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Abstract: Collision avoidance systems can play a vital role in reducing the number of accidents and saving human lives. 

In this paper, we introduce and validate a novel method for vehicles reactive collision avoidance using 

evolutionary neural networks (ENN). A single front-facing rangefinder sensor is the only input required by 

our method. The training process and the proposed method analysis and validation are carried out using 

simulation. Extensive experiments are conducted to analyse the proposed method and evaluate its 

performance. Firstly, we experiment the ability to learn collision avoidance in a static free track. Secondly, 

we analyse the effect of the rangefinder sensor resolution on the learning process. Thirdly, we experiment the 

ability of a vehicle to individually and simultaneously learn collision avoidance. Finally, we test the generality 

of the proposed method. We used a more realistic and powerful simulation environment (CarMaker), a camera 

as an alternative input sensor, and lane keeping as an extra feature to learn. The results are encouraging; the 

proposed method successfully allows vehicles to learn collision avoidance in different scenarios that are 

unseen during training. It also generalizes well if any of the input sensor, the simulator, or the task to be 

learned is changed. 

1 INTRODUCTION 

The task of designing control software for a self-

driving car is a complex task. The software should 

concurrently tolerate (model) infinite number of 

scenarios and special cases, and maintain and meet 

reasonable software complexity and resources 

constrains. Evolutionary algorithms can be a good 

alternate to abstraction from such control challenges 

(Sipper, 2006). 

Collision avoidance is a feature that allows a 

vehicle to move without colliding with other vehicles. 

Vehicles can be cars, trains, ships, airplanes, 

Unmanned Aerial Vehicles (UAV), or various smart 

robots that have been generally applied in modern 

laboratories nowadays (Liu et al., 2013). In many 

applications, collision avoidance systems play a vital 

role in reducing the number of accidents and saving 

human lives. Reactive collision avoidance controls 

the motion of the vehicle directly based on the current 

sensor data to react to unforeseen changes in 

unknown and dynamic environments. The dynamic 

objects and the static environment do not cooperate 

with the ego-vehicle (vehicle that learns) to achieve 

collision avoidance. Hence, reactive collision 

avoidance has a good performance in real-time (Fu et 

al., 2013). 

We introduce a novel method for vehicles reactive 

collision avoidance using evolutionary neural 

networks (ENN). A single front-facing 

rangefinder sensor is the only input required by our 

method. The sensor provides the neural network with 

spatial proximity readings measured at multiple 

horizontal angles. The neural network learns how to 

control the vehicle steering wheel angle by directing 

the vehicle such that it does not collide with the 

dynamic environment. The neural network guides the 

vehicle around the environment and a genetic 

algorithm is used to pick and breed generations of 

more intelligent vehicles. The training process and 

the proposed method analysis and validation are 

carried out using simulation. 

We conducted six experiments to validate the 

proposed method, analyse evaluate its performance. 

The results are encouraging; the proposed method 

successfully allows vehicles to learn collision 

avoidance in different scenarios that are unseen 

during training. The scenarios include a vehicle that 

learns how to safely navigate (without doing 

collision) through a free static track and to achieve 

collision avoidance among independent dynamic 

vehicles. Also, a group of randomly moving vehicles 

successfully learns how to achieve collision 

avoidance simultaneously. Also, our method is 
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proven to generalize well, it successfully allows 

vehicle to also learn lane keeping, and using different 

simulation environment which is more realistic and 

powerful: CarMaker (CarMaker open test platform 

for virtual test driving website). 

The disadvantage of traditional methods over our 

method are mainly:  1) they either depend on defined 

set of scenarios, which are not adapted to new 

conditions not programmed in the algorithm or 2) 

they rely on handcrafted features that do not well 

represent the real scenarios where the vehicle is 

deployed. This creates the need to new AI systems 

that learn from data, and in the same time 

automatically identify the best representations of this 

environmental data. Neural networks are well known 

for their ability to learn representations of the data. 

2 RELATED WORK 

(Shaffer et al.,1992) in “Combinations of Genetic 

Algorithms and Neural Networks: A Survey of Art” 

provided an overview of the literature of combining 

Neural Networks and genetic Algorithms drawing out 

the common themes and the emerging wisdom about 

what seems to work and what does not. 

