
A Metamodel for Business Rules with Access Control

Lex Wedemeijer
Department of Management, Science and Technology, Open University, Valkenburgerweg 177, Heerlen, The Netherlands

Lex.Wedemeijer@gmail.com

Keywords: Metamodel, Declarative Business Rules, Access Control, Relation Algebra.

Abstract: Business rules outline the way of working with data in today's organizations. We present a metamodel to
support and underpin the rule-oriented language to capture business rules that we developed earlier. Like the
language, our metamodel is founded on Relation Algebra. The metamodel is compact, and enables the rule
designer to record the business rules in their exact details, and to examine the data of the organization for
rule violations. Even though such violations should be signalled to the appropriate stakeholders in the
business, the access to such signals is subject to access controls, which constitute a special type of business
rule. We account for this requirement in our metamodel, so that it captures regular business rules and access
permissions alike, and enables to monitor them for violations. A prototype implementation demonstrated the
feasibility of our approach.

1 INTRODUCTION

Rule engineering calls for a rule language that is
understandable for the intended user community, yet
precise enough for subsequent application
development. The importance is well argued in the
Business Rules Manifesto (2003).

In an earlier paper (Wedemeijer, 2015), we
proposed a concise language to specify declarative
business rules that consists of just 5 statements. We
also proposed a provisional metamodel, but this has
since been found to be inadequate. The lack of a
proper metamodel hampered the further develop-
ment of the rule-oriented language and design tools.

The objective of this paper is to present a
metamodel to support our language for declarative
and state-oriented business rules, including rules for
access control, and to provide a solution to the long-
standing problem how to reconcile access rules with
regular business rules.

Binary Relation Algebra provides the rigorous
foundation for our work. The variant we use can be
classified as a Description Logic of SHIO type
(Baader et al., 2008).

The paper is organized as follows. Section 2
points out some related work. Section 3 explains the
major part of our metamodel in conjunction with
four of the language statements. The fifth language
statement concerns rule enforcement. This is
analysed, and an alternative is proposed in section 4.

In section 5, we briefly discuss the rules that apply at
the metamodel level. Violation of a metamodel-rule
signifies an error in the design of the business
model, or in a business rule formula. Section 6
presents the completed metamodel. Its integration
with the rule language is underpinned by a prototype
implementation. Section 7 concludes the paper.

2 RELATED WORK

Declarative business rules have been analysed and
modelled in various contexts and from different
viewpoints. Rule metamodels as well as access
control models are well described in the literature.
We mention some approaches that are related to our
work on declarative business rules, without
attempting to be exhaustive.

2.1 Metamodels for Business Rules

Object Constraint Language (OMG, 2012) is a
language to describe constraints on classes defined
in UML models. Its emphasis is on implementation,
and we consider it too technical for our purpose. The
SBVR current standard (OMG, 2015) describes a
metamodel for business rules, but covers a much
wider area that the declarative and state-oriented bu-
siness rules that we focus on. Hence, the metamodel
is overly complex and does not fit our purpose.

46
Wedemeijer L.
A Metamodel for Business Rules with Access Control.
DOI: 10.5220/0006222100460053
In Proceedings of the Sixth International Symposium on Business Modeling and Software Design (BMSD 2016), pages 46-53
ISBN: 978-989-758-190-8
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

Ecore (Steinberg et al., 2008) is a metamodel for
the Eclipse programming environment. Specified as
an UML model, its aim is to describe models and to
provide run-time support for datamodels in Eclipse.
As it aims to also support operations, it is not truly
state-oriented. Ecore too covers a much wider area
than what we focus on, while a genuine notion to
represent business rules is lacking.

The Semantic Web Rule Language (Horrocks et
al, 2004) is a rule-based approach that employs
Ecore as a basis. Semantic Web approaches use the
Open-World Assumption whereas our work is based
on the Closed-World Assumption (Ceravolo et al.,
2007). This fundamental difference is most evident
in the 'total' ruletype that requires inspecting all
items of an object (class): the rule may be satisfied
under Closed-World Assumption, but unknown
under the Open-World Assumption.

