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Abstract: DNA discovery has put humans one step closer to deciphering their own structure stored as biological data. 
Such data could provide us with a huge amount of information, necessary for studying ourselves and learn 
all the variants that pre-determine one's characteristics. Although, these days, we are able to extract DNA 
from our cells and transform it into sequences, there is still a long road ahead since DNA has not been easy 
to process or even extract in one go. Over the past years, bioinformatics has been evolving more and more, 
constantly aiding biologists on the attempts to “break” the code. In this paper, we present some of the most 
relevant algorithms and principles applied on the analysis of our DNA. We attempt to provide basic genome 
overview but, moreover, the focus of our study is on assembly, one of the main phases of DNA analysis. 

1 INTRODUCTION 

Deoxyribonucleic acid, known as DNA, was firstly 
discovered and introduced by Watson and Crick 
(Watson and Crick, 1953). Authors stated that any 
existing organism’s molecule stores all the necessary 
data for its living and grown by carrying instructions 
that are necessary for constant development and 
overall organism’s functioning (Saenger and 
Wolfram, 1984), (Alberts et. al, 2002). For us, 
humans, DNA contains most of our characteristics 
as a person, such as, adaptation, character and so on 
but, more importantly, information about creation of 
proteins that form all of our parts. This protein is 
used by our organism to produce all the necessary 
substances, for example, keratin or our hair and 
nails, bio functioning proteins that transport oxygen 
inside our body and so on. DNA structure is 
presented as double helix, where on one helix are 
located Adenine (A) and Guanine (G) and on the 
other helix Thymine (T) and Cytosine (C). While 
creating the double helix, A connects with T and, 
respectively, C with G. Those are called base pairs. 

Currently, there are several challenges related to 
the DNA study and manipulation. One of the 
limitations of the current technology is the capability 
of extracting the entire DNA chain, only parts of 
DNA may be read. That means that, these days, it is 
not possible to extract the entire genome. More than 
that, extracted parts can be easily corrupted, either 

by extraction errors or by transcription errors. 
Moreover, even if the part of DNA that is analyzed 
was correctly processed, there is a possibility of that 
sequence being just a part of necessary sequence or 
not meaning anything (trash). That means that even 
if the code was extracted correctly, the extracted 
sequence may not have expected importance. 
Another challenging task that follows is genome 
assembly.  

In this paper we attempt describing some of the 
challenges that are related to the genome assembly 
as well as some of the current possibilities. Currently 
there are a lot of studies and papers, focusing on 
extracting ever more of the necessary and important 
data. However, we consider that it may be 
challenging for someone to begin study 
bioinformatics. Therefore, we describe the 
assembling algorithms and the origin of those as 
well as their base, so readers can understand some of 
the associated challenges with genome sequencing. 

The remaining of the paper is structured as 
follows: Section 2 describes related work and some 
of the studies that have been performed over the past 
years. Section 3 describes some of the available 
assemblers that are used for extracting and 
sequencing DNA. Section 4 provides an overview 
over algorithms that are used for DNA sequencing 
(genome assembly). Finally, section 5 presents our 
conclusions and future work. 
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2 RELATED WORK 

DNA study has been a hardly invested area over the 
past years and, therefore, there is a lot of data about 
genetic study and evolution. Munib et al. (2015) 
present and describe the entire process of shotgun 
sequence assembly in the realm of high-performance 
computing. They describe main phases of genome 
assemble and some of the algorithms that may be 
used among those phases. Also, Mount (2004) 
provides an examination of the computational 
methods needed for analyzing DNA, RNA – 
structure that DNA is transformed after has been 
extracted from the nucleus of the cell, and protein 
data, as well as genomes. Differently, we focus our 
paper on one specific area, providing more detail, 
instead of entire process overview. Polyanovsky et 
al. (2011) present a comparison approach between 
alignment algorithms. Authors based they work 
mainly on Polyanovsky et al. (2008), Sunyaev et al. 
(2004), Domingues et al. (2000) and compared 
results produced by local and global alignment and 
concluded that both local and the global alignment 
algorithms rely on positions and relative lengths of 
the parts of the sequences that will be aligned and 
depending of the sequence positioning, global or 
local algorithms provide better results. Global 
algorithm proved to that when the core part of one 
sequence was positioned above the core of the other 
sequence but when the cores were positioned 
asymmetrically, the local algorithm was more stable. 
Posada (2009) describes methods to analyze DNA 
sequences as well as some available tools that are 
free to use, describing recognition of similar 
sequences using BLAST, sequence alignment, DNA 
compositions and molecular evolution and other. 
This book is more oriented for biologists that do not 
have much knowledge about computer science and, 
moreover, have a bigger biological background that 
most of computer engineers do not have. Jones and 
Pavel (2004) provide a large overview over existing 
algorithms that are used in bioinformatics by 
presenting the foundations of algorithms, describing 
principles that drove their design, and their most 
important results. DNA sequencing challenges and 
processing are described in El-Metwally et al. 
(2013), Niedringhaus et al. (2011), Voelkerding et 
al. (2009), Zhou et al. (2010), Wheeler et al. (2008). 
Authors describe some of the past and current 
technologies, solutions for DNA sequencing and 
available next-generation sequencing (NGS) 
platforms and their future (Hert et al., 2008). NGS 
platforms perform sequencing of millions of small 
fragments of DNA in parallel which means that 

