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Abstract: To obtain value from the graphical representations that are used by different stakeholders during the system 
development process, they must be integrated. This is important to achieve a holistic understanding about 
system specification. Integration can be reached via modelling process. Currently, most of information 
system modelling methods present different modelling aspects in disparate modelling dimensions and 
therefore it is difficult to achieve semantic integrity of various diagrams. In this paper, we present 
semantically integrated conceptual modelling method for information system analysis and design. The 
foundation of this modelling method is based on interactions. This way of modelling provides possibility of 
integration of business processes and business data. The inference rules of interactions help in reasoning 
about the decomposition of concepts. In this method, decomposition of the system is graphically described 
as classification, inheritance or composition of organizational and technical system components. 

1 INTRODUCTION 

Conceptual modelling is a fundamental activity in 
requirements engineering (Nuseibeh and 
Easterbrook, 2000). It is the act of abstracting a 
model from a problem domain (Lankhorst, 2005). 
One of the main problems in conceptual modelling 
of Information Systems (IS) is that conventional 
modelling methods define different aspects of a 
system using different types of diagrams. Integration 
principles of such diagrams are not clear.  The lack 
of a conceptual modelling method that helps to 
detect semantic integrity of IS specifications is a big 
information systems development problem. 
Semantically Integrated Conceptual Modelling 
(SICM) method challenges the existing integration 
problems among interactive, behavioural and 
structural aspects (Gustas and Gustiene, 2012) of IS. 
To capture the holistic structure of a system, it is 
necessary to understand how various components 
are related.  

To obtain value from graphical representations 
that are used in an organisation by different 
stakeholders, these representations must be 
integrated. Integrated enterprise models might help 
business and information technology experts to 
communicate in order to assess and trace the impact 

of organizational changes. Integration can be 
reached via modelling process. Modelling helps 
system developers to visualize, specify, construct 
and document different aspects of the system. 
Modelling is the only way to control system 
development process. Various aspects of the system 
may have many modelling projections, which are 
typically described by using different types of 
diagrams. These diagrams are critical to distinguish 
between disparate dimensions of enterprise 
architecture (Zachman, 1987). The Zachman 
Framework (1987) can be viewed as taxonomy for 
understanding different types of diagrams. This 
framework defines separate dimensions of business 
application and data architecture, such as Why, 
What, How, Who, Where and When. Inability to 
detect inconsistency among different architecture 
views and dimensions is one of the fundamental 
problems in information system methodologies.  

Most conventional conceptual modelling 
languages are plagued by the semantic mismatch 
between static and dynamic constructs of meta-
models. To achieve semantic integration in such a 
case is very difficult. Unified Modelling Language 
(UML) (OMG, 2009) uses various types of diagrams 
to represent behavioural, structural and interaction 
aspects of the system. Every modelling approach 
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that covers more than one type of requirements and 
is represented by the collection of different diagrams 
must contain the systematic method for the detection 
of inter-model inconsistency. The static aspects 
describe characteristics of objects, which are 
invariant in time. The dynamic aspects describe 
interactive and behavioural characteristics of objects 
over time. These aspects are complimentary and 
they cannot be analysed in isolation.  

Inter-model consistency and completeness of 
system specifications is hard to achieve for non-
integrated model collections (Glinz, 2000). 
Modelling techniques that are realized as collection 
of models are difficult to comprehend for business 
experts. There are often semantic discontinuity and 
overlapping in various specifications, because static 
and dynamic constructs do not fit perfectly. A 
number of rules are defined for UML (Evermann 
and Wand, 2009) that are not supported by available 
CASE tools. Thus, working with the collections of 
non-integrated models causes difficulties to realize 
semantic quality of system specifications, which are 
represented on various levels of abstraction. By 
modelling isolated IS views and dimensions creates 
difficulties for business experts, who determine the 
organizational strategies. Consequently, this 
isolation increases semantic problems of 
communication between business experts and IT-
system designers.  