RAP (Michels, 2015) is a language and
metamodel geared to declarative business rules.
However, it aims to provide learning support for
students in a course for business rules, and the
metamodel, tailored to this goal, is implementation
dependent causing RAP to be deficient in its support
of rule enforcement and access control.

In summary, few of the approaches discussed
above support the state-oriented and declarative
properties that we think are fundamental in business
rules. With the possible exception of RAP, they are
not suited to fit our compact rule language.

2.2 Models for Access Control

The contexts of access control and regular business
rules are generally regarded as different: primary
rules outline what must be done to create user value.
Access control rules are secondary rules to outline
what is, or what is not allowed in doing so.

Role-Based Access Control (ANSI, 2004) was
defined in 2004 and is still being developed. It is a
standard for access control that describes a strategy
for granting permissions to view data and to perform
editing operations. The model stipulates separation
of concerns: users, sessions and roles on the one
hand, and permissions for data-objects and
operations on the other, the two contexts being
linked by assigning Permissions.

Relation-Based Access Control (Zhang et al.,
2010) is a variant that emphasizes this notion of
linking-pin. Notice however that the operations and
data-objects covered at the right-hand side of Core
RBAC may concern data editing operations as
performed by business users and thus subject to user
assignments. Complications that may result from

this duplicity are ignored in RBAC.

Figure 1: Core RBAC.

Access control rules can, and should be
described as regular business rules (Liu et al., 2003).
However, access control control are separated from
the primary business concepts, and potential matches
or links are neglected.

Most access control approaches are preventive in
nature, assuming that access attempts without prior
permission will automatically fail. In business
practice, this is not always how it works. It is often
unclear how an approach copes with accesses that
have actually occurred without a corresponding
permission.

Access control rules may be regarded as rules in
their own right. Still, to the best of our knowledge,
no standard exists of a joint model combining rules
about primary business data (concepts and relations)
with secondary rules to control access to that data.

3 METAMODEL

Figure 2 depicts the major parts of the metamodel.
Rectangles represent concepts that in Relation

Algebra have no attributes, unlike conventional
Relational Algebra. A line with a name represents a
relation. Our convention is to let arrowheads point
from the domain to the range concept. Although less
common, this is useful for designers in writing
correct rule formulas. Dotted lines depict
specialization-generalization relationships.

The three shaded areas correspond to the
language statements as indicated.

Relations in the metamodel are univalent; the
exception of [Tuple] is_in [Expression] is discussed
later. A relation is total if the connecting line begins
at the boundary of the domain concept. Otherwise, a
line starting out from the interior, the relation is
optional. This convention suggests that the relation
is total for some specialization that is not depicted
explicitly.

A Metamodel for Business Rules with Access Control

47

Figure 2: Partial metamodel for Business Rules.

3.1 The MODEL Statement

At the left are the concepts of Concept, BaseRelation
and ColloquialName as specified in the MODEL
statement. Together, the name, domain and range are
unique for each BaseRelation. An inverse name may
optionally be given, which must also be unique.

BaseRelation is our preferred name for relations
that the designer explicitly specifies. This is to avoid
confusion with expressions, constructed by way of
Relation-Algebra operations.

Specialization/generalization is captured by way
of _isa (and inverse name _asi) as a reserved
ColloquialName, and there are several instances in
the metamodel, depicted as dotted lines. A natural
restriction for _isa relations is that each one must be
an injective function.

3.2 Regarding Expressions

Expression is the core concept in our metamodel. It
captures binary relations created by way of Relation-
Algebra operators. This is where the power of
Binary Relation Algebra comes in, and no language
statement is needed.

Once base relations are specified, other relations
are derived, either by applying a unary operator to
one expression, or by applying a binary operator to
two expressions. The metamodel captures the two
options by way of a left-hand argument and
operator, which are always compulsory, and an
optional right-hand argument.

The Operator concept is the set of operators such
as inverse, negation, union, intersection, and
composition, to be used in DerivedRelations. The
actual list of available operators is implementation-
dependent, and is easily expanded. For instance, a
unary operator called 'total' may be implemented to
derive all items in the domain concept that do not
partake in a certain expression.

