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Abstract: One of the major challenges in the era of big data use is how to ‘clean’ the vast amount of data, particularly 
from micro-blog websites like Twitter. Twitter messages, called tweets, are commonly written in ill-forms, 
including abbreviations, repeated characters, and misspelled words. These ‘noisy tweets’ require text 
normalisation techniques to detect and convert them into more accurate English sentences. There are several 
existing techniques proposed to solve these issues, however each technique possess some limitations and 
therefore cannot achieve good overall results. This paper aims to evaluate individual existing statistical 
normalisation methods and their possible combinations in order to find the best combination that can 
efficiently clean noisy tweets at the character-level, which contains abbreviations, repeated letters and 
misspelled words. Tested on our Twitter sample dataset, the best combination can achieve 88% accuracy in 
the Bilingual Evaluation Understudy (BLEU) score and 7% Word Error Rate (WER) score, both of which 
are considered better than the baseline model. 

1 INTRODUCTION 

More than 80% of online data, especially from 
Twitter, is unstructured and written in ill-formed 
English in such a way that users may not understand 
it very well (Akerkar, 2013). Compared to the size 
of other online texts (such as comments on 
Facebook), tweets are much smaller (< 140 
characters). Because of the restriction on the 
maximum number of characters that can be sent in a 
tweet, tweets are commonly written in shorthand and 
composed hastily with no corrections. 

Data cleaning has been a longstanding issue. 
However, the resultant state-of-the-art methods and 
approaches are still missing the mark concerning an 
effective solution for cleaning Web data (Han et al., 
2013). The major difficulty is how to enhance the 
accuracy, effectiveness and efficiency of the data 
cleaning algorithms all at the same time. The more 
accurate techniques usually require a larger amount 
of time to clean the data.   

Existing work on text normalisation is usually 
designed to address a specific problem in noisy 
texts. For example, Out-of-Vocabulary (OOV) 
words and abbreviations have been the focus of most 
attempts. Even though there are many methods that 

could tackle these problems, some noisy texts still 
cannot be identified and normalised. This is mainly 
due to misspelling and no contextual features being 
accessible for extraction.    

In order to produce a correct English sentence 
that does not contain misspellings, repeated letters, 
abbreviations or OOV words, we studied and 
evaluated each of the existing methods and their all 
possible combinations to find the best one that can 
efficiently correct a tweet at the character level. Our 
evaluation is based on the two following criteria: 
accuracy and run-time efficiency. Accuracy can be 
measured using the BLEU (Bilingual Evaluation 
Understudy) score and the WER (Word Error Rate) 
values. Run-time efficiency is measured by the time 
spent in cleaning noisy tweets. 

2 BACKGROUND 

Noisy texts can be caused by the use of acronyms, 
abbreviations, poor spelling and punctuation, 
idiomatic expressions and specific jargon. In this 
paper, we discuss existing normalisation techniques 
for the noises at the character-level. 
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Misspellings. Spelling corrector, developed by 
Norvig (2012), defines the conditional probability of 
a given word by finding the dictionary entries with 
the smallest edit distance from the query term. It 
achieved 90% accuracy at the processing speed of at 
least 10 words per second. 
 
Abbreviations. Li and Liu (2012) extended the 
work of Pennell and Liu (2011) and proposed a two-
stage approach using the Machine Translation (MT) 
model.  Abbreviations were firstly translated to 
phonetic sequences which then translated back to In-
Vocabulary (IV) words by using a dictionary to 
eliminate words that were not in the dictionary and 
kept N-best candidates. It received 83.11% accuracy 
in the top-20 coverage.  
 
Repeated Characters. Saloot, Idris, and Mahmud 
(2014) eliminated repeated letters from Malay 
tweets by basing them on patterns setup. Extra 
letters were eliminated when a token was detected as 
a non-standard word by tagging with IV words and a 
normalised token label. After a token with repeated 
letters was converted to word patterns, the regular 
expression module was used as a pattern finder to 
determine whether a token fitted into the patterns. 
Then repeated letters were deleted based on the 
match pattern. 
 
