
Linking Non-Extensive Entropy with Lempel-ziv Complexity to 
Obtain the Entropic Q-index from EEG Signals  

Ernane José Xavier Costa, Adriano Rogeri Bruno Tech and Ana Carolina Sousa Silva  
Computational and Applied Physscs Lab – Basic Science Department – FZEA, University of São Paulo,  

Rua Duque de Caxias Norte, Pirassununga, Brazil 
 

Keywords: Brain Activity, Epilepsy. 

Abstract: Physiological data is generated by process that are either nonlinear deterministic or nondeterministic. The 
lempel-ziv complexity and non-extensive entropy measurement has been used to quantify information in 
physiological data like EEG and EMG. When the functions of brain cells are affected by damage caused by 
several disease it is observed changes in the features of the EEG providing useful insight into brain functions 
and playing a useful role as a first line of decision-support tool for early detection and diagnosis in brain 
diseases. This paper uses a method to identify the q-index in those signals by using the relationships between 
entropy definitions given by Lempel-ziv and those given by Tsallis methods. After all, this article shows that, 
the q-index can be used to characterize EEG seizure quantifying changes related to the q-entropic index. 

1 INTRODUCTION 

In the end-1980s the non-extensive entropy or Tsallis 
entropy (HTS) was introduced (Tsallis, 1988). The 
HTSE is a family of entropies parameterized with a 
parameter q named the entropic index or q-index. The 
credibility of the HTS was provided by means of the 
numerous phenomenological results with a large 
number of application and by means several 
mathematical proofs for some of the fundamentals of 
the HTSE formalism.  HTS entropy is based on the 
generalized Boltzmann-Gibbs statistical mechanics 
with the introduction of the q-index to indicated the 
non-extensive degree of a system. Non-extensive 
system are those that exhibit long-range correlations 
or interactions (Tsallis et al,1997). For each q values 
a different HTS is established. Appropriate choice of 
the q-index is significant and still remains to be 
studied (Tong et al, 2002). Several works use HTS 
measures to characterize physiological data like EEG 
(Sabeti and Katebi, 2009 ) but the q-index was always 
introduced using assumptions and never was directly 
calculated (Nagarajan et al, 2008).  Another approach 
used successfully to quantify nonlinear and 
nondeterministic data is the normalized complexity 
measurement using Lempel and Ziv algorithm (CLZ). 
The CLZ measurement approach uses symbolic 
techniques to map a time series into a sequence that 

retain its dynamics. The main aspect inside this 
method is to partition the samples in the real space 
into a finite sequence in the symbolic space. This 
partitioning is a nontrivial problem. There are some 
efficient methods to analyse physiological data as 
described by Nagarajan et. al. (2002) and its 
efficiency was evaluated in studies of neural 
discharges (Szczpánski, et. al., 2003), event-related 
EEG data (Gómez et. al., 2006), magneto 
encephalogram (MEG) (Pei et al, 2006), brain injury 
evaluation (McBride et al, 2013) and more recently 
as a biomarker for detection of Alzheimer's disease 
(Al-Nuaimi, et. al., 2016). 
 

There is no evident relationship between HTS and 
CLZ methods and their possible relations are not 
discussed in the literature. Therefore, this work will 
show that, if is possible the calculation of the 
complexity measurement from the data set using 
entropic concepts inside the CLZ so is possible the 
calculation of the q-index for the process that has 
generated this data set. In other words, this works is 
about one method to able directly calculation of the 
q-index using both CLZ and HTS approach from 
physiological data. We will demonstrated that this 
methodological approach will be able to quantify the 
change in the q-index and then suggest that it can be 
used to predict epileptic seizure and discuss a possible 
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relationship between functional brain dynamics 
changes and q-index. 

2 NONEXTENSIVE ENTROPY  

Entropy can be understood as a measure of 
uncertainty regarding the information content of a 
system and can be used to describe their time 
evolution. Non-extensive entropy or Tsallis entropy 
is a generalization of Shannon entropy (Tsallis, 1988) 
and given by:  

1
1

1  
(1)

Where q is q-index and q>0 and q 1. In the limit 
of q 1 the Shannon entropy is recovered (Tsallis et 
al,1997). The HTS is non-extensive in the sense that: 

 ∪ 	 1 (2)

There are three system behaviour described for 
HTS depending of q-index range. For q-index <1 the 
system behaviour is superextensive such that: 

∪ 	  (3)

For q-index 1 the system is extensive such that: 

∪ 	  (4)

Finally for q-index >1 the system is sub-extensive 
such that: 

∪ 	  (5)

Therefore, q-index can be used like a measure of 
the non-extensivity of the system.  