The SICM method provides several advantages 
(Gustas, 2010). Since the method is based on a 
single diagram type, the integrity rules can be 
introduced directly into one model. Particular views 
of specific diagram types, which define structural, 
behavioural or interactive aspects, can be generated 
by producing projections of one integrated model. In 
this paper, we demonstrate how the SICM method 
can be applied for integration of behavioural and 
structural aspects of conceptual representations. 
Given the central role of service concept in this 
study, it provides us with a possibility to model the 
most essential parts of the system, which is 
composed of organizational or technical 
components. This way of modelling is more 
comprehensible not just for IS designers, but also for 
business modelling experts, who are mostly 
interested in computation-neutral analysis of 
organizations. The presented SICM method shares 
many similarities with ontological foundation of 
service process (Ferrario and Guarino, 2008). 
Nevertheless, the internal behaviour of service is 
analysed by using the basic principles of an 
ontological framework, which is developed by 
Bunge (Bunge, 1979).  

This paper is organized as follows. In the next 
section, some deficiencies of conceptual modelling 
approaches are described. How value exchanges are 
decomposed into different parts is discussed in the 
third section. In the fourth section, various types of 
conceptual dependencies and their inference rules 
are described. And finally, we present the 
conclusions of this work. 

2 DEFICIENCIES OF 
CONCEPTUAL MODELLING 
APPROACHES 

Conceptual modelling still lacks the methods that 
provide a possibility to model different problem 
domains in an integrated way. Integrated graphical 
representation of business process and business data 
is very relevant for reasoning about enterprise 
redesign decisions. As all steps in SICM method 
uses the same model and the same way of modelling 
that is based on service interaction flows. It enables 
enterprise architects to gradually decompose a 
system and to move smoothly from system analysis 
to design without being required to represent a 
complete solution. UML (OMG, 2009) was 
developed with the ultimate goal to unify the best 
features of the graphical modelling languages and 
create a de facto industry standard for system 
development. However, the semantic integration 
principles of different UML diagram types are not 
sufficiently clear. UML models have several 
weaknesses, which can be summarized as follows: 
value flow exchanges between actors cannot be 
explicitly captured; system decomposition principles 
are ambiguous; it is unclear how to integrate 
interactive, structural and behavioural aspects 
together in a single view.   

Data flow modelling and clear system 
decomposition principles were applied in structured 
analysis and design methods (Gane and Sarson, 
1979). UML also supports various types of 
associations between classes, actors, or between 
software or hardware components. However, these 
methods are not suitable for modelling the direct 
communication among actors that define actor 
interactions outside the technical system boundary. 
It is unclear how to visualize the rich context of 
actor interactions, which are important components 
in any system. If we have no method how to 
explicitly capture actors and their interactions, then 
this important part of specification, which may be 
viewed as a tacit knowledge, will be hidden from 
enterprise architects.  

Sixth International Symposium on Business Modeling and Software Design

12



 

One of the benefits of enterprise modelling is the 
ability to analyse business processes for reaching 
agreement among various stakeholders on how and 
by whom the processes are carried out. The 
industrial versions of information system modelling 
methods that are intended for business process 
modelling do not explicitly use the concept of value 
flow. Value models, which include resource 
exchange activities among actors, can be viewed as 
design guidance. The declarative nature of value 
flows is very useful from the system analysis point 
of view for the simple reason that flows have very 
little to do with the dependencies between business 
activities. Each value flow between actors, that can 
play the role of service requester and service 
provider, can be further refined in terms of more 
specific coordinating interactions among 
organizational components. The way of modelling, 
which is based on service flows, is more 
comprehensible and thus more suitable to discuss 
changes of process architectures with business 
developers, enterprise architects, system designers 
and users. Business process modelling does not deal 
with the notion of value flow, which demonstrates 
value exchange among actors involved (Gordijn et 
al., 2000). Traditionally, information system 
methodologies are quite weak in representing the 
alternative value flow exchange scenarios, which 
usually represent the broken commitments.  

Bunge (1979) provides one of the most general 
ontological definitions of a system. In this paper, his 
definition serves as the theoretical basis for 
understanding the notions of organization and 
enterprise ontology (Dietz, 2001). Bunge’s 
ontological principles are fundamental for the 
justification of various conceptual modelling 
constructs in our semantically integrated modelling 
method (Gustas and Gustiene, 2012). These 
principles are as follows: enterprise system can be 
decomposed into subsystems, which are viewed as 
interacting components; every subsystem can be 
loosely coupled with interactions to other 
subsystems; when subsystems interact, they cause 
certain things to change and changes are manifested 
via properties.  

