blocks of each round.

4.5.2 Results Obtained from the Deciphering
Process

According to the same principle as for Boolean
functions of encryption, the result obtained by the
function generateDecFullFiles() is shown in
the appendix 5.3 and the obtained result from the
controlDecFullFiles () function is shown in the
appendix 5.4.

In both cases, encryption and decryption, the re-
sults we obtain by using our files to cipher and to de-
cipher blocks are conform to those described in the
FIPS 197. So our Boolean equation system describ-
ing the AES algorithm is right.

5 CONCLUSION

After presenting briefly the Boolean algebra, Boolean
functions and two of their presentations, we have de-
veloped a process that allows us to translate the AES
encryption and decryption algorithms in Boolean
functions. Then we defined a mode of representation
of these Boolean functions in the form of computer

Hacking of the AES with Boolean Functions

files. Finally, we have developed a program to im-
plement this process and to check that the expected
results are consistent with those provided in the FIPS.

In the end, we got a two new systems of Boolean
equations, the first one describing the entire cipher-
ing process while the second describes the entire deci-
phering process of the Advanced Encryption Standard
and each one including 128 equations and (128 x
10) 4 (128 x 10) = 2560 variables.

The next step could be to search, through statis-
tical and combinatorial analysis, new ways to crypt-
analyse the AES. Either by finding a solution to re-
solve our equations system either by using statistical
bias exploitable with this system.

REFERENCES

Carlet, C. (2010a). Boolean Functions for Cryptography
and Error Correcting Codes. Cambridge University
Press. Chapter of the monography “Boolean Models
and Methods in Mathematics, Computer Science, and
Engineering”.

Carlet, C. (2010b). Vectorial Boolean Functions for Cryp-
tography. Cambridge University Press. Chapter of the
monography “Boolean Models and Methods in Math-
ematics, Computer Science, and Engineering”.

CNSS (2012). National information assurance policy
on the use of public standards for the secure shar-
ing of information among national security systems.
https://www.cnss.gov.

Courtois, N. and Pieprzyk, J. (2002). Cryptanalysis
of block ciphers with overdefined systems of equa-
tions. Cryptology ePrint Archive, Report 2002/044.
https://eprint.iacr.org/2002/044.pdf.

Daemen, J. and Rijmen, V. (1999). AES proposal: Rijndael.
http://csrc.nist.gov/archive/aes/rijndael/Rijndael-
ammended.pdf.

Dubois, M. and Filiol, E. (2011). Proposal
for a mnew equation system modelling of
block ciphers. Proceedings of the 2nd IMA
Conference on Mathematics in Defence.
http://www.ima.org.uk/db/documents/Dubois.pdf.

Dubois, M. and Filiol, E. (2012a). Proposal for a new
equation system modelling of block ciphers and ap-
plication to AES 128. Proceedings of the 11th Eu-
ropean Conference on Information Warfare and Secu-
rity, pages 303-312.

Dubois, M. and Filiol, E. (2012b). Proposal for a new equa-
tion system modelling of block ciphers and applica-
tion to AES 128 - long version. Pioneer Journal of
Algebra, Number Theory and its Applications, 4:11—
40.

McCarty, P. (1986). Introduction to Arithmetical Functions.
Springer.

Menezes, A., Oorschot, P., and Vanstone, S. (1997). Hand-
book of applied cryptography. CRC Press.

607

ForSE 2017 - 1st International Workshop on FORmal methods for Security Engineering

Murphy, S. and Robshaw, M. (2002). Essential algebraic
structure within the AES. Advances in Cryptology -
CRYPTO 2002, 2442:1-16.

NIST (2001). Advanced encryption standard.
http://csrc.nist.gov/publications/fips/fips197/fips-
197.pdf.

O’Donnel, R. (2014). Analysis of Boolean Functions. Cam-
bridge University Press.