3 THE CLZ ALGORITHM 

The calculation of complexity was based on the work 
of Lempel and Ziv (Lempel and Ziv, 1976), where the 
measure c(n) is introduced. The complexity c(n) 
measures the number of distinct patterns that must be 
copied to reproduce a given string. In practical 
application, c(n) is independent of the sequence 
length  and normalized by a random string that is 
meaningful (Zang and Roy, 1999). If the length of the 
sequence is n and the number of different symbols is 
s, the upper bound of c(n) is given by: 
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where the base of the logarithm is s , i.e., 
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In practical applications b(n) is obtained for a 
random string of length n with  complexity  given by:  
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where k denotes the number of different characters in 
the string, and h denotes the normalized source 
entropy given by: 







n

i
ii pp

n
h

1

)ln(
)ln(

1

 
(9) 

where  pi  is the probability for each state i. The 
normalized complexity measure C(n) is given by: 

)n(b

)n(c
)n(CLZ   (10)

For a string Str composed by symbol sequences 
s1s2…sn, i.e,  Str=( s1s2…sn), the algorithm used 
for calculation of c(n) is based on the how Str 
can be reconstructed using a given  symbol 
sequence (Bachmann et al, 2015). It is assumed 
that this symbol sequence has been reconstructed 
up to the symbol sr and that sr has been newly 
inserted, i.e., Str = s1s2…sr will denote the 
symbol sequence up to sr, where the dot indicates 
that sr is newly inserted. The rest of Str must be 
reconstructed by simple copying the previous 
sequence or inserting new digits. 

3.1 Calculating Q-Index using the CLZ 
Algorithm 

In fact  b(n) in the equation (8) gives the asymptotic 

behaviour of  c(n) for a random string and   )n(CLZ   

is normalized via this asymptotic behaviour, i.e., only 

consider the finite ratio 0 ≤ )n(CLZ ≤ 1. This mean 

that for the random string )n(CLZ is 1 or c(n) 

calculated using the LZ algorithm will have the same 
value that  b(n) calculated using equation (8).  Using 
these concepts, the q-index can be calculated by using 
the HTS definition from equation (1) by substitution 
HTS = h in the equation (8), i.e.;  
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in this sense will exist a q value in equation (11) that 
will make the equation goes to 1. In other words, this 
fact can be used to calculate the q-index from a 
particular string. By using the c(n) from LZ 
algorithm, the procedure can be given by, 

∃ 	 → / 1 (12) 

That means that exist a q-index calculated by using 
LZ algorithm that imply CLZ convergence to one.  

4 MATERIAL AND METHODS 

The approach described in previous sections was used 
to calculated q-index from EEG data set. The data set 
used was obtained from Epilepsy Center of the 
University Hospital of Freiburg database. The EEG 
data base contains invasive EEG records acquired 
from 21 epilepsy patients. The EEG data were 
sampled at 256 Hz and pre-processed by a 50 Hz 
notch filter and a band pass filter in 0.5-120Hz range 
using a Neurofile NT digital video EEG system with 
128 channels. For each of the patients, there are 
datasets called "ictal" and "interictal", the former 
containing files with epileptic seizures and at least 50 
min pre-ictal data. The latter containing around 24 
hours of EEG-recordings without seizure activity. 
From 13 patients at least 24 h of continuous interictal 
recordings were available. For the others patients, to 
end up with at least 24 h per patient, interictal 
invasive EEG data with of less than 24 h were 
recorded together. The six contacts of all implanted 
grid, strip and depth electrodes were selected by 
visual inspection of the raw data by a certified 
epileptologist. Three contacts were chosen from the 
seizure onset zone, i.e. from areas involved early in 
ictal activity. The remaining three electrode contacts 
were selected as not involved or involved latest 
during seizure spread. The ictal periods were 
determined based on identification of typical seizure 
patterns preceding clinically manifest seizures in 
intracranial recordings by visual inspection of 
experienced epileptologists. Each EEG record was 
processed using a data raw with 30 seconds of pre-
ictal data and 30 seconds after the epileptic seizure 
period.  The q-index was calculated using the octave 
GPL foundation software running on Linux platform.  
The calculation was performed by sliding a Hanning 
window in the EEG signal. The  Hanning window 
was determined by width that corresponding to 256 