Apart from BaseRelations and DerivedRelations,

the metamodel also provides for IdentityRelations
and nominals. A designer can refer to the Identity
Relation for a concept in any language statement
without having to define it first.

Nominal expressions are denoted as constant
values, i.e. a single or multiple pairs. Although this
resembles a population of tuples, nominals are fixed
expressions that come without extensions and so
cannot be edited.

3.3 The LOAD Statement

At the lower left in figure 2 are the Item and Tuple
concepts and their associated relations that record
the populations of Concepts and Expressions. A
designer needs to specify tuples for BaseRelations
only, because Relation Algebra will then determine
all tuples for all Expressions according to the
expressions' derivation formula. This applies at
loadtime, but later at runtime as well.

By exception, the relation in the metamodel from
Tuple to Expression is not univalent. An essential
property of Relation Algebra is that one tuple can be
member of multiple Expressions. By implication,
one (set of) tuples can be loaded into more than one
BaseRelation at once.

3.4 The RULE Statement

The Rule statement of our language is captured by
Rule, RuleType, RuleComponent and Assertion,
with corresponding relations.

One variant of the rule statement restricts a
single expression, potentially by specifying several
constraints at once. For example, stating that an
expression MUST BE FUNCTION means that two rule-
types apply, 'univalent' and 'total'. Applying
objectification as a design pattern (Halpin, 2006), we
reify the link between Rule and RuleType into the
concept RuleComponent.

The other variant of rule statement compares an
expression with another, using the MUST IMPLY
comparison.

A minor language improvement is to introduce
new comparators MUST INCLUDE, MUST EXCLUDE,
and MUST EQUAL, variants that also compare two
expressions. The designer can then pick the
comparator that makes a rule easy to understand.

Each comparison gives rise to a single Rule-
Component, except MUST EQUAL that combines the
two variants MUST IMPLY and MUST INCLUDE.

Each RuleComponent is uniquely identified by
its rule and type of rule. It comes with exactly one
assertion, the derived relation containing all tuples

Sixth International Symposium on Business Modeling and Software Design

48

that violate the RuleComponent. Rules need not be
unique, which is why a single assertion may link to
more than one rule component.

3.5 The EXPLAIN Statement

The metamodel accounts for the EXPLAIN statement
of our language by one concept, Text, related to the
Concept, BaseRelation, and Rule concepts. We
specify the relations as optional because textual
explanations contribute to the users' understanding
of the metamodel, but not to its formal consistency,
correctness, or completeness. And although some
form of organization or coherence in the texts may
be desirable, we consider such nice-to-have docu-
mentary features beyond the scope of this paper.

3.6 regarding the ENFORCE Statement

Ideally, a business adheres to all of its rules at all
times, and no violations occur. In the context of our
metamodel, it means that all assertions ought to
remain unpopulated. In a live business environment,
rules may sometimes be violated, so that some
assertions will record violations. If our purpose was
only to develop a declarative, state-oriented meta-
model for business rules, then the passive capability
to record violations would suffice. However, a
running business calls for more than that. The
problems and alternatives for rule enforcement are
discussed in the next section.

3.7 Discussion

The metamodel presented in figure 2 accounts for
four of the five statements of our language.
Consisting of only 12 concepts and 20 relations
(_isa relations included), it is compact but enables
the rule designer to model business concepts and
relations, and to specify declarative business rules
about them.

Rule violations are recorded as (sets of) tuples in
assertions and are avialable for inspection by the
business stakeholders in charge of remedying the
violations.

4 RULE ENFORCEMENT AND
ACCESS CONTROL

The metamodel will record rule violations, but does
not enforce the rules. No mechanism is provided to
guarantee rule adherence in the running database

environment. Indeed, it is implementation-dependent
how violations will be determined or prevented. This
section explains how we extended the metamodel to
support rule enforcement, albeit not in full.

4.1 Analysis of ENFORCE Strategies

We now take a closer look at the three strategies to
specify enforcements, proposed in our language as:

ENFORCE Rule AS Reject/Report/Resolve

ENFORCE AS REJECT is easy to handle. Whenever an
attempt is made to change the current state of the
database such that a new rule violation would
emerge, then the change is rejected and the database
state remains unchanged. It reflects the view that the
population of the database after the change, with this
violation, cannot possibly be true in the real world.
In practice, this view may be valid for some rules,
but certainly not for all.

