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Abstract: We present a method to calculate component dependencies and data lineage from the database structure and 
a large set of associated procedures and queries, independently of actual data in the data warehouse. The 
method relies on the probabilistic estimation of the impact of data in queries. We present a rule system 
supporting the efficient calculation of the transitive closure. The dependencies are categorized, aggregated 
and visualized to address various planning and decision support problems. System performance is evaluated 
and analysed over several real-life datasets. 

1 INTRODUCTION 

System developers and managers are facing similar 
data lineage and impact analysis problems in complex 
data integration, business intelligence and data 
warehouse environments where the chains of data 
transformations are long and the complexity of 
structural changes is high. The management of data 
integration processes becomes unpredictable and the 
costs of changes can be very high due to the lack of 
information about data flows and the internal 
relations of system components. Important contextual 
relations are encoded into data transformation queries 
and programs (SQL queries, data loading scripts, 
etc.). Data lineage dependencies are spread between 
different systems and frequently exist only in 
program code or SQL queries. This leads to 
unmanageable complexity, lack of knowledge and a 
large amount of technical work with uncomfortable 
consequences like unpredictable results, wrong 
estimations, rigid administrative and development 
processes, high cost, lack of flexibility and lack of 
trust. 

We point out some of the most important and 
common questions for large DW which usually 
become a topic of research for system analysts and 
administrators:  
 Where does the data come or go to in/from a 

specific column, table, view or report? 
 When was the data loaded, updated or calculated 

in a specific column, table, view or report? 
 Which components (reports, queries, loadings and 

structures) are impacted when other components 

are changed? 
 Which data, structure or report is used by whom 

and when? 
 What is the cost of making changes? 
 What will break when we change something? 

The ability to find ad-hoc answers to many day to 
day questions determines not only the management 
capabilities and the cost of the system, but also the 
price and flexibility of making changes.  

The goal of our research is to develop reliable and 
efficient methods for automatic discovery of 
component dependencies and data lineage from the 
database schemas, queries and data transformation 
components by automated analysis of actual program 
code. This requires probabilistic estimation of the 
measure of dependencies and the aggregation and 
visualization of the estimations. 

2 RELATED WORK 

Impact analysis, traceability and data lineage issues 
are not new. A good overview of the research 
activities of the last decade is presented in an article 
by (Priebe, 2011). We can find various research 
approaches and published papers from the early 
1990’s with methodologies for software traceability 
(Ramesh, 2001). The problem of data lineage tracing 
in data warehousing environments has been formally 
founded by Cui and Widom (Cui, 2000; Cui 2003). 
Overview of data lineage and data provenance tracing 
studies can be found in book by Cheney et al. 
(Cheney, 2009). Data lineage or provenance detail 
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levels (e.g. coarse-grained vs fine-grained), question 
types (e.g why-provenance, how-provenance and 
where-provenance) and two different calculation 
approaches (e.g. eager approach vs lazy approach) 
discussed in multiple papers (Tan, 2007; Benjelloun, 
2006) and formal definitions of why-provenance 
given by Buneman et al. (Buneman, 2001). Other 
theoretical works for data lineage tracing can be 
found in (Fan, 2003; Giorgini, 2008). Fan and 
Poulovassilis developed algorithms for deriving 
affected data items along the transformation pathway 
[6]. These approaches formalize a way to trace tuples 
(resp. attribute values) through rather complex 
transformations, given that the transformations are 
known on a schema level. This assumption does not 
often hold in practice. Transformations may be 
documented in source-to-target matrices 
(specification lineage) and implemented in ETL tools 
(implementation lineage). Woodruff and Stonebraker 
create solid base for the data-level and the operators 
processing based the fine-grained lineage in contrast 
to the metadata based lineage calculation in their 
research paper (Woodruff, 1997). 