APPENDIX

5.1 Result of the Files Creation
Program for Encryption

./aes_equa.py

Ciphering process
Create directory AES_files
AddRoundKey0

Round0

AddRoundKeyl

Roundl

AddRoundKey?2

Round2

AddRoundKey3

Round3

AddRoundKey4

Round4

AddRoundKey5

Roundb

AddRoundKey6

Round6

AddRoundKey7

Round7

AddRoundKey8

Round8

AddRoundKey9

Round9

AddRoundKeyl0
Files generated

5.2 Result of the Files Control Program
for Encryption

./aes_equa.py
Clear block 0011223344556677889%aabbccddeeff
Key block 000102030405060708090a0b0c0d0e0f
addRoundKey0
00102030405060708090a0b0c0d0e0f0 32
Round0
5£72641557£5bc92f7be3b291db9f91a 32
addRoundKeyl
89d810e8855ace682d1843d8cb128fed 32
Roundl
££87968431d86a51645151£a773ad009 32
addRoundKey?2
4915598f55e5d7a0daca94falf0a63f7 32
Round2
4c9cleb6£771£0762c3£868e534df256 32

608

addRoundKey3
fa636a2825b339c940668a3157244d17 32
Round3
6385b79£fc538df997bed78e7547d691 32
addRoundKey4
247240236966b3fabed2753288425b6c 32
Round4
f4bcd45432e554d075£1d6c51dd03b3c 32
addRoundKey5
c81677bc9b7ac93025027992b0261996 32
Round5
9816ee7400£87£556b2c049c8e5ad036 32
addRoundKey6
c62fel109f75eedc3cc79395d84£9cf5d 32
Round6
c57e1c15%9a9bd286£05£4be098c63439 32
addRoundKey7
d1876c0£79c4300ab45594add66ff41f 32
Round7
baal3de7alf9b56ed5512cba5£414d23 32
addRoundKey8
fde3bad205e5d0d73547964efl1fe37£f1 32
Round8
e9f74eec023020£61bf2ccf2353c21cT 32
addRoundKey?9
bd6e7c3df2b5779e0b61216e8b10b689 32
Round9
Tad5fda789%ef4e272bcal00b3d9f£59f 32
addRoundKey10
69c4e0d86a7b0430d8cdb78070b4c55a 32
69c4e0d86a7b0430d8cdb78070b4c55a (FIPS result)

5.3 Result of the File Creation Program
for Decryption

./aes_equa.py

Deciphering process
Create directory AES_files
AddRoundKeyl10
Round 9

AddRoundKey?9

InvMixColumns 9
Round 8

AddRoundKey8

InvMixColumns 8
Round 7

AddRoundKey7

InvMixColumns 7
Round 6

AddRoundKeyb6

InvMixColumns 6
Round 5

AddRoundKey5

InvMixColumns 5
Round 4

AddRoundKey4

InvMixColumns 4
Round 3

AddRoundKey3

InvMixColumns 3
Round 2

AddRoundKey2

InvMixColumns 2
Round 1

AddRoundKeyl

InvMixColumns 1
Round 0

AddRoundKey0

Files generated

5.4 Result of the Files Control Program

for Decryption

./aes_equa.py

Cipher block 69c4e0d86a7b0430d8cdb78070b4c55a
Key block 000102030405060708090a0b0c0d0e0f

addRoundKey10
Tad5fda789%ef4e272bcal00b3d9f£59f
Round9
bd6e7c3df2b5779e0b61216e8b10b689
addRoundKey9
e9f74eec023020£61bf2ccf2353c21c?
invMixColumns9
54d990al6ba09ab596bbfd0ealll702f
Round8
fde3bad205e5d0d73547964eflfe37f1l
addRoundKey8
baal03de7alfob56ed5512cba5£414d23
invMixColumns8
3elc22c0b6fcbf768da85067£6170495
Round7

Round3
fa636a2825p339c940668a3157244d17
addRoundKey3
4c9cle66£771£0762c3£868e534df256
invMixColumns3
3bd92268£c74fb735767cbe0c0590e2d
Round2
4915598£55e5d7a0daca94falf0a63£f7
addRoundKey2
££87968431d86a51645151£a773ad009
invMixColumns2
a7bela6997ad739%bd8c9cad51£618b61
Roundl
89d810e8855ace682d1843d8chb128fed
addRoundKeyl
5£72641557£5bc92£7be3b291db9£f91a
invMixColumnsl
6353e08c0960e104cd70b751bacadle?
Round0
00102030405060708090a0b0c0d0e0£0
addRoundKey0
00112233445566778899%aabbccddeeff
00112233445566778899%aabbccddeeff

32

32

w

2

32
(FIPS result)

Hacking of the AES with Boolean Functions

609

