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Plug and play scheduler adapted to computer vision context could boost the development of robotic platform

embedding large variety of computer vision functions. In this paper, we make a step toward such scheduler
by offering a framework, particularly adapted to time constraint image classification. The relevancy of our
framework is established by experimentations on real life computer vision datasets and scenarios.

1 INTRODUCTION

Computer vision focuses on developing functions
which tackle precise tasks like deblurring (Shan et al.,
2008), registration (Lucas et al., 1981), segmentation
(Zhang, 1996), classification (Lazebnik et al., 2006),
pixelwise classification (Shotton et al., 2006), object
detection (Dalal and Triggs, 2005).

However, in computer vision, there are multiple
non dominated functions designed for a same task: for
image classification, there is a large set of classifiers
with different quality and speed such that no classifier
is both the faster and the better.

Let assume that, from a review of the state of art,
one found K image classifiers. To tackle a given time
constraint images classification problem, the simplest
way is to select the classifier which best fit the require-
ment from the K preselected ones. But from optimi-
sation/scheduling perspective, this approach is clearly
not the one which maximizes the output quality So,
how to design a system to classify batches of N im-
ages in T seconds using K black box classifiers.

A small step toward such maximization is done
with the following model. Let assume that the system
has a vector encoding the available resources C € NF
and can rely on K classifiers each associated to an
overall quality ¢1,...,qk, a speed sy,...,5k, and a re-
source consumption ci,...,cx € NR. Let x; be the
number of images processed by the classifier &, as
batch should be processed in T seconds, each classi-
fier should process this own sub-batch in less than T
seconds (leading to Vk, sgxx < T) ; in addition, there is
no direct interest to classify multiple times a same im-
age (X xx < N) ; finally, if a classifier is used (x; # 0)

k

then it uses some resources of C. Now let do the ap-
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proximation that if a classifier is used, it is used until
the end of the allowed time (so resource allocation is
constant over the time - this is a one stage allocation
assumption). Under these assumptions, the values x;
are the solution of the following integer linear pro-

gram:
max_ | YgkXxk
X1, XKEN \ k

Vk, sixp < T
Y <N
k

Yerx (g £0)<C
k

SC

Clearly, even if this set of inequalities may be NP-
hard, it is in the format of well studied family of dis-
crete optimisation problems and can be - at least - eas-
ily approximated.

But, the reality is much harder because this set of
inequalities does not take into account cascaded deci-
sions: one can apply a classifier on an image and react
to the output of this classifier for example by using an
other classifier only under some circumstances. More
precisely, let suppose we are talking about binaries
classification (images are either positive (e.g. target)
or negative (e.g. background)) and assume that all
classifiers have almost the same behaviour on posi-
tive but have very different behaviour on negative. It
could still be interesting to use a fast classifier which
will produce a lot of false alarms as soon as we could
filter these false alarms using a slower classifier - and
this is completely not taken into account by the pre-
vious set of inequalities. By the way, such cascaded
strategy is the heart of (Girshick et al., 2014) which
contributes to trigger the deep learning revolution by
offering an algorithmic solution to the deep learning
slowness using the box proposal paradigm - against
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the sliding windows one - in object detection.

To return to our scheduling problem, modelling
the possibility to form cascaded decisions would lead
to a very challenging scheduling problem of stochas-
tic programming with free number of recourse steps
assuming probabilistic models exist for classifiers.
Thus, computing the optimal allocation would prob-
ably take more time than the allowed time 7. But
worse, classifiers are not predictable: the number of
false alarms produced by a classifier can significantly
differ from validation set to test set. Thus, the be-
haviour of a given cascaded allocation is even not
calculable (independently from the data) whereas cas-
caded strategies are known to belong to good strate-
gies.

So to summarize, we take one of the simplest com-
puter vision problem and the derived scheduling prob-
lem is yet intractable.

However, we argue that scheduler adapted to com-
puter vision functions (like classifiers) may be use-
ful not for the sake of the performance but to make
robotic development easier. Such scheduler - even if
producing output with quality slightly under state of
the art - could be useful: it could allow easy prototyp-
ing, boost the apparition of robotic platform embed-
ding a large variety of computer vision functions, and,
separate computer vision from integration implemen-
tation.