The ENFORCE AS REPORT statement is an
obligation to report violations to the stakeholder(s)
in charge of monitoring rule compliance, and also a
permission for the stakeholder(s) to read them. But
the obligation to report specifies compulsory action,
which is inconsistent with our purpose of declarative
language and metamodel. Also, it tacitly assumes
that the metamodel contains a stakeholder concept;
this is even an explicit assumption in the RBAC
standard discussed above.

In practice however, the stakeholder role is
assumed by business people, and this role, or these
business people, may already be captured as a
concept. In such cases, adding a Stakeholder concept
to the metamodel results in undesired redundancy.
Each change in organization, stakeholdership, or
monitoring responsibilities, would require an update
in the metamodel. In our experience (Wedemeijer,
2002), such changes in the way of doing business
are rather frequent, much more so than changes in
rules, relations or concepts.

ENFORCE AS RESOLVE as the third strategy also
poses serious difficulties. In our earlier paper we
pointed out that this strategy is not declarative but
imperative, and not state- but transaction-oriented in
character. Moreover, it assumes that the stakeholder
who performs the data edit to resolve the violation,
has permission to access that data.

Enforcements are rules about rules. Enforcement
rules in many practical business environments are
phrased as imperative rules, whereas we are looking
for declarative business rules. They constitute rules
in their own right and so should be handled in much
the same way as ordinary business rules. Because
rule enforcement strategies implicate that rule

A Metamodel for Business Rules with Access Control

49

violations need to be accessed, we turn our attention
to access control. Our aim is to capture and integrate
the rules for data access into the metamodel as
regular business rules.

4.2 Permission to Access

Rule enforcement is dependent upon access control.
To report violations to some stakeholder, assumes
that the stakeholder is permitted to read the
violations, and that proper edit permits are granted
for taking corrective actions.

In accordance with the RBAC standard, our
access control rule is simply: "access to data requires
permission to access that data". This applies to all
expressions, not only to the assertions associated to
some business rules.

Figure 3: Permit and EditMode concept in the metamodel.
Access and Stakeholder belong to the business level.

Figure 3 shows how the metamodel is expanded
with a Permit and EditMode concept to cover the
'permission assignment' relation of RBAC. A permit
allows a user to access the data recorded for that
expression(s). Obviously, an expression cannot be
validly accessed if no permits are granted for it, and
so its contents remains hidden to the users.

EditMode is optional, to tailor permissions to
various modes of data editing (add, change, delete).
The default access mode is 'read' which does not
refer to an editmode. Expressions in general cannot
be edited, and editmodes should be made to apply
only to BaseRelations or (the IdentityRelation of)
Concepts. Evidently, an edit permit automatically
implies read permission for that expression.

4.3 Access Control Rules

Access control requires keeping track of all data
access. But keeping score of all data accesses comes
down to record the online transaction processing as
performed in the running business database
environment: we do not suggest to duplicate this

within the context of our rule metamodel which
would become very volatile.

Instead, we assume that some concept of Access
is defined at the business model level (figure 3). In
the running database, each access should be
recorded: to which expression, and compliant to
which permit. These relations, transgressing the
business/metamodel boundary, support the decision-
making process in the operational database to allow,
or deny access.

Next, we also assume two relations: [Access] to
[Expression] and [Access] complies_with [Permit].
Both relations will be functions (univalent and total),
if the Access concept is defined suitably.

Of course, other and more complicated concepts
and rules for data access may exist in more realistic
business environments. And there is more to it.
Access to an expression requires that the access
comes under a permit for that exact expression:

RULE 123-read-control AS
 [Access] to [Expression]
MUST IMPLY
 [Access] complies_with [Permit]
 composition
 [Permit] for [Expression]

The statement follows the language conventions set
out in our earlier paper (Wedemeijer, 2015). The
rule-identifier, 123-read-control, is arbitrary.