Other practical works that are based on conceptual 
models, ontologies and graphs for data quality and 
data lineage tracking can be found in (Skoutas, 2007; 
Tomingas, 2014; Vassiliadis, 2002; Widom, 2004). 
De Santana proposes the integrated metadata and the 
CWM metamodel based data lineage documentation 
approach (de Santana, 2004). Tomingas et al. employ 
the Abstract Mapping representation of data 
transformations and rule-based impact analysis 
(Tomingas, 2014). 

Priebe et al. concentrates on proper handling of 
specification lineage, a huge problem in large-scale 
DWH projects, especially in case different sources 
have to be consistently mapped to the same target 
(Priebe, 2011). They propose a business information 
model (or conceptual business glossary) as the 
solution and a central mapping point to overcome 
those issues.  

Scientific workflow provenance tracking is 
closely related to data lineage in databases. The 
distinction is made between coarse-grained, or 
schema-level, provenance tracking (Heinis, 2008) 
and fine-grained or data instance level tracking 
(Missier, 2008). The methods of extracting the 
lineage are divided to physical (annotation of data by 
Missier et al.) and logical, where the lineage is 
derived from the graph of data transformations 
(Ikeda, 2013). 

In the context of our work, efficiently querying of 
the lineage information after the provenance graph 
 
1 http://www.goldparser.org/ 

has been captured, is of specific interest. Heinis and 
Alonso present an encoding method that allows 
space-efficient storage of transitive closure graphs 
and enables fast lineage queries over that data 
(Heinis, 2008). Anand et al. propose a high level 
language QLP, together with the evaluation 
techniques that allow storing provenance graphs in a 
relational database (Anand, 2010). 

3 WEIGHT ESTIMATION 

The inference method of the data flow and the impact 
dependencies that presented in this paper is part of a 
larger framework of a full impact analysis solution. 
The core functions of the system architecture are built 
upon the following components presented in the 
Figure 1 and described in detail in our previous works 
(Tomingas, 2014; Tomingas, 2015). 

 

Figure 1: Impact analysis system architecture components. 

The core functions of the system architecture are 
built upon the following components in the Figure 1: 

1. Scanners collect metadata from different systems 
that are part of DW data flows (DI/ETL processes, 
data structures, queries, reports etc.). 

2. The SQL parser is based on customized 
grammars, GoldParser1 parsing engine and the Java-
based XDTL engine. 

3. The rule-based parse tree mapper extracts and 
collects meaningful expressions from the parsed text, 
using declared combinations of grammar rules and 
parsed text tokens. 

4. The query resolver applies additional rules to 
expand and resolve all the variables, aliases, sub-
query expressions and other SQL syntax structures 
which encode crucial information for data flow 
construction. 

5. The expression weight calculator applies rules to 
calculate the meaning of data transformation, join and 
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filter expressions for impact analysis and data flow 
construction. 

6. The probabilistic rule-based reasoning engine 
propagates and aggregates weighted dependencies. 

7. The open-schema relational database using 
PostgreSQL for storing and sharing scanned, 
calculated and derived metadata. 

8. The directed and weighted sub-graph 
calculations, and visualization web based UI for data 
lineage and impact analysis applications. 

In the stages preceding the impact estimation, 
inference and aggregation the data structure 
transformations are parsed and extracted from queries 
and stored as formalized, declarative mappings in the 
system.  

To add additional quantitative measures to each 
column transformation or column usage in the join 
and filter conditions we evaluate each expression and 
calculate the transformation and filter weights for 
those. 

Definition 1. The column transformation weight 
Wt is based on the similarity of each source column 
and column transformation expression: the calculated 
weight expresses the source column transfer rate or 
strength. The weight is calculated on scale [0,1] 
where 0 means that the data is not transformed from 
source (e.g. constant assignment in a query) and 1 
means that the source is copied to the target directly, 
ie. no additional column transformations are detected.  

Definition 2. The column filter weight Wf is based 
on the similarity of each filter column in the filter 
expression where the calculated weight expresses the 
column filtering strength. The weight is calculated on 
the scale [0,1] where 0 means that the column is not 
used in the filter and 1 means that the column is 
directly used in the filter predicate, ie. no additional 
expressions are involved.  