We argue that robotic community heavily relies on
middleware like ROS (Quigley et al., 2009) or YARP
(Metta et al., 2006) very useful for easy prototyp-
ing and large project even if such middleware obvi-
ously introduces computation overhead - this is not
that far from using scheduler of black box functions.
Thus, we believe that this work about plug and play
scheduling of computer vision functions is relevant
for robotic community (and computer vision one) in a
way ROS and YARP are.

In the following, we first describe related works
in section 2. Then, in section 3, we describe a simple
but effective scheduler for the time constraint batch
classification problem under real setting both in term
of hardware target (hybrid CPU GPU) and in term of
classifiers (e.g. with Alexnet). The relevancy of this
scheduler is validated on experiment on real computer
vision dataset (in section 4), before conclusion in sec-
tion 5.

2 RELATED WORKS

The task of selecting combinations of actions to opti-
mize a process is a generic task that overlaps at least
three well studied fields: discrete optimisation (Ouel-
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hadj and Petrovic, 2009; Graham et al., 1979), path
planing (Lamiraux and Laumond, 2000; Marti and
Qu, 1998), and Markov decision process (Bellman,
1957; Song et al., 2000).

In this paper, we want to apply scheduling to com-
puter vision functions. However, computer vision is
an exigent field in resources consumption: for exam-
ple, in automatic car driving, computer vision sys-
tem should typically process an HD image each 33ms
whereas 1 hour of uncompressed HD video is around
1To. In addition, computer vision is a data driven field
where effect of a computer vision function dramati-
cally varies depending on data making impossible to
precompute computer vision function effects.

Thus, there is a crucial difference between clas-
sical scheduling context and our context: here, time
taken to compute the scheduling is required to be
insignificant regarding action duration (which is yet
very low) and can not be precomputed.

In discrete optimization, the goal is often to pre-
compute an allocation of the resources. The ability to
react to the effect of an action that could have been
different from what was expected is handled in par-
ticular by stochastic programming (SP) e.g. (Ferrero
et al., 1998). In SP, the goal is to select the first order
variables before seeing the realisation of the unknown
parameters taking into account that second order vari-
ables will be selected after seeing the realisation of
the unknown parameters. So, it is a clear way to han-
dle dynamic problem with partially know parameters.
However, we found no SP literature relevant to han-
dle problems with very high dynamic (like having to
schedule the processing of 250000 jobs in less than
200ms).

There are also difference with path planning. In
path planning, optimisation is usually considered at
trajectory level while, in this paper, optimisation is
considered at a level whose dynamic has the same or-
der of magnitude than engine controller one. There
exist examples (like (Van Den Berg et al., 2011)) of
path planning optimisation at engine controller level.
However, this literature is relatively restricted. And,
even if scheduling was relevant on such time scale:
engine controllers are much more regular than com-
puter vision functions.

These considerations also stand for Markov deci-
sion process. In Markov decision process, applying
an action a from a state s is often simply getting the
value T|a][s] of the matrix T. Thus, the action dura-
tion is insignificant regarding the time of optimisation
which is the opposite of our context.

For all these reasons, there are only very few pa-
pers applying scheduling methods to computer vi-
sion context. From these papers, the closers to



our work are (in our opinion) (Trapeznikov and
Saligrama, 2013) and (Russakovsky et al., 2015). In
(Trapeznikov and Saligrama, 2013), the considered
system is a predefined cascade of K classifiers. Each
incoming data can either be classified by the clas-
sifier k or be considered as suspicious and given to
the classifier k+ 1. As classifier K cost much more
than classifier 1, the trade off is to tune the system
to achieve high quality at low cost. In addition to
provide framework to deal with this trade off prob-
lem, (Trapeznikov and Saligrama, 2013) use Markov
decision process theory to prove that a simultaneous
training of all classifiers taking into account the cas-
caded structure of the system is possible. This work
is thus close to ours, however, our goal is to dynami-
cally schedule classifier jobs - considering classifiers
as black box. So we are not scheduling at the same
level.