(Montana and L. Davis, 1989) in “Training 

feedforward neural networks using genetic 

algorithms” has explained that multilayered 

feedforward neural networks possess a number of 

properties which make them particularly suited to 

complex pattern classification problems and showed 

that Genetic Algorithms are well suited to the 

problem of training feedforward networks as they are 

good at exploring a large and complex space in an 

intelligent way to find values close to the global 

optimum. 

(Durand et al, 1996) in “collision avoidance using 

neural networks learned by genetic algorithms” 

handled the collision avoidance problem between two 

aircrafts with reactive techniques using neural 

networks which was built by genetic algorithms. 

(Togelius and Lucas, 2006) in “Evolving robust 

and specialized car racing skills” presented using 

evolutionary algorithms how to create neural network 

controllers for simulated car. They evolved 

controllers that have robust performance over 

different tracks and can be specialized to work better 

on particular tracks. 

(Mahajan and Kaur, 2013) in “Neural Networks 

using Genetic Algorithms” introduced flexible 

method for solving the travelling salesman problem 

using genetic algorithms as they can be used to train 

neural networks producing evolutionary artificial 

neural networks. 

(Fardin Ahmadizar et al, 2014) in “Artificial 

neural network development by means of a novel 

combination” developed a new evolutionary-based 

algorithm to simultaneously evolve the topology and 

the Connection weights of ANNs by means of a new 

combination of grammatical evolution (GE) and 

genetic algorithm (GA). GE is adopted to design the 

network topology while GA is incorporated for better 

weight adaptation.  

3 SYSTEM OVERVIEW 

A genetic algorithm (GA) (Vose, 1999) is an 

evolutionnary algorithm that can solve optimization 

problems. It starts from a pool of randomly chosen 

candidate solutions of the optimization problem 

called a “population”. Usually, a pre-knowledge 

about the problem constrains the randomness of these 

solutions. Each candidate solution is called a 

“chromosome”. The algorithm repeatedly (over 

generations) modifies the population hoping for a 

new generation with a better population. For that, the 

algorithm uses an application-dependant “fitness 

function” that estimates the goodness of each 

chromosome. At each step, the genetic algorithm 

randomly selects individuals from the previous 

generation’s population and uses them as parents to 

produce the children for the new generation. The 

concept of producing children from a set of selected 

parents is based on a natural selection process that 

mimics biological evolution. Hence, over successive 

generations, the population "evolves" toward an 

optimal solution. 

Artificial neural networks can be looked at as an 

optimization problem looking for the best weights 

achieving some task. This is why a genetic algorithm 

can be used to train a neural network (Schaffer et al., 

1992). Evolutionary Neural Networks, 

Neuroevolution, or neuro-evolution, is a form of 

machine learning that uses evolutionary algorithms to 

train artificial neural networks, in other words, 

estimating the weights of the neural network. It is 

most commonly applied in the areas of artificial life 

and intelligent computer games, and hence, has 

potential contributions towards self-driving vehicles. 

The chromosome format is chosen to be the vector of 

real numbers with a sequence of all of the neural 

network weights. The sequence is sorted layer by 

layer. The weights of each layer are sorted such that 

all of the weights coming out of a neuron are 

consecutive. The bias node is considered the last node 
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in each layer. Figure 1 shows an example for a 2×3×2 

neural network and its chromosome. 

 

Figure 1: Example of a 2×3×2 neural network and its 

chromosome. B1 and B2 represent the network biases. 

We developed a simulation setup to evaluate the 

fitness of each chromosome in a generation. For most 

of experiments related to collision avoidance, the 

vehicle lifetime before its first collision is a 

reasonable metric for the fitness. Genetic algorithm is 

used to pick and breed generations of more intelligent 

vehicles.  The vehicle uses a rangefinder sensor that 

calculates N intersections depths with the 

environment and then feeds these N values as inputs 

to the neural network. The inputs are then passed 

through a multi-layered neural network and finally to 

an output layer of 2 neurons: a left and right steering 

force. These forces are used to turn the vehicle by 

deciding the vehicle steering angle. Figure 2 shows 

the proposed system overview for our method during 

the system training phase. 

 

Figure 2: System overview during training phase. 

Once trained, the neural network is able to 

generate steering commands from the input 

rangefinder sensor readings. Figure 3 shows this 

configuration. 

 

 

Figure 3: The trained network is used to generate steering 

commands from a single front-facing proximity sensor. 