OOV Words. Gouws et al. (2011) constructed an 
unsupervised exception dictionary by using 
automatically paired OOV words and IV words. 
Through similarity functions, OOV words were 
identified based on the list of IV words and created 
the output as a word mesh that contains the most 
likely clean candidates for each word. Then the 
model grouped them as a set of confusion lattices for 
decoding clean output by using an n-gram language 
model from SRI-LM (Stolcke, 2002). This approach 
reduced around 20% in the WER score over existing 
state-of-the art approaches, such as a Naïve baseline 
and IBM-baseline.    

3 APPROACH 

Based on the existing research on character-level 
problems, we have found challenges as well as 
opportunities in normalising non-standard words. 
First, we have observed that high levels of annotated 
training data are required.  Furthermore, majority of 
the existing methods are specially designed to 
handle a specific normalisation problem. 

The goal of this research is to find the best 
normalization combination in order to 'normalise' an 
ill-formed tweet to its most likely correct English 
representation with the highest accuracy. We 
consider four noisy problems, which cause noisy 
tweets, including repeated characters, abbreviations, 
OOV words and misspelling words. 

 
Data Preparation. Before we try to normalise the 
tweets, five basic steps of data preparation are 
deployed. First, we replace all HTML entities to 
standard English characters. For instance, “&amp;” 
is converted to “&” and “&lt;” is converted to “<”. 
All tweets are then encoded into to UTF-8 format. 
The third step is the removal of emoticons, URLs 
and unnecessary punctuations. “:”, “.”, “,”,”?”, 
however, @usernames and #tags are not removed. 
Concatenated or run-together words are then split 
into individual words. For example, “RainyDay” is 
converted to “Rainy Day”. Finally, the tweets are 
tokenised into word-level. 
 
Dictionary. Two types of dictionaries are used to 
normalise noisy tweets: “en_US” dictionary from 
Aspell library (Atkinson, 2004), and abbreviation 
dictionary taken from reliable online sources such as 
www.urbandictionary.com, www.noslang.com, 
www.abbreviations.com & www.internetslang.com.  

 
Abbreviations are expanded by using a simple 
string replace method. Each word is converted to 
lower case before trying to find it in our abbreviation 
dictionary. If it encounters the matching one, the 
abbreviation is replaced with its expanded version, 
i.e. “u r sooooo gorgeuos 2nite” → “you are sooooo 
gorgeuos tonight”. 
 
Repeated Characters are then normalised by first 
removing repeated letters found in a word until only 
two letters remain (“u r sooooo gorgeuos 2nite” to 
“u r soo gorgeuos 2nite”). Next, it utilises J. 
McCallum (2014) spell corrector to correct the 
word. Hence, “soo” is corrected to “so”. 
 
Misspelled Words are corrected at the last stage of 
our approach. In this step, we utilise the Enchant 
dictionary (Perkins, 2014) as well as the two 
dictionaries mentioned above. Spelling correction is 
not necessary if the given word is present in the 
dictionary, and the word is returned. But if the word 
is not found, it will return a word in the dictionary 
with the smallest edit distance. For instance, 
“gorgeuos” is corrected to “gorgeous”. 
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4 EXPERIMENTS 

To evaluate the performance of each of the 
techniques and their combinations, we conducted 
two types of experiments. The first experiment 
contained two stages. Re-implementing existing 
normalisation methods represented the first stage in 
finding the best cleaning techniques for solving each 
problem (misspelled words, abbreviations, and 
repeated characters). The second stage involved 
combining techniques used to address each problem 
in a different order. This experiment was intended to 
help us find the best combination of techniques that 
could solve all problems. The second experiment 
used the same tweets dataset to prove that our best 
combination of normalisation techniques found in 
the first stage is better than the baseline model, in 
terms of accuracy and time efficiency, at 
normalising a noisy tweet into a clean and readable 
sentence. All techniques were implemented in 
Python and NLTK framework.  The baseline model 
used is Text Cleanser by Gouws et al. (2011). 
 