Finally the closest work, in our opinion is (Rus-
sakovsky et al., 2015). In (Russakovsky et al., 2015),
dense application of deep learning classifiers is pre-
computed on the batch of images. Then the goal is to
interact with an human operator to extract from this
dense precomputed values, the set of object present
in the batch of images. The system takes as input the
cost of several human actions (drawing a bounding
box, tell if a bounding box is correctly located, tell is
there is an object in the image, tell is there is a certain
kind of object in the image ...) and a trade off criterion
between the cost of human annotation and the quality
of the the set of extracted boxes. Clearly, if we add
human interaction to the set of computer vision func-
tions, then scheduling the interaction with a human
is part of what our scheduler would do. The main
difference is that we do not precompute computer vi-
sion values instead we are doing it online (i.e. on the
fly) while reacting to the previous computation. For
this reason (Russakovsky et al., 2015) is not directly
applicable. However, some Markov decision process
tools are shared between (Russakovsky et al., 2015)
and our work. In particular, we also use look ahead
planning (LAP).

3 OFFERED SCHEDULING
FRAMEWORK

3.1 Basic Assumption

We describe in this section our framework for
scheduling computer vision classifiers to tackle the
toy problem of time constraint image classification.
The system should classifies a batch of N images in
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T seconds using K black box binary classifiers whose
expected quality ¢y, ..., gx € N (assumed to be scalar),
speed s1,...,5x € N (assumed to be scalar) and re-
source consumption cf,...,cx € N are known. And,
all of this takes place on a hardware platform with
C € N® available resources. In the following, some of
the images can be left unprocessed, by default, its are
then considered as positive.

Classifiers are basically evaluated by 2 numbers
precision and recall (or better by the precision/recall
curve). In order to reduce this 2d quality, we tune all
classifiers such that its have common and relatively
high recall: it means that classifiers have almost the
same behaviour on positive images. Thus, under this
tuning, quality is just the precision (i.e. a scalar as
assumed).

However, we allow large variability in speed, re-
source consumption and precision (which is linked to
false alarms rate: the better is a classifier, the lower
there are false alarms - as recall is fixed).

Then, at each moment, the state of the system is
map between image and it current label and confi-
dence on this label.

The processing of the batch of images is done by
round of action. At each round, the scheduler selects
an action from the predefined pool of allowed actions
based on the current state.

Each classifier is encapsulated into an elemen-
tary action. Applying an elementary action on a
state consists in: sorting images per confidence (if
not already done), extracting images with lowest con-
fidence, classifying each extracted images and re-
inserting them on the state.

The number of images extracted by an elementary
action depends on the speed of the underlying clas-
sifier. More precisely, we select a step duration and
each elementary action should have this duration.

A set of elementary actions which can be run
simultaneously (considering the set of available re-
sources) is an action. A crucial point is that when
we apply an action in a state, all elementary action se-
lect its images sequentially but images processing is
done in parallel and no reinsertion is allowed until all
elementary actions have finished (then re-inserting is
done sequentially). So into a same action, elementary
actions can not process a common image.

3.2 Look Ahead Planning

Like (Russakovsky et al., 2015), we rely on look
ahead planning (LAP) to schedule actions. Precisely,
we perform % steps of LAP from the initial state.
LAP is a classic method to deal with dynamic sys-
tem consisting in two main steps : to explore paths
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LAP (A, state, n)

for t from 1 to n
paths = [state]
explore (paths,A, n-t)
a = argmax (paths);
state = apply a on state;

return state;

Figure 1: the pseudo code of the Look Ahead Planning.

explore(p, A, n)
for a in A
for t from 1 to n
for b in A
best=a
if plal::b > p[a]::best
best=b
plal] = plal::best
Figure 2: Greedy routine exploration in LAP.

from a starting point to compute the reachable score
and to apply the first action from the best path. Ap-
plying only the first action and looping allows to re-
act to the effect of the action as it is different than
the expected effect. This way the scheduling is not
precomputed and then executed but instead computed
on the fly while being executed. The pseudo code is
described in figure 1.

Notice that we have introduced the concept of
score of a state without describing it. For real states,
we use the expected precision as state score. This
computation is done using the classifier known qual-
ity: the expected precision is simply the average on
the images classified as positive of the precision of the
classifier used on. The use of the precision is relevant
as all classifier have a common recall.