4 SIMULATION SETUP 

For all vehicles in our simulation environment, we 

use a bicycle model as shown in figure 4. Given the 

vehicle speed and simulation time tick Δt, the 

travelled distance L per a time step is calculated.  

Given wheel base, vehicle position P, heading θ, and 

distance travelled per time step L, the new vehicle 

position Pnew and heading θnew are calculated.  

 
Figure 4: Simple 2D vehicle steering physics. 

For simplicity, vehicles are chosen to move with 

fixed speed and sensor noise is neglected. At 

simulation start, the vehicles are positioned 

equidistant from each other. At each collision 

detected by the simulator, it’s important to identify 

the vehicle responsible for the collision as shown in 

figure 5. When a collision happens, the simulator tries 

to answer the question: Would crash still happen if a 

vehicle X is the only vehicle that moved at collision 

time step? If the answer is yes, vehicle X is 

determined as responsible for that collision. 

 
Figure 5: Determining which vehicle caused collision to 

happen. Two examples with two vehicles before and after 

the collision time step. 
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5 EXPERIMENTAL WORK 

Several experiments are conducted to evaluate our 

learning method. The main objective is to inspect the 

feasibility of achieving a reactive collision avoidance 

system using our proposed method. Initially, an 

elementary, and relatively easier, experiment is 

conducted. The objective of this experiment is to 

examine the capability of a vehicle to learn the task 

of self-navigation through a static environment that 

does not include any dynamic objects. We believe 

that this task is less hard than the collision avoidance 

task because the ego-vehicle does not have to deal 

with the unknown movement of dynamic objects. 

A three layer ANN, with sigmoid activations for 

all neurons, is empirically chosen to be used for all of 

our experiments. It’s noted that the experiments 

results don’t change if the number of layers is 

changed, but sometimes you obtain the same result 

faster. The higher the number of hidden layers, the 

better representation of the data the network can 

achieve. But at the same time, this leads to a more 

complex optimization problem that is harder and 

slower for GA to solve. Our GA uses a population of 

200 chromosomes where mutation probability is 0.1, 

crossover probability is 1 and the crossover site 

follows a normal distribution with a mean of 0.95 and 

a standard deviation of 0.05. The selection is based on 

tournaments of size 10 candidates and children of 

next generations always replace their parents. The 

fitness function is chosen to be the vehicle lifetime 

navigating the environment (in time steps) before its 

first collision with the static environment boundaries 

or other dynamic vehicles. 

The experimental work results are encouraging 

and validate the effectiveness of the proposed 

method. 

5.1 Learning Navigation 

The objective of this experiment is to validate the 

ability of our method to achieve self-navigation. The 

vehicle should learn how to travel from one position 

to another without colliding with a static environment 

that does not include any dynamic objects. The 

environment is represented by a track that is formed 

by horizontal and vertical edges. Figure 6 shows the 

experiment track. 

Our experimental results show that navigation is 

learnt in less than 50 generations. One interesting 

observation is that the vehicle took 12 generations to 

learn how to successfully turn in the first critical 

location A circled in red in figure 6. Once the vehicle 

learns this manoeuvre, it achieves huge learning 

progress represented by a significant increase in best 

chromosome’s fitness. The vehicle implicitly learns 

how to drive through all the following tricky turns in 

the track. This fact is demonstrated in figure 7.  

 

Figure 6: Experiment track. 

 

Figure 7: Self-navigation learning curve in a narrow track. 

We can observe that the fitness diminishes when 

reaching critical location B circled in green in figure 

6, the reason is that the vehicle modifies its behaviour 

in order to learn the 180° turn (location B) but what it 

learns negatively affect its ability to pass the previous 

critical location A, so the fitness oscillates until the 

vehicle learns to avoid such behaviour but it still 

unable to make the 180° turn. In that experiment, the 

track is too narrow, relative to the vehicle dimensions, 

which makes such move very hard to learn. Widening 

the track enables the vehicle learn how to turn by 180° 

and still be able to pass critical location A at the same 

time as demonstrated in figure 8. 

 

Figure 8: Self-navigation learning curve in a wide track. 

As shown in figure 8, a very high fitness is 

reached as the vehicle learns to navigate back and 
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forth through the track without any collisions for 

hours. The vehicle also is able to navigate 

successfully through other different tracks that are 

unseen during training. 