Any subsystem can be viewed as an object, but 
not every object is a subsystem. According to 
Bunge, only interacting objects can be viewed as 
subsystems. It is quite beneficial to specify service 
interactions and to keep track of crosscutting 
concerns (Jacobson and Ng, 2005) between different 
subsystems in order to justify their usefulness. 
However, a basic underlying principle in UML is to 
provide separate models for different aspects. It is 

not totally clear how these aspects can be merged 
back into one model. Subsystems in UML cannot be 
realized as composite classes. UML does not 
provide any superimposition principles of static and 
dynamic aspects. There is very little research done 
on how the structural aspects and state dependent 
behaviour of objects should be combined with use 
case models. Classes and their associated state 
machines are regarded as the realization of use 
cases. Use case diagrams are typically not 
augmented with specification of state related 
behaviour (Glinz, 2000).  

System decomposition should be strictly 
partitioned. Every component partitions a system 
into parts, which can be loosely coupled with other 
components without detailed knowledge of their 
internal structure. Object transitions and structural 
aspects have to be related to one separate service, 
which consists of organizational or technical 
components. The limitation of conventional system 
modelling methods results in two side effects, better 
known as tangling and scattering in aspect-oriented 
software development (Jacobson and Ng, 2005). The 
treatment of these deficiencies requires the 
modification of UML foundation. Introducing 
fundamental changes into UML syntax and 
semantics with the purpose of semantic integration 
of collections of models is a complex research 
activity. However, such attempts would allow using 
UML to provide computation-neutral type of 
diagrams, which are more suitable to reason about 
enterprise architectures. It is recognized that UML 
support for such task is vague, because semantic 
integration principles of different diagram types are 
still lacking (Harel and Rumpe, 2004). 

3 VALUE FLOW EXCHANGES 
AND TRANSITIONS 

Semantically integrated conceptual modelling 
paradigm is based on more rigorous interpretation of 
human work. A new conception helps us to develop 
the method of enterprise engineering that allows 
practitioners to see the sources of breakdowns, the 
connections to systems design and to guide the 
redesign of work processes towards greater 
productivity and customer satisfaction. Business 
process models of organizations are quite good for 
viewing moving material and information flows, but 
they provide no mechanism for ensuring that the 
service requester is satisfied. Service requesters deal 
with work processes to be done, agreements on what 
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will be done, who will to it, and whether they are 
satisfied with what has been done. The movement of 
information or material flows is a consequence of 
this work. Service flow modelling is quite intuitive 
way of system analysis that is easy to understand for 
business experts and information system designers. 
Actions in services are required for exchange of 
business flows. Actions together with exchange 
flows can be viewed as fundamental elements for 
specifying business process scenarios. A scenario is 
an excellent means of describing the order of service 
interactions. Scenarios help system designers to 
express business processes in interplay with 
elementary service interactions between enterprise 
system components. In such a way, value flows and 
service interactions provide a natural way of process 
decomposition.  

The technologies to model coordination 
processes and tracking events have not been 
available till now. There are some concepts such as 
commitment and contract that are present in all 
business scenarios. Understanding these concepts 
makes it much easier to design and to change 
systems under construction. Commitment is a 
promise or obligation of an actor to perform a 
specific action. Contract is an agreement between 
service requester and service provider to exchange 
one asset into another. Thus, the contract may 
specify what happens if the commitment is not 
fulfilled. According to McCarthy (1982), the 
contract consists of increment and decrement events. 
If an enterprise increases one resource in an 
exchange, it has to decrease the value of another 
resource. The contract includes (1) transfer of 
economic resources, (2) transfer of exchange rights. 
Any exchange is a process, in which an enterprise 
receives economic resource and in return gives other 
resources. For example, a contract contains 
commitments to sell goods and to receive payments. 
The terms of the sales order can specify penalties if 
goods or payments have not been received on time. 
The creation and termination of primary business 
data in these exchanges are important for an 
enterprise. Artefacts such as credit, debit, account 
balances are derived from these exchanges.  

Interaction dependencies are important to 
conceptualize business processes as services 
between various enterprise actors. Since actors can 
be implemented as organizational or technical 
system components, these components can interact 
according to the prescribed service interaction 
patterns to achieve their goals. In SICM, the general 
service interaction pattern is represented by two 
interaction dependencies into opposite directions 

between two actors: service requester and service 
provider (Gustas, 2010). The idea of this pattern is 
similar to a well-known DEMO transaction pattern 
(Dietz, 2006). The SICM pattern is illustrated 
graphically in figure 1.  
 