millions of small fragments of DNA can be 
sequenced at the same time, creating a massive pool 
of data. All the sequence fragments are analysed 
several times in order to reduce error possibility.  

3 GENOME ASSEMBLERS 

After years of genome study and research there is a 
variety of assemblers used to extract and transcript 
genome. Constant interest and technological 
evolution have been contributing for different 
generations of assemblers, attempting to provide 
better results and surpass each other. The first next-
generation DNA sequencing machine, the GS20, 
was introduced to the market by 454 Life Sciences 
in 2005 (Gilles et al., 2011) That technology was 
based on a large-scale parallel pyrosequencing 
system, which relies on fixing DNA fragments to 
small DNA-capture beads in a water-in-oil emulsion.  

While trying to understand what is genome 
assembling and what its stages are and elements that 
are take part, one of the first things we hear of is de-
novo assembly. So what is de-novo how it is 
important? De-novo is a method of new generation 
sequencing that attempts to sequence genome 
without any reference. That means that short reads 
are not mapped against original sequence (when it is 
available). On the other hand, reference assembling 
considers available parts of the sequence (reads) and 
only considers those that can be mapped into an 
original sequence. It may be used to assemble 
genomes of already extinct organisms (Era7, 2016).  

One of the first challenges consisted of the 
extractions of the DNA from the cells. Biological 
advance and evolution had contributed to this task 
and currently it is possible to extract DNA.  That 
possibility would provide all of the answers to one’s 
“construction” and allow us to manipulate our own 
constituent and fight many diseases. DNA structure 
is presented as double helix, where on one helix are 
located Adenine (A) and Guanine (G) and on the 
other helix Thymine (T) and Cytosine (C). While 
creating the double helix, A connects with T and, 
respectively, C with G. Those are called base pairs. 

After extracting a DNA sequence (input), it is 
processed by overlapping the extracted sequences. 
This overlap process is called sequence alignment 
and it allows creating a larger sequence that contains 
parts of small pieces. The output of an assembler is 
generally decomposed into contigs, or contiguous 
regions of the genome which are nearly completely 
resolved, and scaffolds, or sets of contigs which are 
approximately placed and oriented with respect to 
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each other (Gregory, 2005). Currently DNA 
sequencing technology allows short reads of 500 and 
up to 700 nucleotides. This sequences are parts from 
one complete DNA genome.  

Genome assembling from shorter sequences is 
like reassembling the magazine from the millions of 
small pieces of each page. In both cases will exist 
errors. In case of magazine it would be ragged edges 
that difficult putting pieces together. In case of 
genome assembly those would be reading errors. 
More than that, pieces may be lost in both cases and 
also, in case of DNA, nucleotides may be 
transcripted incorrectly. Nevertheless, efforts to 
determine the DNA sequence of organisms have 
been remarkably successful, even in the face of these 
difficulties. Salzberg et al. (2011) describe some of 
the most popular Assemblers. 

4 ALGORITHMS 

In the 1950s, Seymour Benzer applied graph theory 
to show that genes are linear (Jones and Pevzner, 
2004). Therefore, in this section we will describe 
some of the most popular algorithms for genome 
assembly, while most of those being Graph 
algorithms. Short read assemblers generally use one 
of two basic algorithms: overlap graphs and de 
Bruijn graphs. The overlaps between each pair of 
reads is computed and compiled into a graph, in 
which each node represents a single sequence read. 
This algorithm is more computationally intensive 
than de Bruijn graphs, and most effective in 
assembling fewer reads with a high degree of 
overlap (Illumina¸ 2010). De Brujin Graph started 
from Bridges of Königsberg problem (Compeau et 
al., 2011). The bridges problem is presented on the 
Figure 1. 

 

Figure 1: Bridges of Königsberg (Compeau et al.,2011). 