Dataset. The experiments used a dataset of 1200 
tweets containing messages from popular celebrities 
in the entertainment area and the replies from their 
fans. The dataset contains 489 abbreviations, 152 
words with repeated characters, and 375 misspelled 
words.  

For our evaluation setup, we formed the datasets 
for each of our tests by manually normalising those 
1200 tweets and creating four reference datasets. In 
the first reference dataset, we corrected all the 
abbreviations from the original tweets. For instance, 
if the original tweet was “That viedo is fuuunnnnyy 
LOL”, in the first reference dataset (Ref_AB) the 
tweet became “That viedo is fuuunnnnyy laugh out 
loud.” In the second dataset (Ref_RC), we corrected 
only the repeated characters. Thus, the tweet became 
“That viedo is funny LOL”. In the third dataset 
(Ref_MSW), we corrected only the misspelled 
words, i.e. “That video is fuuunnnnyy LOL”. In the 
last dataset (Ref_All), we corrected all of those 
cases, i.e. “That video is funny laugh out loud.” To 
sum up, the first three reference datasets were used 
for evaluating each technique that was used to 
address each problem and the fourth reference 
dataset was used to evaluate the combined models 
against the baseline model, and our combination 
model against the baseline model. 
 
Evaluation Metrics. BLEU and WER metrics are 
widely used as evaluation metrics for finding a 
normalisation method’s accuracy. We use the 

iBLEU developed by Madnani (2011) and Gouws et 
al. (2011) WER evaluator. The efficiency of a 
technique is evaluated by the time that is required by 
a normalisation technique to perform a data cleaning 
procedure. Furthermore, a paired t-test was used to 
examine whether there is a statistically significant 
difference between the performances of each 
technique at the 95% confidence level.  

4.1 Results from Individual Method 

A comparison of the techniques that solve the same 
noisy problem on the same tweet dataset is required 
to find the best technique. The results of the first 
experiment are presented according to the type of 
noisy problems they are trying to solve and they are 
explained in detail as follows. 

4.1.1 Detecting Abbreviations 

Two techniques for normalising abbreviations are 
compared: DAB1 and DAB2. Similar to DAB2, 
DAB1 expands abbreviations by performing 
dictionary look-up. However, DAB1 did not convert 
each word to lowercase prior to the look up. Ref_AB 
is used as the reference dataset in the BLEU and 
WER score calculations. 

Both techniques achieve more than 90% in the 
BLEU score, less than 4% WER value and spent 
only 30 seconds. However, both are not able to 
resolve abbreviations that require context at 
sentence-level, which is out of the scope of this 
research. For example, “ur” in “I love that ur in” is 
currently resolved to “your” instead of “you are”.  
Although our abbreviation dictionary has defined 
“ur” with two separate meanings, neither technique 
can select the right meaning of the given sentence. 
There is no significant difference in performance 
between DAB1 and DAB2, but DAB1 yields lower 
accuracy as it cannot detect an abbreviation that 
contains the upper case letter (i.e. “Wld”) due to our 
dictionary merely having the reference abbreviations 
that have the lower case letters (i.e. “luv”). 

4.1.2 Removing Repeated Characters 

Three variants of Perkins (2014) techniques for 
removing repeated characters are evaluated: RRC1, 
RRC2 and RRC3. RRC2 is Perkins (2014) original 
approach, where repeated letters in a word are 
removed 1 letter at a time. Each time a letter is 
deleted, the system performs a WordNet lookup. 
RRC2 will stop removing repeated characters if 
WordNet recognises the word. Instead of using 
WordNet, Enchant dictionary is used in RRC3. In 
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RRC1, repeated letters in a word are removed until 
only two letters remain and J. McCallum (2014) 
spell corrector is used to correct the resulted word. 