If access involves editing, then an extra restric-
tion is that the permit allows the correct editmode:

RULE 456-edit-control AS
 [Access] is_of [EditMode]
MUST IMPLY
 [Access] complies_with [Permit]
 composition
 [Permit] is_of [EditMode]

4.4 Access Control for Stakeholders

A next extension is to account for stakeholders who
actually perform the data accesses. In ordinary
business models, stakeholders go under a wide
variety of names: users, employees, departments, or
whatever. Most approaches for access control, and
the RBAC standard is no exception, capture such
concepts in a separate business model. Our approach
leaves it to the business designer to specify in the
business datamodel who the permissions are granted
to, and to specify the volatile relations of these con-
cepts with Permit. This allows the designer to merge
this important aspect into the overall business
model, or to employ a secondary model.

To outline how this works out in practice, we

Sixth International Symposium on Business Modeling and Software Design

50

assume for the sake of this paper that a single
Stakeholder concept is identified in the business
datamodel as in figure 3. We also assume the
[Access] performed-by [Stakeholder] relation which
is univalent and total, and relation [Permit]
assigned-to [Stakeholder] which may be many-to-
many. The rule that access requires permission now
comes down to:

RULE 789-access-control AS
 [Access] performed-by [Stakeholder]
MUST IMPLY
 [Access] complies_with [Permit]
 composition
 [Permit] assigned-to [Stakeholder]

Notice how these rules apply at the level of the
business model, and violations will appear in a
regular Assertion. From a business point of view, the
only peculiarity is that the Expression and Permit
concept and contents are fixed at the metamodel
level, and cannot be edited on the fly.

Combined, the rules 123, 456 and 789 support all
three enforcement strategies, as follows. If no permit
was issued for a rule, then viewing violations is
impossible so no violations should emerge, which
comes down to the "reject" strategy. If some permit
was issued, then stakeholders with a proper permit
can obtain a report of the violations, which is the
"report" strategy. If an edit permit was issued, then
the stakeholder may proceed to add, change or delete
a violating tuple, executing the "resolve" strategy.

4.5 GRANT Statement Replaces
ENFORCE

As the ENFORCE language statement is inadequate,
we now propose as alternative the GRANT statement.
It records permit-identifiers, and relates them to one
or more expressions in the metamodel. One variant
issues permits for reading, the other for editing:

 GRANT Permit FOR Expression(s)/Rule(s)

 GRANT Permit FOR BaseRelation(s)
 IN EditMode

For the convenience of the business designer, a
single permit may be granted for several expressions
and (assertions corresponding to) rules at once, or
one edit permit for multiple base relations. Once the
permits are established in the metamodel, they can
be assigned to any roles or users as defined in the
business model, at load-time or at runtime of the
operational database.

The statement specifies access control for all
expressions, not only for rule assertions. Rather, an

enforcement strategy can be inferred from the
permissions granted for assertions.

If no permit is granted for an assertion, then
violations cannot be viewed and so should not exist.
Hence, the rule ought to never be violated, and the
reject strategy applies. A read permit granted for an
assertion means that rule violations are possible, and
some stakeholders are probably able to view them:
this is the report strategy. If an edit permit is
granted, then the resolve-strategy applies.

4.6 Discussion

Our way of granting access permissions has great
advantage. The point is that a distinct assertion will
record the violations of the access-control rule. A
distinct read permit is required to inspect access
violations, which must be defined in the metamodel
and then assigned to stakeholders in the business.

For example, access to some data may be
performed by a stakeholder without the proper
permission, resulting in a violation of rule 789-
access-control. One possible way to resolve the
violation is by having the permission assigned to the
stakeholder belatedly. This is a great feature for data
auditors, and rarely supported in other approaches
for Access Control.

The granting of permissions resembles the
RBAC standard that also envisions separation of
concerns, but ignores the potential overlap of (user)
roles with objects in the business model. Our
approach allows such overlap, and puts the business
designer in charge of avoiding possible duplicity.

The main advantage is that access control is now
relegated to the level of business model, where
permits can be assigned, changed and withdrawn at
any time, without affecting the metamodel. Thus,
access rule violations can be handled in the same
way as violations of ordinary business rules.