Now, there is two problems with this version of
LAP:

e we can not explore all paths as there is of paths
where o is the number of actions and 3 the tem-
poral horizon of the optimisation

e we could - at this point - not explore at all because
applying an action onto a state to know the result-
ing state is exactly what we do not want to do:
the computational time should overwhelmingly be
used to apply action to state and not to select the
next action.

For the first problem, we use, like in (Russakovsky
et al., 2015), a greedy pruning of the exploration to
maintain a low computational volume while taking
advantage of long term information. The pseudo code
of the exploration is described in figure 2.

For the second problem of LAP, we do not need
exact state computation: we only need a coarse esti-
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mation of what would be the state after the application
of the action. For this purpose, we introduce virtual
states which is one of the main contribution of this
work.

3.3 Virtual States

We offer to simulate the application of computer vi-
sion functions on virtual representation of the state.

In particular, if the real state is the vector of la-
bel/confidence, a virtual representation is just the dis-
tribution of label/confidence forgetting individual in-
formation and mapping to the images.

Now, the critical point is to be able to estimate the
virtual state resulting of an elementary action using
only it known quality-speed.

The main observation allowing such computation
is the following. Let assume that the state is com-
posed of o negative images and 3 positives ones asso-
ciated with a precision of A. Then applying a classifier
of precision u > A on y < B positive images leads on

average to . +7Y— % negatives and 3 —y+ % posi-

tives (B —y with precision A and ™ \ith precision ).
These equations comes from the assumption of con-
servation of positive (which can be adapted to take
into account a proportion of loss) and from the equa-
tion positives = estimate_positive X precision.

These equations are directly extended on a distri-
bution of label/precision.

Using this trick of virtual states, the selection
of action is pretty close to Markov decision process
framework. Now, we can really perform the simple
path exploration like in (Russakovsky et al., 2015) to
estimate the reachable virtual states (and score) from
a given (real) state. And thus, we can really use the
LAP framework (described in figures1)

Now, we have completely described our scheduler.
To summarize, our framework consists to use virtual
state to allow exploration of reachable states from a
given real state - allowing LAP framework to deal
with the actions scheduling.

4 EXPERIMENTS

Our scheduler is designed to tackle time constraint
image batch classification. The simple use case of
such problem is object detection using sliding win-
dows framework: the batch is composed of all the po-
sitions of the sliding window and the time allowed is
allowed time to process the image.

Let accept the following setting of the experiment:
the scheduler should process a car detection on an



area of a standard city 75km? (on Scm-resolution im-
ages) in half an hour on standard hardware : 6 intel7
CPU, 6Go of RAM and 1 GeForce GTX 750.

4.1 Data

We choose to use the 2015 IEEE GRSS Data Fu-
sion Contest to perform our experiments. This dataset
(called grss_dfc_2015 in this article) is composed of
6 large size (10000x10000 pixels) remote sensing
ortho-images with resolution of around 5cm (only
RGB image are used in this experiment).

A manual semantic labelling has been made by
(Lagrange et al., 2015).

We adopt a 128x128p mono scale sliding win-
dow framework with spatial displacement of 20 pix-
els of the window. So a 10000x10000p image leads to
250000 128x128p images to processes in 12s: this is
almost 2 order of magnitude the number of 128x128
images that the AlexNet convolutional neural (up-
scaled in 227x227p) network can processes in 12s
with a GeForce GTX 750 making relevant the possi-
bility to combine different classifiers to process more
128x128p images (even if these other classifier are
less accurate than Alexnet).

We split the dataset in 3 sets (train/val/test) of
2 images. Each computer vision classifier is cal-
ibrated on the validation set (after a training on
train set) in order to obtain statical characteristics of
each classifier. The scheduler considers each com-
puter vision classifier like a black box only com-
ing with a calibration report. The complete sys-
tem (scheduler + classifier) is tested on the test
set (composed of the 27032011_315140_56865 and
27032011-315135_56865 images).