The problem statement consisted on passing 
each bridge only once considering that the islands 
could only be reached by the bridges and every 
bridge once accessed must be crossed to its other 
end. The starting and ending points of the route may 
or may not be the same. This problem was firstly 
solved by Leonard Euler, a Swiss mathematician, 

physicist, astronomer and logician. At first Euler 
analysed the problem and decided that it could not 
be solved (Paoletti, 2011).  However, Euler could 
not just accept that. He decided to create a logical 
formula for this type of problems. Euler observed 
that in order to be able to solve this type of problems 
it would be necessary zero or two nodes with odd 
degree. This theory was posteriorly proved by Carl 
Hierholzer. This author stated that in order to be able 
to solve a graph using Euler’s path, each connected 
node has to have an even degree, except for the 
starting and terminal nodes (Barnett, 2009). On 
August 26, 1735, Euler presented a paper containing 
the solution to the Konigsberg bridge problem.  He 
addressed Bridges of Königsberg, problem as well 
as provided a general solution where any number of 
bridges could be used (Hopkins and Wilson, 2004).   

In this section we describe some of the basic 
DNA assembly algorithms and problems that those 
try to solve. 

4.1 Shortest Superstring Problem 

Since all the DNA reads are performed as parts, it is 
necessary to be able to overlap those and create one 
superstring that would better represent and include 
considered pieces of sequences. This is important 
since different sequences may be part of the same 
superstring. However, this superstring creation may 
be challenging. As more simplistic approach, 
superstring could result from complete 
concatenation of available reads. But this approach 
would not be very correct. Best superstring created 
should be the shortest one possible. That would 
represent the sequence that somehow concatenates 
available reads but, also, does not contain 
unnecessary information.  

INPUTS: Set of sequences.  

OUTPUT: One sequence that contains all the 
input sequences while being as short as possible. 

In order to be able to create one superstring it is 
necessary to align input sequences and be able to 
identify which ones may be same part of different 
reads. We should be able to define any overlapping 
regions and after that create one complete sequence. 
Below we present an example of Shortest 
Superstring Solution. Given: 

INPUTS: {00, 01, 10, 11} 

FULL SEQUENCE: 00011011 

SHORTEST SUPERSTRING: 

 00 
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   01 

     10 

         11 

         001011 

As it is possible to understand, instead of just 
concatenating all the available stings, in order to 
solve Shortest Superstring Problem, it is necessary 
to evaluate all the sequences and find overlaps. After 
those overlaps are considered, final sequence is 
shorter than just full sequence concatenation. 

As computational approach, in order to solve 
these problems may be used greedy algorithms 
(Vazirani¸ 2001). Those algorithms continuously 
build up the final solution, through interactive 
cycles. Each cycle the algorithm attempts to find 
optimal solution. It is important to notice that greedy 
algorithms are not exhaustive and when the problem 
has considerable difficulty it may not be possible to 
obtain the best optimal solution, instead just local 
maximum. Also, depending on the problem 
difficulty, those algorithms require a considerable 
amount of cycles in order to be able to produce 
optimal solution that may, never less, be local. 
While applied to the Shortest Superstring Problem, 
greedy algorithms iterate input sequences and 
integrate (assemble) those one by one. In the 
approach presented below the algorithm considers 
two of the most similar sequences and overlap them, 
creating just one sequence. After, this sequence will 
be aligned with the third one and so on, for example: 

INPUT: {ACTG, CTGA, GACC, TGAC, 
ACCC} 

STAGE 1 – consider most similar string ACTG 
and CTGA 

  ACTG 

     CTGA -> ACTGA 

STAGE 2 – consider most similar ACTGA and 
TGAC 

  ACTGA 

        TGAC -> ACTGAC 

STAGE 3 – consider most similar ACTGAC 
and GACC 

  ACTGAC 

          GACC -> ACTGACC 

STAGE 4 – overlap the rest – ACTGACC and 
ACCC 

     ACTGACC 

             ACCC -> ACTGACCC 

OUTPUT: ACTGACCC 

As we can see, in the previous example, greedy 
algorithm was able to create a shortest superstring 
with 4 steps. However, the problem presented is 
very simplistic. In real case scenario, inputs string 
would have been larger and number of inputs would 
be bigger. Therefore, it may be difficult for the 
algorithm to find the best superstring. Also, the 
algorithm may consider different possibilities of 
sequences to match, especially at start. This also 
highly affects the final sequence. 

4.2 Hamiltonian Path Problem 

Hamiltonian Path in an undirected graph is a path 
that visits each vertex exactly once. A cycle that 
uses every vertex in a graph exactly once is called a 
Hamilton cycle. It is important to notice that in order 
for Hamiltonian Path to exist, graph edges must be 
biconnected. That means that two or more vertices 
of the graph when removed could not disconnect the 
graph. Problem statement is, as follows: 

INPUT: Read sequences 

OUTPUT: Created graph as well as Spectrum S 

Available sequences must be connected if there is an 
overlap. For example, 

INPUT: {ATG, TGG, TGC, GTG, GGC} 

 OUTPUT: 

 

  ATGGCGTGC 

In this example there is a possibility of the 
second path that could be obtained by overlapping 
sequences in different order (way): 