5.2 Sensor Resolution 

The objective of this experiment is to inspect the 

influence of the input rangefinder sensor resolution 

on the learning process. The same previous 

experiment is performed five times with different 

numbers number of sensor beams. The angle between 

adjacent beams is equal. The sensor horizontal range 

is chosen 180° in our experiment. 

As shown in figure 9, using a sensor of a single 

front-facing beam prevents the vehicle from learning 

and reaching an accepted fitness as the input data is 

insufficient for learning. On the contrary, a higher 

sensor resolution (three beams or more) enables the 

vehicles to evolve and reach a satisfying fitness. 

 

Figure 9: Self-navigation learning curve for different 

number of sensor beams. 

It’s observed that using a moderate number of 

beams achieved almost the same fitness as when 

using a larger number of beams but in a fewer number 

of generations. As in figure 9, the five beams’ 

experiment is the fastest to reach an accepted fitness. 

This occurred because reducing the number of 

sensors produces shorter chromosomes and hence 

having a fewer number of parameters and a less 

complex optimization problem to solve. 

5.3 Individual Collision Avoidance 
among Dynamic Vehicles 

In this experiment, we inspect the feasibility of our 

method in enabling a vehicle to navigate collision-

freely among multiple different dynamic vehicles. 

The environment is represented by a rectangular free 

space area containing eight different vehicles moving 

freely as shown in figure 10. 

Each vehicle is initialized with random weights 

for their ANN and random starting headings then the 

learning process is applied on only a single vehicle to 

learn avoiding collisions with the environment 

boundaries and the other randomly moving vehicles.  

We found that the learning vehicle (ego-vehicle) 

has learned a deceptive behaviour for survival by 

rotating around itself to avoid interactions with the 

other vehicles. In order to learn a proper collision 

avoidance behaviour, such rotation is detected by the 

simulator and the responsible chromosome is 

penalized by a zero fitness. 

 

Figure 10: Ego-vehicle survives by rotating around itself. 

After each collision occurs by the ego-vehicle, the 

fitness of the chromosome driving the neural network 

is estimated and a new chromosome is set to be 

evaluated. In order to achieve fair evaluation for each 

chromosome, not only the ego-vehicle should be reset 

but the whole simulation. Ignoring the reset of the 

simulation may position the ego-vehicle in tough 

scenario for collision avoidance at the beginning of 

evaluation. This may cause a good chromosome to be 

assigned a low fitness.  

Each plot in figure 11 shows the learning curve of 

the ego-vehicle among uncontrolled dynamic 

vehicles. In each figure, a different movement 

strategy for the uncontrolled dynamic vehicles is 

adopted, and four runs of the same experiment are 

conducted. The x-axis represents the number of the 

generation and the y-axis represents the fitness 

achieved at each generation. 

 

Figure 11: Each plot of the four represents a different 

strategy. In each strategy, the same experiment is conducted 

4 times starting from different random initial neural 

network weights, each run is in a different color. 
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The learning curves demonstrate the ability of our 

method to enable the vehicle to learn collision 

avoidance individually among dynamic vehicles.  

5.4 Individual Collision Avoidance 
Knowledge Accumulation 

The objective of the experiment is to examine the 

knowledge accumulation ability of our method. In 

other words, the capability of the ego-vehicle to learn 

avoiding collisions in new strategies without 

negatively affecting the performance achieved in 

previously-learned strategies. 

Firstly, as shown in Table 1, the ego-vehicle 

doesn’t achieve efficient collision avoidance when 

tested on an unseen strategy. Learning on a single 

strategy is not sufficient for the ego-vehicle to learn 

general collision avoidance behaviour. 

Table 1: Individual collision avoidance performance tested 

on unknown strategies compared to the performance tested 

on the strategy seen during training. The numbers in the 

table represents the best chromosome fitness. 

Deployment 

Strategy 

Training 

Strategy 

1 2 3 4 

1 2115 544 558 432 

2 595 2305 136 931 

3 159 351 3050 460 

4 559 334 1080 2560 

 
Figure 12: Color map visualization for fitness achieved in 

different strategies. 

5.4.1 Incremental Evolution 

As a step towards achieving general collision 

avoidance behaviour, the ego-vehicle should be 

trained on more than one strategy. Learning in a new 

strategy should not negatively affect the perfor-

mance achieved in previously-learned strategies. 