The general column weight W algorithm in each 
expression for Wt and Wf components is calculated 
as a column count ratio over all the expression 
component counts (e.g. column count, constant count, 
function count, predicate count). 

ܹ ൌ
	ݐ݊ݑ݋ܥ݀ܫ

ݐ݊ݑ݋ܥ݀ܫ ൅ ݐ݊ݑ݋ܥܿ݊ܨ ൅ ݐ݊ݑ݋ܥݎݐܵ ൅ ݐ݊ݑ݋ܥݎܾܰ ൅ ݐ݊ݑ݋ܥ݀ݎܲ
 

The counts are normalized using the FncList 
evaluation over a positive function list (e.g. CAST, 
ROUND, COALESCE, TRIM etc.). If the FncList 
member is in a positive function list, then the 
normalization function reduces the according 
component count by 1 to pay a smaller price in case 
the function used does not have a significant impact 
to column data. 

Definition 3. A primitive data transformation 
operation is a data transformation between a source 

column X and a target column Y in a transformation 
set M (mapping or query) having the expression 
similarity weight Wt. 

Definition 4. The column X is a filter condition in 
a transformation set M with the filter weight Wf if the 
column is part of a JOIN clause or WHERE clause in 
the queries corresponding to M. 

4 RULE SYSTEM AND 
DEPENDENCY CALCULATION 

The primitive transformations captured from the 
source databases form a graph GO with nodes N 
representing database objects and edges EO 
representing primitive transformations (see 
Definition 3). We define relations ܺ: ைܧ → 	ܰ and 
ܻ: ைܧ → 	ܰ connecting edges to source nodes and 
target nodes, respectively. We define label relations 
ைܧ	:ܯ →
	ሼሼ݉ሽ	|	݉	݅ݏ	ܽ	݊݋݅ݐܽ݉ݎ݋݂ݏ݊ܽݎݐ	ݎ݂݁݅݅ݐ݊݁݀݅ሽ and 
ைܧ	:ܹ → 	 ሾ0,1ሿ. Formally, this graph is an edge-
labeled directed multigraph. 

In the remainder of the article, we will use the 
following intuitive notation: e.X and e.Y to denote 
source and target objects of a transformation 
(formally, ܺሺ݁ሻ and ܻሺ݁ሻ). e.M is the set of source 
transformations (ܯሺ݁ሻ). e.W is the weight assigned to 
the edge (ܹሺ݁ሻ). 

The knowledge inferred from the primitive 
transformations forms a graph ܩ௅ 	ൌ 	 ሺܰ,  ௅ሻ whereܧ
EL is the set of edges e that represent data flow 
(lineage). We define relations X, Y, M and W the same 
way as with the graph GO and use the e.R notation 
where R is one of the relations {X, Y, M, W}. 

Additionally, we designate the graph ܩூ 	ൌ
	ሺܰ, ூܧ 	∪  ௅ሻ to represent the impact relationsܧ	
between database components. It is a superset of GL 
where EL is the set of additional edges inferred from 
column usage in filter expressions. 

4.1 The Propagation Rule System 

First, we define the rule to map the primitive data 
transformations to our knowledge base. This rule 
includes aggregation of multiple edges between pairs 
of nodes. 

Let ܧ௫,௬ 	ൌ 	 ሼ݁ ∈ .݁	|	ைܧ ܺ	 ൌ ,ݔ	 ݁. ܻ	 ൌ  ሽ beݕ	
the set of edges connecting nodes x, y in the graph GO.  