Although our best combination model seems 
crude compared to the other two methods, on our 
Ref_RC dataset, we found that RRC1 (83.65%) is 
significantly better than RRC2 (79.76%) and RRC3 
(80.13%) in terms of BLEU score. RRC1 (25 sec) 
and RRC2 (1 min) are also significantly faster than 
RRC3 (22 mins). However, there is no significant 
difference in the WER score among the three 
methods (9%-11%). We have also noted that 
Enchant dictionary contains more words than 
WordNet as such in some cases RRC3 performs 
better than RRC2.  

4.1.3 Correcting Misspelled Words 

To find out the best technique for spelling 
correction, we have compared SC1 with Norvig 
(2012) spelling corrector (SC2) and TextBlob (SC3) 
Python’s library for correcting misspelled words.  

On our Ref_MW dataset, SC1 (79.88% BLEU 
and 12.40% WER) is significantly better than SC2 
(68.47% BLEU and 17.97% WER) and SC3 
(69.39% BLEU and 16.68% WER) in terms of 
BLEU and WER scores. SC1 utilizes edit distance 
method to replace the misspelled word with the 
word in the Aspell or Enchant dictionary that has the 
lowest edit distance to the misspelled word. Hence, 
it can handle words written in a plural form, e.g. 
“skills” will not be resolved to “skill”. 

There is no significant difference between SC2 
and SC3 in both BLEU and WER scores, but the 
run-time performance is significantly different. 
While SC2 spends only 4 minutes correcting 
misspelled words, SC3 spends 21 minutes. Given a 
large amount of input, SC3 will take considerably 
longer to process the whole input. 

4.2 Results from Combination of 
Techniques 

From the previous section, we know that the best 
techniques for resolving abbreviations, misspelling 
and repeated characters are DAB2, SC1 and RC1 
respectively. Next, we set up an experiment to 
identify the best combination of DAB, SC and RRC 
cleaning techniques and the best order to execute 
those techniques. Thus, we know which type of 
problems should be addressed first and which ones 
should be addressed last.  

We have set up and evaluated a total of 108 
combinations using the BLEU, WER, and time 

criteria. Ref_All is the reference dataset used for 
calculating the BLEU and WER score for each 
combination of techniques. The results of this 
experiment are organised according to the execution 
order of each technique. As such, there are six 
groups of combinations.  

4.2.1 RRC  DAB  SC 

Overall, this group performs well with promising 
results in the BLEU, WER and time. The 
outstanding combination is RRC1 → DAB2 → SC1. 
This combination achieves the highest BLEU score 
(88.51%), the lowest WER value (7.14%), and 
spends only 2 minutes and 55 seconds. On the other 
hand, some techniques (i.e. RRC3 → DAB1 → SC3 
and RRC3 → DAB2 → SC3) spend a long period of 
time normalising noisy tweets, due to fact that they 
combine the techniques (RRC3 and SC3) that 
individually consume a lot of time cleaning repeated 
letters and misspelled words. Furthermore, RRC2 → 
DAB1 → SC2 and RRC2 → DAB1 → SC3 are the 
combinations that achieve the lowest BLEU score 
(~73%) and the highest WER values (>14%). 

4.2.2 RRC  SC  DAB 

The outstanding combination in this group is RRC1 
→ SC1 → DAB2, which achieves the highest BLEU 
score (84.41%), the lowest WER value (9.60%), and 
spends only 2 minutes and 55 seconds. However, 
RRC1 → SC1 → DAB2 still achieves low accuracy 
when compared with RRC1 → DAB2 → SC1. In 
RRC1 → SC1 → DAB2, SC1 considers some of the 
abbreviations as misspelled words. For example, 
SC1 corrects “deze” to “daze” instead of “these”, 
“whatchu” to “watch” instead of “what are you”.  
Some techniques (i.e. RRC3 → SC3 → DAB1 and 
RRC3 → SC3 → DAB2) are very slow in 
processing normalisation and their accuracy is still 
not high enough. 