In order to achieve this objective, incremental 

evolution (Togelius and Lucas, 2006) is used. A 

vehicle learns to avoid collisions in one strategy and 

when it reaches an accepted fitness, a new strategy is 

added to the learning process so that the proposed 

solution is now evaluated on both strategies, then the 

fitness is averaged. This process is then repeated with 

new strategies added until the vehicle learns to 

survive in all introduced strategies. Table 2 shows the 

results of this experiment. The training stopping 

criteria for each strategy is when its fitness exceeds 

80% of a predefined threshold for accepted fitness. 

Table 2: Fitness achieved by the ego-vehicle during 

different incremental evolution iterations. A new strategy is 

added to the learning process at each iteration. 

Deployment 

Strategies 

Learning 

Iteration 

1 2 3 
Average 

Fitness 

1 1936 - - 1936 

2 2380 1452 - 1916 

3 1970 2123 1467 1853.3 

5.5 Simultaneous Collision Avoidance  

The objective of this experiment is to achieve a 

collision free environment, where all moving vehicles 

simultaneously learn to avoid collisions with each 

other and with static environment. An evolved 

vehicle, that learned to navigate collision-freely, is 

used to boost the behaviour of the other vehicles 

through two different approaches as detailed in the 

coming two subsections. The results are obtained by 

running the simulator to train for 100 seconds in four 

different strategies. 

5.5.1 Broadcasting the Winning 
Chromosome 

In this approach, the evolved solution represented by 

the winning chromosome is broadcasted to all the 

vehicles to use. Table 3 compares the average number 

of collisions per second for all the vehicles before 

versus after learning.  

Table 3: Comparison between the number of collisions per 

second before versus after learning. 

 Initial Behaviour 

[collisions/sec] 

After Learning 

[collisions/sec] 

Strategy 1 16.33 3.90 

Strategy 2 20.05 4.59 

Strategy 3 16.82 8.00 

Strategy 4 13.49 12.27 

In reasonable simulation time, the collision avoidance 

performance highly increases, but not for all the 

strategies. 

5.5.2 Broadcasting the Most Evolved 
Generation 

In order to achieve better collision avoidance 

performance, learning process should not only be 
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applied on a single vehicle, but all vehicles should 

simultaneously learn. Instead of assigning the 

winning chromosome directly to each vehicle, we can 

assign the evolved population to each vehicle to start 

learning using it. This approach results in a 

customized solution for each different vehicle and our 

results are promising as the number of collisions is 

reduced by around 90% on the average. 

Table 4: Comparison between the number of collisions per 

second before versus after learning. 

 Initial Behaviour 

[collisions/sec] 

After Learning 

 [collisions/sec] 

Strategy 1 16.33 2.11 

Strategy 2 20.05 1.58 

Strategy 3 16.82 1.76 

Strategy 4 13.49 1.90 

5.6 Lane Keeping 

The main objective of this experiment is to validate 

the generality of our method. A more realistic 

simulation environment is used. As shown in figure 

13, the input is no longer readings from a proximity 

sensor, but lane markings from a camera. The 

objective is to achieve the lane keeping active safety 

feature given the detected driving lanes. 

 
Figure 13: CarMaker simulation for lane keeping 

experiment. 

The results prove that our method generalizes 

well. The vehicle is left to learn on simulated roads 

for around 10 hours before it successfully learns to 

keep in a lane for many hours. It implicitly learnt 

many lane shape cases instead of memorizing a set of 

hardcoded scenarios. Our method successfully allows 

vehicle to learn different features other than collision 

avoidance like lane keeping, and using more realistic 

simulation environment. 

6 CONCLUSIONS 

This paper proposes and validates a novel method for 

vehicles reactive collision avoidance using ENN. To 

evaluate the proposed method, extensive experiments 

of varying conditions and objectives are conducted. 

The results demonstrated in the paper reflect the 

potential for our proposed method. The vehicle learns 

to drive collision freely in a static environment and 

among dynamic objects. Promising progress is 

achieved in developing general collision avoidance 

behaviour. Moreover, our lane keeping experiment 

shows the capability of our method to operate 

efficiently in realistic simulation environments. The 

future work should focus on deploying the conducted 

experiments in more realistic and complex simulation 

environments and to upgrade the GA operators to 

further improve our method’s performance. 
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