OUTPUT: 

 

  ATGCGTGGC 

This simple example allows us to create different 
path by overlapping existing sequences. Due to the 
nature of the sequences (available nucleotides) there 
were two possible path to choose from. However, in 
the more complex problem the solution is not a 
trivial one.  
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As first approach could be used brute-force 
(exhaustive) search. But, a better approach is 
presented by Frank Rubin Author proposed an 
algorithm that divides a complete problem into 
pieces, each being solved easier than them all 
together (Rubin, 1974). All the available graphs are 
divided into three categories: used in path, not used 
in path and undecided. The functioning of this 
algorithm (identification and study of small 
problems) resembles dynamic programming 
principles, where each stage of the problem (part) is 
independent from previous stages (Vazirani¸2001).   

Also, Michael Held and Richard M. Karp 
presented their solution using dynamic programming 
and based on the traveling-salesman problem (Held 
and Karp, 1962). Traveling-salesman problem is a 
well knows problem, similarly to the Bridges of 
Königsberg problem. Salesman must visit each city 
just once and using shortest route. Therefore, authors 
provided a solution as cyclic iteration of vertices and 
verify if there is a possibility of covering a path in 
set of vertices S. For further vertices the path is 
evaluated only if it existed in the previous stage. 

4.3 Eulerian Path Problem 

Similarly, to the previously stated problem, the 
purpose of the Eulerian Path is to find a route to visit 
each node of the graph just once. Euler Circuit is a 
circuit that uses each vertex of the graph just once. 
The main difference between Eulerian path and 
Circuit is that path ends on the different vertex, 
while circuit represents the complete cycle where it 
starts and end with the same vertex. Differently from 
the Hamiltonian Path problem, while working with 
Eulerian Path, we shall consider more linear 
traveling approach. That means that sequences are 
connected linearly (v1 -> v2 -> …) which not 
happens in Hamiltonian Path. Moreover, while 
working with Eulerian path it is necessary to 
consider the following theorem: “A connected graph 
is Eulerian if and only if each of its vertices is 
balanced.” (Jones and Pevzner, 2004). Consider that 
vertex is balanced when indegree = outdegree for 
presented vertex. In order to create a Eulerian cycle, 
it is necessary to start drawing path from the 
arbitrary vertex v and traversing edges that have not 
already been used. We stop the path when we 
encounter a vertex with no way out, that is, a vertex 
whose outgoing edges has already been used in the 
path. 

Below is presented an example of the Eulerian 
Path problem: 

INPUT: {ATG, TGG, TGC, GTG, GGC} 

STAGE 1: Create vertices of lengh k-1 

  {AT, TG, GG, GC, CG, GT} 

OUTPUT: 

 

       ATGGCGTGC 

As we have seen in the previous sub-section, 
there is another path: 

OUTPUT:  

 

     ATGCGTGGC 

In order to solve Eulerian path problems there are 
two main algorithms: Fleury's algorithm and Cycle 
finding algorithm. Fleury's algorithm was originally 
created in 1883 to find Eulerian paths (Fleury, 
1883).  It proceeds by repeatedly removing edges 
from the graph in such way, that the graph remains 
Eulerian. The algorithm starts at a vertex of odd 
degree, or, if the graph has none, it starts with an 
arbitrarily chosen vertex. At each step it chooses the 
next edge in the path to be removed considering that 
that edge would not disconnect the graph itself (is 
not a bridge). If there is no such edge algorithm 
cannot proceed. It then moves to the other endpoint 
of that vertex and deletes the chosen edge. At the 
end of the algorithm there are no edges left, and the 
sequence from which the edges were chosen 
(removed) forms a Eulerian cycle if the graph has no 
vertices of odd degree, or a Eulerian trail if there are 
exactly two vertices of odd degree.  

5 CONCLUSIONS 

This work provides a basic overview over genome 
assembly processes and their challenges. We started 
by describing the overall genome sequencing 
problem and discussing its relevance. Posteriorly, 
we portrayed some of the most popular assemblers 
and their inner workings. Most of the assemblers, 
including some not mentioned in this work, use de 
Bruijn graphs for sequence assembling. But, 
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sequence alignment, used for creating common 
substrings (overlaps) also has an high impact and 
weight in DNA sequencing performance. Finally, to 
provide a clear insight for computer scientists into 
genome assembly algorithms, we draw some 
parallelism between the Selling-travelers problem, 
as well as with the Bridges of Königsberg problem, 
with the genome sequencing problems, showing that 
both have highly contributed to the evolution and the 
development of graph algorithms and their use in 
bioinformatics. 

After many years of research and work, genome 
assembly is still a hard and cumbersome task. As 
future work, we plan to implement and optimize 
some of the described approaches using state of the 
art parallel and distributed computing strategies. 
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