 
Figure 1: Elementary service interaction loop. 

Interaction loop between two actors indicates 
that they depend on each other by specific actions. 
Service providers are actors who typically receive 
service requests, over which they have no direct 
control. They initiate service responses that are sent 
to service requesters. These two interacting actors 
can be used to define more complex interaction 
activities. Using interaction pattern, as way of 
modelling, enables system designers to construct the 
blueprint of interacting components, which can be 
represented by different actors across organizational 
and technical system boundaries. Any enterprise 
system can be defined as a set of interacting and 
loosely connected components, which are able to 
perform specific services on request. 

Increment and decrement events represent values 
exchanged in business processes. Value models 
(Gordijn et al., 2000) clarify why actors are willing 
to exchange economic resources with each other. 
Actors, actions and exchange flows are elements that 
are necessary for demonstrating value exchange. 
Economic resources are special types of concepts, 
which represent moving things. Rectangles, with 
shaded background, are used to represent economic 
resources and dotted line boxes are used for the 
representation of exchange flows. Actors are 
represented by square rectangles and actions are 
represented by ellipses. Actions that are performed 
by actors are necessary for transferring economic 
resources, data or decision flows between actors. 
Two actors and transfer of value flows into opposite 
directions is illustrated in figure 2.  

This figure illustrates that Deliver and Pay 
actions may happen at any time. It is not stated, 
which action should happen first. We just want to 
show that a customer is exchanging a Payment flow 
into a Delivery flow. Deliver action is initiated by 
vendor, because a shipment’s moving direction is 
from Vendor to Customer. On the contrary, the 
payment is moving from customer to vendor through
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Figure 2: Value exchange. 

 
Figure 3: Interaction loop, where Deliver action precedes Pay action. 

the action of pay. Action of Pay and Action of 
Deliver represent increment and decrement events. 
The process of paying is essentially the exchange of 
Shipment for Payment from the point of view of 
both actors. For a Vendor, the pay action is an 
increment event and deliver action is a decrement 
event, because it decreases the value of resources 
under control. For a Customer, it is vice versa. The 
terms of increment and decrement actions depend on 
the actor, which is the focus of this model.  

Our buying and selling example focuses on the 
core phenomenon. Most customers pay in advance 
for shipment, but some customers want to pay, just 
when they receive the delivered products. If we 
consider the case of online sales, then customers 
provide credit card details before the product items 
are delivered. Some customers receive an invoice 
later and pay for all their purchases in a certain 
period. All these cases are covered by the same 
service interaction pattern, which is illustrated in 
Figure 2. When shipment is delivered, then the 
delivery fact is registered in a system by a newly 
created object with its mandatory properties. The 
transition arrow ( ) is pointing to the class, which 
represents the creation of a new object. In our 
example, it is an object of Shipment. The fact of 
money transfer from Customer to Vendor is 
represented by Payment. If we want to represent that 
Deliver action precedes Pay Action, then the created 
Shipment itself or some of it property should be 
linked by the transition arrow with the Pay Action, 
which indicates the creation of the next object. The 

pay action creates the Payment from the Order 
[Found] object, which is the property of Shipment. It 
is represented in figure 3.  

We may want to ask for payment in advance of 
shipment. In this case, we show the first action of 
pay, which is designed to transform the concept of 
invoice (not shown in our example) to payment. The 
second action of deliver should be connected 
through a transition arrow from payment to 
shipment. In this way, material flow of payment 
would be exchanged for the shipment flow.  

Creation action is represented by a transition into 
an initial class. Termination action can be 
represented by transitions from a final class. If 
termination and creation actions are performed at the 
same time, then such action is called a 
reclassification. For instance, the initiation of the 
order action is typically used to create an Order 
record in a Vendor database. If customer Order is 
accepted, then it may be used for triggering the send 
invoice action. The internal changes are expressed 
by using transition links between various classes of 
objects in figure 4. 