One may argue that a mere permission to read
violations, does not ensure that a stakeholder will
actually do so. But this is equally true for the
ENFORCE AS REPORT statement: there is no
recordkeeping of violations that have or have not
been been viewed. Would a rule be imposed that
each violation must be viewed, then each emerging
violation constitutes a violation of this rule. This is
inferior design: the simultaneous emergence of two
violations is a clear update-anomaly.

5 METAMODEL-RULES

In any model of data, rules apply to ensure correct

A Metamodel for Business Rules with Access Control

51

ness and consistency within the modelled context. A
rule violation signifies that some data is flawed, and
should be remedied by the stakeholder. In our
metamodel, violation of a metamodel-rule signifies
that some feature of the business model is flawed,
and should be remedied by the designer.

5.1 Cardinality

Univalence applies to almost all relations in the
metamodel. The exception in relation [Tuple] is_in
[Expression] was already pointed out. A second
exception is the [Permit] for [Expression] relation.
Notice that arbitrary cardinalities may apply to
relations involving a Stakeholder, but that concept is
part of the business model, not the metamodel.

Many, but not all relations are total. An
important optional relation concerns permits that not
always involve an editmode. Other relations that are
not total are: the inverse name of BaseRelation; the
right-hand side in a derivation formula for a derived
relation; and the relations for explanatory texts. The
three _isa relations in our metamodel combine
univalence, totality, and injectivity.

5.2 Compound Rules

Compound rules involve more than just one relation.
In our metamodel, an example is the short loop

between Rule and Expression: the compares relation
must always refer to a different expression than the
as relation, so as to avoid trivial and contradictory
formulas.

A more interesting example is the requirement of
referential integrity. Not only must the items in a
tuple be on record for some concept, they must exist
in the correct concept. This boils down to two
compound rules, one about domains and the other
about ranges:

RULE 0-referential-integrity-domain AS
 [Tuple] is_in [Expression]
 composition
 [Expression] has_domain [Concept]
MUST EQUAL
 [Tuple] has_domain [Item]
 composition
 [Tuple] is_in [Concept]

Another consistency rule for a metamodel loop
concerns [Rule] compares [Expression]. Whenever a
rule uses compares, then must its corresponding
assertion, as a DerivedRelation, have a has_right
[Expression] clause that uses that exact same
expression.

A more intricate rule concerns the Operator
concept. The operator used in the assertion for a rule
component, is fully determined by that components'
RuleType. For example, if a rule component
expresses that some expression is 'total', then the
corresponding assertion must use the specific 'total'
unary operator.

Apart from compound rules that apply to loops in
the model, other compound rules can be pointed out.
For instance, a compound uniqueness (identifying)
rule applies for BaseRelations: each is uniquely
identified by its ColloquialName, plus its domain
and range concept. Likewise, each Tuple is uniquely
identified by the combination of its domain item,
and its range item.

Still another kind of rule concerns _isa
hierarchies: [Assertion] _isa [DerivedRelation],
composed with [DerivedRelation] _isa [Expression],
must coincide with the [Assertion] _isa [Expression]
relation. The latter relation is not depicted, but it
does exist as a proper specialization/generalization.

6 THE INTEGRATED VIEW

Figure 4 depicts the compact metamodel to support
our business rules language. The ENFORCE statement
of our earlier language version was found to be im-
perative, and too volatile. Focusing on access control
only, we defined a GRANT statement for access
permits, to regain the declarative and state-oriented
character of the language and to reduce volatility.

6.1 Language and Metamodel

Figure 4: Full Metamodel for Business Rules.

The current language supports five statements:
MODEL, RULE, EXPLAIN, LOAD and GRANT. Jointly,
they enable a business designer to set up a model, to

Sixth International Symposium on Business Modeling and Software Design

52

specify rules, to provide explanations, to load initial
data, and to determine access control. The
supporting metamodel is expressive yet compact, as
twelve concepts suffice to capture a design.

Remind that Expression, DerivedRelation and
Operator need not be specified by the designer as
they come for free by virtue of Relation Algebra.
And although a Stakeholder and Access concept are
depicted, these concepts and relations are not part of
the metamodel. Permit assignation to stakeholders,
and actual access of data, should be recorded at the
business level. In our experience, this will considera-
bly reduce the number of changes in the metamodel.