,ݔ∀ ݕ ∈ ܰ ௫,௬ܧ ് ∅ ⟹	∃݁′ ∈ ,௅ (R1)ܧ

such that 

݁′. ܺ ൌ .′݁	⋀	ݔ ܻ ൌ  (R1.1)             ݕ
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ܯ.′݁ ൌ∪௘∈ாೣ,೤  (R1.2)             ܯ.݁

݁′.ܹ ൌ ݁	|ܹ.ሼ݁	ݔܽ݉ ∈  ௫,௬ሽ           (R1.3)ܧ

An inference using this rule should be understood 
as ensuring that our knowledge base satisfies the rule. 
From an algorithmic perspective, we create edges e’ 
into the set EL until R1 is satisfied. 

Definition 5. The predicate Parent(x, p) is true if 
node p is the parent of node x in the database schema. 

Filter conditions are mapped to edges in the 
impact graph GI.  

Let ܨெ,௣ 	ൌ 	 ሼݔ	ݐ݊݁ݎܽܲ|ሺݔ, ሻ݌ ⋀ 		 

 be the set of nodes that are	ሽ	ܯ	݊݅	ݎ݁ݐ݈݂݅	ܽ	ݏ݅	ݔ
filter conditions for the mapping M with parent p. Let 
ܶெ,௣ᇲ ൌ ሼݐ݊݁ݎܽܲ|ݔሺݔ, ᇱሻ݌ ∧  be {ܯ	݊݅	ݐ݁݃ݎܽݐ	ݏ݅	ݔ
the set of nodes that represent the target columns of 
mapping M. To assign filter weights to columns, we 
define the function ௙ܹ: ܰ → 	 ሾ0, 1ሿ. 

,݌∀ ′݌ ∈ ெ,௣ܨ	ܰ 	് ∅	⋀	 ெܶ,௣ᇱ ് ∅	 ⟹	∃݁′ ∈ ூ (R2)ܧ

such that 
݁′. ܺ ൌ .′݁	⋀	݌ ܻ ൌ  (R2.1)            ′݌

ܯ.′݁ ൌ  (R2.2)                    ܯ

݁′.ܹ ൌ
௠௔௫ሼௐ೑ሺ௫ሻ	|	௫∈ிಾ,೛ሽା௠௔௫ሼௐ೑ሺ௫ሻ	|	௫∈ ಾ்,೛ᇲሽ

ଶ
       (R2.3) 

The primitive transformations mostly represent 
column-level (or equivalent) objects that are adjacent 
in the graph (meaning, they appear in the same 
transformation or query and we have captured the 
data flow from one to another). The same applies to 
impact information inferred from filter conditions. 
From this knowledge, the goal is to additionally: 
● propagate information through the database 

structure upwards, to view data flows on a more 
abstract level (such as, table or schema level) 

● calculate the dependency closure to answer 
lineage queries 

Unless otherwise stated, we treat the graphs GL 
and GI similarly from this point.  It is implied that the 
described computations are performed on both of 
them. The set E refers to the edges of either of those 
graphs. 

Let ܧ௣,௣ᇲ 	ൌ 	 ሼ݁ ∈ .ሺ݁ݐ݊݁ݎܽܲ|	ܧ ܺ, ⋀	ሻ݌ 	 

.ሺ݁ݐ݊݁ݎܽܲ ܻ,  ሻሽ be the set of edges where the’݌
source nodes share a common parent p and the target 
nodes share a common parent p’. 

,݌∀ ′݌ ∈ ௣,௣ᇱܧ	ܰ 	് ∅	 ⟹	∃݁′ ∈  ,(R3)                         ܧ

such that 

݁′. ܺ ൌ .′݁	⋀	݌ ܻ ൌ  (R3.1)            ′݌

݁ᇱ.ܯ ൌ	∪௘∈ா೛,೛ᇲ
	  (R3.2)            ܯ.݁

݁′.ܹ ൌ
∑ 		
೐∈ಶ೛,೛ᇲ ௘.ௐ

|ா೛,೛ᇲ|
              (R3.3) 

4.2 The Dependency Closure 

Online queries from the dataset require finding the 
data lineage of a database item without long 
computation times. For displaying both the lineage 
and impact information, we require that all paths 
through the directed graph that include a selected 
component are found. These paths form a connected 
subgraph. Further manipulation (see Section 4.3) and 
data display is then performed on this subgraph. 