Creation and termination actions are used 
together with the object flows. In interaction pattern, 
a transition arrow to action or transition arrow from 
action represents a control flow. In such a way, any 
communication action can be used to superimpose 
interactions and control flow effects in the same 
diagram. Order is created by the Order Delivery 
action and then it is reclassified to Invoice by the 
send invoice action. 
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Figure 4: Example of two interaction loops with the creation and reclassification actions. 

 
Figure 5: Notation of attribute dependencies. 

The reclassification is defined as termination of 
object in one class and the creation of object in 
another class. An invoice object is created from the 
moving invoice flow, which represents data at rest. 
In the second interaction loop, a vendor delivers 
shipment to a customer. The delivery action 
corresponds to the performance act, which produces 
the result. It is represented by the object of shipment. 
Finally, the pay action indicates an acceptance of the 
delivered result. At the same time, it is a second 
performing action, which represents an exchange of 
shipment for payment.  

Actors represent physical subsystems and 
structural changes of concepts represent static 
aspects of a system. This way of modelling allows 
illustrating actions, which result in changes of the 
attribute values. All actions are used to show the 
legal ways in which actors interact with each other. 
Structural changes of objects can be defined via 
static properties of objects. They are represented by 

the mandatory attributes. The mandatory attributes 
are linked to classes through the single-valued or 
through multi-valued attribute dependencies. One 
significant difference of the presented modelling 
approach is that the association ends of static 
relations are nameless. The justification of this way 
of modelling can be found in (Gustas and Gustiene, 
2012). 

The main reason for introducing nameless 
attribute dependencies is to improve the stability of 
conceptualizations. Semantics of static dependencies 
are defined by cardinalities, which represent a 
minimum and maximum number of objects in one 
class (B) that can be associated with the objects in 
another class (A). Single-valued dependency is 
defined by the following cardinalities: (0,1;1,1), 
(0,*;1,1) and (1,1;1,1). Multi-valued dependency 
denotes either (0,1;1,*) or (1,1;1,*) cardinality. 
Graphical notation of an attribute dependency 
between A and B is represented in figure 5.  
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According to the ontological principles, which 
are developed by Bunge (Bunge, 1977), the 
structural changes of objects can be presented via 
object properties. Properties can be understood as 
mandatory attribute values. If diagrams are used to 
communicate unambiguously the semantic details of 
a conceptualized system, then optional properties 
should be proscribed (Gemino, 1998). If B is 
dependent on A, then concept A is viewed as a class 
and concept B is viewed as a property of A. Any 
concept can be defined as an exclusive complete 
generalization of two concepts. Concept can also be 
characterized by state (Dori, 2002) or condition 
(Gustas, 2010). Notation of exclusive generalization 
and notation of state are presented in figure 5 as 
well. 

4 INFERENCE RULES OF 
INTERACTIONS  

A model of a system can be analysed as the 
composition of organizational and technical 
components. These components represent various 
types of actors. Organizational components can be 
seen as interacting subsystems such as individuals 
and divisions, which denote groups of people. 
Technical components can be seen as interacting 
subsystems such as machines, software and 
hardware. SICM method distinguishes between two 
types of concepts: active and passive (Gustas, 2010). 
Actors can be represented just by active concepts. 
An instance of any actor is an autonomous 
subsystem. Its life cycle can only be motivated by a 
set of interaction dependencies with other actors. 
Actors are represented by non-overlapping 
subsystems.  Classes of objects, which represent 
persistent data, are denoted by passive concepts. 
Mandatory attributes characterize all passive 
concepts. The objects that are represented by passive 
concepts can be affected by various interactions. 
Passive concepts can be related by the static 
relations such as classification, inheritance and 
composition. 

Classification dependency (●─ ) specifies objects 
or subsystems as instances of concepts. 
Classification is often referred to as instantiation, 
which is the reverse of classification dependency. 
Object-oriented approaches treat a classification 
relation as a more restrictive. It can only be defined 
between a class and an object. A class cannot play 
the role of object. In SICM method, each concept 
can be interpreted again as an instance (Gustas, 

2010). For example; MS Outlook ●─ E-mail 
Application, E-mail Application ●─ Product Type, 
Product Type ●─ Concept.  