4.2.3 DAB  RRC  SC 

The outstanding combination is DAB2 → RRC1 → 
SC1, which achieves the highest BLEU score 
(88.55%) and the lowest WER (7.10%) and spends 
only 2 minutes and 55 seconds. DAB1 → RRC2 → 
SC3, DAB1 → RRC2 → SC3, DAB1 → RRC3 → 
SC2 and DAB1 → RRC3 → SC3 are the 
combinations that achieve the lowest BLEU score 
(~74%) and the highest WER values (>14%). On the 
other hand, the combination that spends the longest 
time processing normalisation in this group is DAB2 
→ RRC3 → SC3 (43minutes and 30seconds). 
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When comparing this group with the previous 
ones, we observe that handling abbreviations as a 
first step can ensure that all given abbreviations have 
been checked and replaced by their formal format. 
For example, “deze” to “these” and “whatchu” to 
“what are you”. Then, the elimination of repeated 
characters has made sure that words containing 
repeated characters are addressed thoroughly. 
Consequently, when these types of noisy tweets are 
cleaned, they have been returned to the normalised 
tweets dataset without any spelling correction from 
SC1.  These first two steps have not only increased 
the capacity of the spell corrector to deal with only 
incorrect words, but also can normalise the final 
output with the highest accuracy. Hence, DAB2 → 
RRC1 → SC1 is better than RRC1 → SC1 → DAB2 
and RRC1 → DAB2 → SC1. 

4.2.4 DAB  SC  RRC 

DAB2 → SC1 → RRC1 performs better than other 
combinations in this group, with an 83.50% in the 
BLEU score and 9.69% in the WER value. DAB1 → 
SC2 → RRC3, DAB1 → SC3 → RRC2 and DAB1 
→ SC3 → RRC3 are the combinations that achieve 
the lowest BLEU score (~69%) and the highest 
WER values (>16%). In addition, the DAB2 → SC3 
→ RRC3 technique spends nearly 44 minutes 
normalising noisy tweets. 

However, the performance of DAB2 → SC1 → 
RRC1 is not good enough in comparison to DAB2 
→ RRC1 → SC1. After expanding abbreviations 
into their formal form, some words containing 
repeated characters initially have been corrected by 
SC1 before sending to RRC1. For example, “sooo” 
will be corrected to “soon” instead of removing 
repeated letters to get “so”. Hence, most of the 
words that contain repeated characters have been 
transformed into another word, which causes a 
change in the final output of normalised tweets as 
well as having an effect on the accuracy. 

4.2.5 SC  RRC  DAB 

The outstanding combination is SC1 → RRC1 → 
DAB2, which achieves the highest BLEU score 
(86.94%) and the lowest WER value (8.30%) and 
spends 2 minutes and 55 seconds processing 
normalisation.  

However, we are surprised by the results of this 
combination when we compare it with DAB2 → 
SC1 → RRC1. We find that the ill-formed words 
identified as abbreviations are not treated by SC1 at 
the first stage; only misspelled words are corrected. 
Thus, abbreviations and repeated letters are 

normalised by the proper techniques. The 
normalised results contradict with the fourth 
combination group, especially, the normalised result 
from the DAB2 → SC1 → RRC1 technique. It 
indicates that the original format of some words 
containing repeated letters has been changed by 
SC1.  

While SC1 → RRC1 → DAB2 is the best 
combination in the group, SC3 → RRC2 → DAB1 
and SC3 → RRC3 → DAB1 are the techniques that 
achieve the lowest BLEU score (~70%) and the 
highest WER values (>16%). On the other hand, the 
combinations of SC3 → RRC3 → DAB1 and SC3 
→ RRC3 → DAB2, which spent the longest run-
time in normalising than any other combination, 
perform better than SC3 → RRC2 → DAB1 on both 
BLEU score and WER value. 

4.2.6 SC  DAB  RRC 

The outstanding combination of this group is SC1 → 
DAB2 → RRC1. This combination achieves 87.90% 
in the BLEU score and 7.40% in the WER.  Based 
on the normalised result generated from SC1 → 
DAB2 → RRC1, we find that both abbreviations and 
repeated characters are not identified as misspelled 
words and corrected by SC1 at the first stage. Thus, 
noisy words that have been ignored by SC1 are 
detected and normalised by DAB2 and then RRC1 
as a latter technique. 