data points (or one second) and was sliding in disjoint 
intervals. So, q-index was calculated in each interval. 
This method was able to get a temporal evolution of 
the q-index through the signal, to test this 
methodology, a time series generated by a logistic 
map give by equation (13) was used to show that the 
q-index, calculated using the approach previously 
described,  is sensitive to the system dynamic (Tsallis 
et al, 1997).  

))n(x1)(n(rx)1n(x   (13) 

Other complexity measures than the Lempel-Ziv 
exist, for example, sample entropy (SampEn) and 
approximate entropy (ApEn) and these complexity 
measurements are becoming more popular and have 
found wide applications in the area of bioengineering 
(Richman and Moorman, 2000), but the relation 
between Tsallis entropy and complexity measures it 
is not contextualized in the recent literature in terms 
of q-index calculation. 

5 RESULTS AND DISCUSSION  

The calculation of q-index can be better understood 
in the figure 1, that plots the ratio c(n)/ b(n) versus q 
value. The plot resulting have a point where C(n) = 
b(n)/c(n) = 1 that correspond to a q-index. Due the q 
value was used to produce b(n) so b(n) is a time series  
generated by a entropic process with a given q and if 
c(n)/b(n)=1 so the c(n) corresponding to a time series 
with the same q-index than b(n). 

 

Figure 1: The matching process to find the q-index. 

To test the behaviour of q-index calculated by this 
approach a time series generated by a logistic map 
given by equation 13 was used and the results are 
shown in figure 2 and 3.  The behaviour of q-index 
with initial condition for a time series generated with 
logistic map with r=4 (chaos threshold value) was 
shown in figure 2. This results show that the initial 
condition does not changes the q-index value. These 
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results are expected because the initial condition do 
not characterize the system. The system dynamics is 
controlled by the r parameter in the equation 13 and 
not by the initial condition x(0). Shown in figure 3 is 
the effect of r parameter in q-index value. The results 
in figure 3 show that the r parameter changes the q-
index values and it is expected because q-index value 
represent the system dynamic. This result is 
according to results shown in previous works of 
Tsallis et al, (1997).  

 

Figure 2: q-index for different initial condition and r=4. 

 
Figure 3: Index for different r-value.  

The results in Figure 4 represent the temporal 
evolution of q-index value from EEG signal. There is 
a clear indication of changes in the q-index value 
before the occurrence of the seizure; thus, this result 
able speculate that the EEG time-series represent a 
brain dynamic which change their extensivity.  This 
observation is according to the others work in the 
literature that make the same speculation when use 
the q-index value and complexity measurements in 
EEG time-series analysis e.g. results from work of 
Rajkovic et. al. (2004). Therefore, in this 
methodology   q-index value was calculated using one 

sample period. So, based in these results, the 
methodology developed in this paper is valuable in 
practical application of monitoring EEG seizure time-
series. 

 

Figure 4: Time evolution of q value in the EEG signal. 

One important question one might ask about the 
results presented in this work is concerned to the 
relationship between the q-index changes and brain 
dynamic. If there are changes in the q-index value so, 
the system dynamic expected to be changed. 
Supposing that the anatomical brain structure is the 
same during EEG acquisition, so it is expected that 
changes in q-index could be related to the changes in 
the functional brain dynamic. The relationship 
between neuroanatomy and brain functional  dynamic 
were well established in several works (Bullmore and 
Sporns, 2009; Bullock, 1989), so the changes 
observed in the q-index value calculated from time-
series during the seizure can be understood as 
changes of functional dynamics during the ictal 
activity represented in the EEG time-series. 

6 CONCLUSIONS 

A new method for q-index calculation using 
complexity measurements and Tsallis entropy as well 
as their application in the EEG time-series is 
presented. The results presented shown that the 
methodology can be used to calculates the q-index 
from time-series generated by a system’s dynamic. 
The q-index calculated by this methodology was 
sensitive to the EEG seizure that may prove to be of 
practical importance to predictive purposes.  
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