Composition (─ ─) dependency in SICM 
method is much stronger form of aggregation, and 
differs significantly from the object-oriented 
composition. Composition dependency in SICM 
method allows just 1 or 1…* cardinalities between 
wholes and parts. This means that any part cannot be 
optional. The distinctive and very important features 
of this type of composition are as follows 
(Guizzardi, 2007):  
a) each part is existentially dependent on a whole, if 

a whole has a single part, then this part has 
coincident lifetime with a whole, 

b) if a whole has more than one part, then creation 
of a first part is coincident with the creation of a 
whole,  

c) removal or creation of additional parts can take 
place any time, but removal of a last part is 
coincident with the removal of a whole.  

d) creation or removal of a whole can be done 
together with all its parts, 

e) part may belong just to one and the same whole.  
The definition of composition in general is not so 
strict. With the help of special modelling techniques, 
other cases of aggregation can be changed into this 
strict kind of composition (Gustas, 2010). 

Composition hierarchies can be used for 
detection of inconsistent interaction dependencies 
between actors. Loosely coupled actors never belong 
to the same decomposition hierarchy. Interaction 
dependencies among loosely coupled actors on the 
lower level of decomposition are propagated into 
compositional wholes. So, composition links can be 
used for reasoning about derived interaction 
dependencies between actors on the higher 
granularity levels of specification. Interaction 
dependencies between actors, which are placed on 
two different composition hierarchies, are 
characterized by the following inference rules:  
1) if Action(X Z), Action(C1)  C2 and X 

─ ─ Y  
then Action(Y Z),  
2) if Action(Z X), Action(C2)  C3 and X 

─ ─ Y  
then Action(Z Y). 
Interaction dependency Action(X Z) between 
two actors X and Y indicates that subsystem denoted 
by X is able to perform an action on one or more 
subsystems of Z. Action(X Z) represents base 
interaction dependency and Action(Y Z), which  
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Figure 6: Base interactions between Customer and Vendor. 

 
Figure 7: Derived and base interactions between Customer and Vendor. 

is shown in the second part of the rule, represents 
derived interaction dependency. For instance, if 
Order Delivery (Customer  DB),  

Order Delivery(┴)  Order, (DB ─ ─ 
Vendor) and then Order Delivery(Customer  
Vendor) where  ┴  represents an empty class. Two 
subsystems of Organization, DB (Database) and 
Vendor together with their interaction dependencies 
are represented in figure 6. This example is based on 
a well-known situation in Ford Motor Company 
after a radical change (Hammer, 2000). Ford Motor 
Company plays the role of an organization, which 
places a purchase order into a shared database (DB). 
The same service interaction loop, which was 
discussed previously, is represented in this diagram 

as well. The interaction loop between Customer and 
Vendor represents an exchange of Shipment for 
Payment. Please note that the derived interactions 
cannot be in conflict with the specified dependencies 
in other diagrams. The interaction links, which are 
presented in figure 6, are consistent with the 
interaction dependencies of figure 7.  

Static and dynamic similarities of active concepts 
can be shared by more specific concepts according 
to the following rule:  

if X  Y and Y  Z then X  Z. 

For instance, if a Company is a specialization of 
Customer Organization, and Customer Organization 
is an Organization, then for a Company can be  
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Figure 8: Derived interaction dependencies of Customer Organization. 

applied static and dynamic similarities of an 
Organization. 

More specific actors inherit interaction 
dependencies from the more generic actors. It should 
be noted that in the object-oriented approaches, 
inheritance link is defined just for attributes and 
operations. Inheritance dependency is convenient for 
sharing service interaction loops of more general 
actors. Interaction dependencies are inherited 
according to the following inference rules:  
1) If Action(Y Z), Action(C1)  C2 and X 

 Y then Action(X Z),  
2) If Action(Z Y), Action(C2)  C3 and X 

 Y then Action(Z X).  
For example, if a Customer Organization is a 

Customer then Customer Organization inherits all 
service interaction links, which are represented for 
this more general concept. If Order 
Delivery(Customer Vendor),  

Action(┴)  Order and Customer 
Organization  Customer then Order 
Delivery(Customer Organization Vendor). 
Customer Organization has the opportunity to send a 
purchase order to a Vendor and Vendor is obliged to 
deliver Shipment to the Customer Organization. The 
derived interaction dependencies of Customer 
Organization are represented in figure 8. 