SC3 → DAB1 → RRC2 and SC3 → DAB1 → 
RRC3 are the combinations that achieve the lowest 
BLEU score (~71%) and the highest WER values 
(>15%). In addition, both SC3 → DAB1 → RRC3 
and SC3 → DAB2 → RRC3 have spent nearly 44 
minutes normalising noisy tweets. 

4.3 Comparison to Baseline Model 

Based on our experiment results presented in Section 
4.2 and shown in Table 1, we can see that the best 
normalisation techniques and their order is DAB2 → 
RRC1 → SC1. To examine how well the best 
combination found can detect and convert a noisy 
tweet into an accurate English sentence, we compare 
its performance with the performance of Text 
Cleanser (TC) developed by Gouws et al. (2011). 
We chose TC as the baseline model because it 
claimed that the system can handle all the types of 
noisy words that we are trying to normalise, which 
they consider as OOV words, and because the 
system is open source. 

As can be seen in Table 2, our best combination 
performs better than TC in terms of achieving higher  

Evaluation of Statistical Text Normalisation Techniques for Twitter

417



 

Table 1: The group of the best combinations. 

Model BLEU 
(%) 

WER 
(%) 

RRC1 → DAB2 → SC1 88.51% 7.14% 

RRC1 → SC1 → DAB2 84.41% 9.60% 

DAB2 → RRC1 → SC1 88.55% 7.10% 
DAB2 → SC1 → RRC1 83.50% 9.69% 

SC1 → RRC1→ DAB2 86.94% 8.30% 

SC1 → DAB2 → RRC1 87.90% 7.40% 

Table 2: Comparison between the best combination model 
and the baseline model. 

Model BLEU 
(%) 

WER 
(%) 

Time 

Baseline (TC) 63 38.22 3mins 

Our best 
combination 
model 

88.55 7.10 2mins55sec 

accuracy on our Ref_All dataset. Our model 
achieves 88.55% of the BLEU score and 7.10% in 
the WER score, while TC achieves 63% in the 
BLEU score and 38.22% in the WER score. In terms 
of time efficiency, although both models spend a 
short amount of time on normalisation in the 
different operating systems, our best combination 
model is faster than the baseline model. The paired-
t-test showed that the best combination’s BLEU and 
WER values are statistically significant when 
compared with TC. 

TC was unable to resolve some abbreviations 
and misspelled words, and incorrectly replaced an 
already correct word with another word. For 
example, “worst” to “wrest” “deez” to “diaz”, and 
“conections” to “conditions”.  A run-on word such 
as “im” being replaced with “i am” – is another 
problem that could not be detected and handled.   

Despite its positive side, our best combination 
found cannot correctly normalise tweets when there 
is a white space in a given word (e.g. “I’ m”). The 
best combination recognises it as a noisy word due 
to its absence in the dictionary lookup and reference 
text. The “I’ m” is transformed into “I’ million” 
instead of “I’ m”. The best combination’s tokenising 
algorithm treats a white space as a token separator. 
Hence, the “I” is recognised by dictionary lookup 
while the “m” is not. The “m” is recognised as an 
abbreviated term which means “million” according 
to our abbreviation dictionary. Therefore, this minor 
issue is another factor that reduces the accuracy of 
our combination model’s performance. 

5 CONCLUSION 

It has been established that data cleaning is a crucial 
part of text pre-processing. Therefore, a noisy tweet 
needs to be normalised to a cleaned sentence to 
provide high quality data. Three main issues in noisy 
tweets have been considered in text normalisation. 
Existing techniques have been evaluated with the 
same dataset in order to identify and select the best 
combined techniques to deal with abbreviations, 
repeated characters, and misspelled words. Based on 
our experiments, our best combination not only 
provides the highest score of the BLEU score and 
the lowest WER, but also generates sentences with 
minimum efficiency; thus the cleaned texts can be 
effectively used in sentiment analysis and other NLP 
applications. 
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