There are two principal techniques for retrieving 
paths through a node (Heinis, 2008): 
● connect the edges recursively, forming the paths 

at query time. This has no additional storage 
requirements, but is computationally expensive 

● store the paths in materialized form. The paths can 
then be retrieved without recursion, which speeds 
up the queries, but the materialized transitive 
closure may be expensive to store. 

 

Several compromise solutions that seek to both 
efficiently store and query the data have been 
published (Heinis, 2008; Anand, 2010). In general, 
the transitive closure is stored in a space efficient 
encoding that can be expanded quickly at the query 
time. 

We have incorporated elements from the pointer 
based technique introduced in (Anand, 2010). The 
paths are stored in three relations: 
Node(N1,P_dep,P_depc), 
Dep(P_dep,N2)and DepC(P_depc,P_dep). 
Immediate dependen-cies of a node are stored in the 
Dep relation, with the pointer P_dep in the Node 
relation referring to the dependency set. The full 
transitive dependency closure is stored in the DepC 
relation by storing the union of the pointers to all of 
the immediate dependency sets of nodes along the 
paths leading to a selected node. 

We can define the dependency closure recursively 
as follows. Let D*k be the dependency closure of node 
k. Let Dk be the set of immediate dependencies such 
that ܦ௞ 	ൌ 	 ሼ	݆	|	݁	 ∈ ,ܧ	 ݁. ܺ	 ൌ 	݆, ݁. ܻ	 ൌ 	݇	ሽ. 

If ܦ௞ 	ൌ ∅ then ܦ∗
௞ ൌ ∅ . 

Else if ܦ௞ ് ∅ then ܦ∗
௞ ൌ ௞ܦ 	∪ ሺ∪௝∈஽ೖ

	 ∗ܦ
௝	ሻ. 

The successors Sj  (including non-immediate) of a 
node j are found as follows: ௝ܵ ൌ ሼ݇	|	݆ ∈ ∗ܦ

௞ሽ	 
The materialized storage of the dependency 

closure allows building the successor set cheaply, so 
it does not need to be stored in advance. Together 
with the dependency closure they form the connected 
maximal subgraph that includes the selected node. 
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We put the emphasis on the fast computation of 
the dependency closure with the requirement that the 
lineage graph is sparse (|ܫ| ∼ |ܰ|). We have omitted 
the more time-consuming redundant subset and 
subsequence detection techniques of Anand et al. 
(Anand, 2009). The subset reduction has ܱሺ|ܦ|ଷሻ 
time complexity which is prohibitively expensive if 
the number of initial unique dependency sets |ܦ| is 
on the order of 105 as is the case in our real world 
dataset. 

The dependency closure is computed by: 
1. Creating a partial order L of the nodes in the 

directed graph GI. If the graph is cyclic then we 
need to transform it to a DAG by deleting an edge 
from each cycle. This approach is viable, if the 
graph contains relatively few cycles. The 
information lost by deleting the edges can be 
restored at a later stage, but this process is more 
expensive than computing the closure on a DAG. 

2. Creating the immediate dependency sets for each 
node using the duplicate-set reduction algorithm 
(Anand, 2009). 

3. Building the dependency closures for each node 
using the partial order L, ensuring that the 
dependency sets are available when they are 
needed for inclusion in the dependency closures 
of successor nodes (Algorithm 1). 

4. If needed, restoring deleted cyclic edges and 
incrementally adding dependencies that are 
carried by those edges using breadth-first search 
in the direction of the edges. 