4.2 Computer Vision Library

The computer vision classifiers considered for the ex-
periment are summarize in table 1 (we downscale
the original 128x128p image for 64x64p or 32x32p
classifier and upscale the original 128x128p image
to 227x227p for alexnet) The table 1 presents perfor-
mances of all classifier and statistic extracted from the
auxiliary data. This table is the only classifier descrip-
tions available to the scheduler.

4.3 Results

We run both our scheduler and several baselines with
this experiment setting. In our opinion, all elements of
this experiment are realistic: data are real life remote
sensing images, hardware target (C) is a standard hy-
brid CPU GPU environment, the allowed time (7T')
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Table 1: Performance and speed of the classifiers on the
validation test.

classifier precision | speed
alexnet 10% 280
lenet 128x128p 3% 1088
lenet 64x64p 2% 5739
hog 128x128p 1% 1580
hog 64x64p 0.7% 6185
hog 32x32p 0.1% 14229

All classifiers have a common recall of 90% and speed is
measured in 128x128p images per second. We use caffe
(Jia et al., 2014) implementation with cudnn3 to reproduce
expected speed for deep learning classifier.

seems representative and considered classifiers con-
tains in particular both outdated HoG and state of the
art Alexnet. In all experiment, one CPU is allocated
to the image server (so the targeted system behaves
like having 5 CPU instead of 6).

The considered baselines are:

e the better available combination: mapping one
GPU and one CPU onto alexnet and one HoG
128x128p on each other CPU

e the faster available combination: mapping each
CPU to HoG 32x32

o the better combination respecting the constraint of
processing almost all 128x128p images: here, this
leads to map all CPU on HoG 64x64p

The results are summarized in table 2.

Table 2: Performance of our system (scheduler + classifiers)
and baselines on the grss_dfc_2015 dataset.

system Fi (precision/recall)
scheduler 54% (50%/75%)
baseline faster 5% (2%/90%)
baseline better 9% (4%/90%)
baseline better finisher 8% (3%/90%)

Performance is measured in F; measure which is
precisionxrecall . . _
precisionTrecall All system terminates in the allowed du

ration - time overhead introduced by the scheduler against

computer vision computation is less than 3%.

The global output of the scheduler is incompara-
bly better than baseline ones in F; measure.

This score comes with a loss of recall but with a
high precision gain. In order to ensure a fair evalu-
ation of all methods, we evaluate each baseline with
different classifier tuning: for each classifier, one can
tune the tradeoff between precision and recall by bias-
ing the classifier output, this tradeoff is tuned to lead
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to 90% of recall when classifier are used by the sched-
uler but other tradeoff have be evaluated to ensure that
this tradeoff selection does not bias the evaluation.
However, even with a grid search on all tradeoff, all
baselines are always at least 30% lower in F; measure
than the scheduler.

Thus, this experiment confirms the relevancy of
such scheduler at least for time constraint batch clas-
sification.

Currently, the very high F; score of the scheduler
could not be expected from the calibration (see table
1). As, all classifiers are calibrated on validation set
to have a common recall of 90%, precision should be
the only mutable value. This is however not the case
due to interaction in the cascaded decision: our sys-
tem has a lower recall but achieves higher precision
than expected. We believe that this could be explained
by the difference between calibration which is done
classifier per classifier and the scheduling were boxes
are finally classified by multiples classifiers. In other
words, the considered classifiers have some comple-
mentarity that are freely exploited by the scheduler.
Anyway, this does not invalidate the evaluation. A
more careful study of this last result is out of the scope
of this paper whose main result (in our opinion) is that
the scheduler is able to produce sufficiently good out-
put.

5 CONCLUSION

The goal of this paper is to make a step toward sched-
ulers able to help the integration of large computer
vision library into complex robotic system. To make
a first step, we chose a scheduling problem derived
of one the simplest computer vision: time constraint
batch classification. We describe a scheduling frame-
work for this problem. We apply it on car detec-
tion on real remote sensing images with realistic set-
tings in term of time constrains, target hardware (hy-
brid CPU-GPU) and computer vision classifiers (with
deep learning ones). The results of this experiment
is that our scheduler goes further than expected by
achieving state of the art results - while it is just de-
signed to produce a sufficiently good results to be rel-
evant for prototyping/integrating requirements.
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