Classification dependencies can be also used for 
reasoning about derived interaction dependencies 
between actors. Interaction dependencies are 
propagated according to classification dependency 
links. Interaction dependencies between actors are 
characterized by the following inference rules:  
1) if Action(Y Z), Action(C1)  C2 and X 

●─ Y then Action(X Z),  
2) if Action(Z Y), Action(C1)  C2 and X 

●─ Y then Action(Z X).  
For instance,  
if Order Delivery(Customer Vendor), 
Order Delivery(┴)  Order and 
Ford Motor Company ●─ Customer 
then Order Delivery(Ford 
Motor Company Vendor). 

This interaction loop can be replaced by simply 
switching from Customer to Ford Motor Company. 
It is represented in figure 9. 

The responsibilities of different actors can be 
analysed using conceptual models of interactions. 
For instance, the Order Delivery action can be 
viewed as an opportunity to send a Purchase Order 
by Ford Motor Company to the Vendor. If Vendor 
accepts it, then he is responsible to Send Invoice to 
Ford Motor Company. 

Please note that the opportunities, 
responsibilities, commitments and obligations of 
these two actors must be consistent with interaction 
dependencies. Inconsistency can be detected by 
naming the conflicts between actions or flows. More 
specific actors must be justified by their intrinsic 
communication actions, which are defined in terms 
of the complementary interaction dependencies of 
these actors. The presented inference rules are 
useful, but they are insufficient for reasoning about 
the consistency of interaction dependencies, which 
can be defined on different levels of specification. 
To understand the deep structure of service 
interactions, the behavioural and structural aspects 
of communication actions must be studied. 
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Figure 9: Derived interaction loop of Ford Motor Company. 

5 CONCLUSIONS 

The main contribution of this paper is presenting an 
integrated way of modelling. SICM provides us with 
a holistic method. One of the goals is to demonstrate 
how interactive, transitional and structural aspects of 
conceptual modelling can be integrated. Object-
oriented modelling method projects static and 
dynamic aspects using different diagram types. In 
this case, to reach sematic integration of business 
processes and business data is very difficult. The 
semantic integration principles of different UML 
diagram types are not sufficiently clear. Since 
different modelling dimensions are highly 
intertwined, it is crucial to maintain integrity of 
various diagrams. We have demonstrated the 
interplay of three different aspects of conceptual 
models.  

Interactions between actors are important to 
follow value exchange. Increment and decrement 
events represent economic resources exchanged in 
various business processes. Value exchanges are 
represented by two performing actions into opposite 
directions. The performing actions are triggered for 
the reason of coordinating actions. In this way, these 
actions are related to one value exchange. Every 
communication action is able to produce new facts 
that can be represented by various classes of objects. 
Value flow and service interactions provide the 
natural way of system decomposition. Value models 
help to clarify why enterprise actors want to 
exchange business objects with each other.   

The ultimate goal of this paper is to overview 
deficiencies of conceptual modelling approaches and 
generic integration principles for development of 
holistic models of information systems. Bunge’s 

ontological principles of decomposition are lying in 
foregrounded in SICM method. Actors can be seen 
as organizational or technical system components. 
Organizational components are denoted by 
individuals, groups, or company divisions. Technical 
components can be seen as software or hardware 
system components.  Decomposition of information 
system is based on semantic relations of 
classification, composition and inheritance. 
Similarities of these relations are explained in 
comparison with object-oriented approaches. 
Inference rules of the semantic relations are 
presented in this paper as well. The behavioural and 
structural dimensions of interactions were analysed 
in terms of creation, termination and reclassification 
action. 

Conceptual modelling methods, which put 
emphasis on active concepts, typically focus on 
analysing interactivity between organizational and 
technical components. This tradition is quite 
successful for modelling of external behaviour of a 
system. In contrast, the object-oriented approach is 
based on modelling static and dynamic aspects of 
concepts, which can be represented by various 
classes of objects. The majority of textbooks in the 
area of systems analysis and design recommend 
concentrating first on domain modelling. Most 
conventional system analysis and design methods do 
not put into foreground modelling of active 
concepts. These methods project the structural, 
interactive and behavioural aspects into totally 
different types of diagrams that cause difficulties to 
integrate static and dynamic aspects of enterprise 
architecture dimensions. Very few emerging 
approaches to modelling make attempts to illustrate 
the deep interplay between active and passive 
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structures. We have illustrated with simple examples 
how to represent integration of various aspects of 
information systems.  
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