Algorithm 1. Building the pointer-encoded 
dependency closure: 

Input: L  - partial order on GI; 
 {Dk|k	∈	N} - immediate dependency sets 

Output: D*k - dependency closures  
              for each node k	∈	N 

for node k in L: 
    D*k = {Dk} 
    for j in Dk: 
        D*k = D*k ∪	D*j 

This algorithm has linear time complexity 
ܱሺ|ܰ| ൅  ሻ if we disregard the duplicate set|ܧ|
reduction. To reduce the required storage, if ܦ∗

௝ 	ൌ
∗ܦ	

௞ for any ݆	 ് 	݇ then we may replace one of them 
with a pointer to the other. The set comparison 
increases the worst case time complexity to ܱሺ|ܰ|ଶሻ. 

To extract the nodes along the paths that go 
through a selected node N, one would use the 
following queries: 

select Dep.N2  --predecessor nodes 
from Node, DepC, Dep 
where Dep.P_dep = DepC.P_dep 

and DepC.P_depc = Node.P_depc 
and Node.N1 = N 
 

select Node.N1 --successor nodes 
from Node, DepC, Dep 
where Node.P_depc = DepC.P_depc 
and DepC.P_dep = Dep.P_dep 
and Dep.N2 = N 

4.3 Visualization of the Lineage and 
Impact Graphs 

The visualization of the connected subgraph 
corresponding to a node j is created by fetching the 
path nodes ௝ܲ ൌ ∗ܦ

௝ ∪ ௝ܵ and the edges along those 
paths ܧ௝ ൌ ሼ݁ ∈ .݁	|	ܧ ܺ ∈ ௝ܲ	⋀	݁. ܻ ∈ ௝ܲሽ from the 
appropriate dependency graph (impact or lineage). 
The graphical representation allows filtering a subset 
of nodes in the application, by node type, although the 
filtering technique discussed here is generic and 
permits arbitrary criteria. Any nodes not included in 
graphical display are replaced by transitive edges 
bypassing these nodes to maintain the connectivity of 
the dependencies in the displayed graph. 

Let ܩ௝ ൌ ሺ ௝ܲ,  ௝ሻ be the connected sub graph forܧ
the selected node j. We find the partial transitive 
graph Gj’ that excludes the filtered nodes Pfilt as 
follows (Algorithm 2): 

Algorithm 2. Building the filtered subgraph with 
transitive edges. 

Input: Gj, Pfilt 
Output: Gj’ = (Pj’, Ej’) 
Ej’ = Ej 
Pj’ = ∅ 
for node n in Pj: 
 if n ∈ Pfilt: 
   for e in {e ∈ Ej’| e.Y = n}: 
     for e’ in {e’ ∈ Ej’| e’.X = n}: 
       create new edge e’’ ( e’’.X = e.X, 
e’’.Y = e’.Y, e’’.W = e.W * e’’.W) 
       Ej’ = Ej’ ⋃ {e’’} 
     Ej’= Ej’ \ {e} 
   for e’ in {e’ ∈ Ej’| e’.X = n}: 
     Ej’ = Ej’ \ {e’} 
 else: 
   Pj’ = Pj’ ⋃ {n}   

This algorithm has the time complexity of O(|Pj| 
+ |Ej|) and can be performed on demand when the user 
changes the filter settings. This extends to large 
dependency graphs with the assumption that |GJ| << 
|G|. 
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4.4 The Semantic Layer Calculation 

The semantic layer is a set of visualizations and 
associated filters to localize the connected subgraph 
of the expected data flows for the current selected 
node. All the connected nodes and edges in the 
semantic layer share the overlapping filter predicate 
conditions or data production conditions that are 
extracted during the edge construction to indicate not 
only possible data flows (based on connections in 
initial query graph), but only expected and 
probabilistic data flows. The main idea of the 
semantic layer is to narrow down all the possible and 
expected data flows over all the connected graph 
nodes by cutting down unlikely or disallowed 
connections in graph, which is based on the additional 
query filters and the semantic interpretation of filters 
and calculated transformation expression weights. 
The semantic layer of the data lineage graph will hide 
irrelevant and/or highlight the relevant graph nodes 
and edges, depending on the user choice and 
interaction.  