6.2 Demonstration

The metamodel and rules constitute a business
model just like any other, perhaps with a somewhat
peculiar context. Hence, it can be expressed in our
rule-oriented language, and captured as a regular
datamodel in the metamodel itself, in a reflective
fashion.

Feasibility of our approach is demonstrated in
this way, by implementing the metamodel and its
complete set of rules in a prototyping rule-based
engineering environment. The result is available for
download at wiki.tarski.nl/index.php/Research_hub.

7 CONCLUSION

The metamodel defines the information structure
underlying our language for declarative business
rules, and also covers rules for access control.

Binary Relation Algebra is used as theoretical
fundament for exact rule specifications. This
formalism however does not support numerical,
temporal, or spatial capabilities for rules. Nor is the
metamodel designed for performance or scalability,
and no efficient algorithm is proposed to determine
rule violations. Deployment will call for a distinct
development step to transform the business model to
a proper database schema that takes requirements
into account such as performance, data distribution,
federation across hardware platforms, security,
interoperability etc.

The metamodel ensures separation of concerns,
so that business users can add, edit and delete the
operational data, provided that a proper permit was
assigned to them. If not, the violation of the access
control rule is captured in a rule assertion, just like
any other business rule violation.

A salient point of the metamodel is that depen-
dence on role and permit assignments is minimal.

Thus, it provides a stable environment to capture and
describe business rules. Volatility due to everyday
changes in organizations is relegated from the
metamodel to the level of the business model.

Our approach handles the primary business rules
and the rules for access control in exactly the same
way, an elusive goal in business rules engineering
attested to in the Business Rules Manifesto. The
metamodel for business rules with access control
presented in this paper indicates how this goal may
be reached.

REFERENCES

ANSI, 2004. Role Based Access Control. American Nat.
Standard for Information Technology INCITS 359.
available at csrc.nist.gov/groups/SNS/rbac/

Baader, Horrocks, Sattler, 2008. Description logics. In:
van Harmelen, Lifschitz, Porter. (eds.). Elsevier
Handbook of Knowledge Representation, pp 135–179

Business Rules Manifesto, 2003. Version 2.0. available at
www.businessrulesgroup.org/brmanifesto.htm

Ceravolo, Fugazza, Leida, 2007. Modeling Semantics of
Business Rules Inaugural IEEE-IES Digital Eco-
Systems and Technologies Conference, pp. 171-176

Halpin, 2006. Objectification of relationships. Advanced
Topics in Database Research. Vol 5 no 5 pp 106-123

Horrocks, Patel-Schneider, Boley, Tabet, Grosof, Dean,
2004. SWRL: A Semantic Web Rule Language Com-
bining OWL and RuleML. Nat.Research Council of
Canada. available at www.w3.org/Submission/SWRL/

Liu, Sun, Barjis, Dietz, 2003. Modelling dynamic behavior
of business organisations. Knowledge-Based Systems,
pp. 101-111

Michels, 2015. Development Environment for Rule-based
Prototyping. Dissertation. available at portal.ou.nl/
documents/114964/31994420/Development_Environ
ment_for_Rule-based_Prototyping.pdf

Object Management Group, 2012. Object Constraint
Language. available at www.omg.org/spec/

Object Management Group, 2015. SBVR: Semantics of
Business Vocabulary and Business Rules, Version 1.3.
available at www.omg.org/spec/

Steinberg, Budinsky, Paternostro, Merks, 2008. Eclipse
Modeling Framework, 2nd Ed. Addison-Wesley

Wedemeijer, 2002. Exploring Conceptual Schema
Evolution. Dissertation. ISBN 90-5681-142-8.
available at repository.tudelft.nl/

Wedemeijer, 2015. A Language to Specify Declarative
Business Rules. Springer Lecture Notes in Business
Information Processing. Vol 220, pp 82-101

Zhang, Giunchiglia, Crispo, Song, 2010. Relation-Based
Access Control: An Access Control Model for Context-
Aware Computing Environment. Wireless Personal
Communications. Vol 55, pp 5-17

A Metamodel for Business Rules with Access Control

53