This has a significant impact when the underlying 
data structures are abstract enough and the 
independent data flows store and use independent 
horizontal slices of data. The essence of the semantic 
layer is to use the available query and schema 
information to estimate the row level data flows 
without any additional row level lineage information 
which would be unavailable on schema level and 
expensive or impossible to collect on the row level. 

The visualization of the semantically connected 
subgraph corresponding to node j is created by 
fetching the path nodes ௝ܲ ൌ ∗ܦ

௝ ∪ ௝ܵ and the edges 
along those paths ܧ௝ ൌ ሼ݁ ∈ .݁	|ܧ ܺ ∈ ௝ܲ	⋀	݁. ܻ ∈ ௝ܲሽ 
from the appropriate dependency graph (impact or 
lineage). Any nodes not included in the semantic 
layer are removed or visually muted (by changing the 
color or opacity) and the semantically connected 
subgraph is returned or visualized by the user 
interface. 

Let ܩ௝ ൌ ሺ ௝ܲ,  ௝ሻ be the connected subgraph forܧ
the selected node j where ܦܩ௝ ൌ ሺܦ௝,  ௝ሻ is theܦܧ
predecessor subgraph and ܩ ௝ܵ ൌ ሺܵ	௝, ܧ ௝ܵሻ is the 
successor subgraph according to the selected node j. 
We calculate the data flow graph Gj’  that is the union 
of the semantically connected predecessors ܦܩ௝′ ൌ
ሺܦ௝, ܩ ௝ሻ and successor subgraphsܦܧ ௝ܵ′ ൌ ሺ ௝ܵ, ܧ ௝ܵሻ. 
The semantic layer calculation is based on the 
selected node filter set Fj and calculated separately for 
back (predecessor) and forward (successors) 
directions by the recursive algorithm (Algorithm 3): 

Algorithm 3. Building the semantic layer subgraph 
using predecessor and successor functions 
recursively. 

Function: Predecessors 
Input: nj, Fj , GDj, GD’j Wmin 
Output: GDj’ = (Dj’, EDj’) 
Fn = ∅ 
if Dj’ = ∅ then: 
 Dj’ = Dj’ ⋃ nj 
for edge e in {e ∈ EDj | e.Y = nj 
 Fn = ∅ 
 if Fj != ∅: 
   for filter f in e.{F}: 
     for filter fj in Fj: 
       if f.Key = fj.Key & f.Val ∩ 
fj.Val: 
         new filter fn (fn.Key=f.Key, 
fn.Val=f.Val, fn.Wgt=f.Wgt*fj.Wgt) 
         Fn = Fn ⋃ fn  
 else:            
   Fn = Fn ⋃ e.{F}     
 if Fn != ∅ & e.W >= Wmin :    
   Dj’ = Dj’ ⋃ e.X   
   EDj’ = EDj’ ⋃ e   
   GDj’=Predecessors 
(e.X,Fn,GDj,GD’j,Wmin) 
return GDj’ 

 
Function: Successors 
Input: nj, Fj , GSj, GS’, Wmin 
Output: GSj’ = (Sj’, ESj’) 
Fn = ∅ 
if Sj’ = ∅: 
 Sj’ = Sj’ ⋃ nj 
for edge e in {e ∈ ESj | e.X = nj}: 
 Fn = ∅ 
 if Fj != ∅ then: 
   for filter f in e.{F}: 
     for filter fj in Fj: 
       if f.Key = fj.Key & f.Val ∩ 
fj.Val: 
         new filter fn (fn.Key=f.Key, 
fn.Val=f.Val, fn.Wgt=f.Wgt*fj.Wgt) 
         Fn = Fn ⋃ fn 
 else:            
   Fn = Fn ⋃ e.{F} 
 if Fn != ∅ & e.W >= Wmin : 
   Sj’ = Sj’ ⋃ e.Y 
   ESj’ = ESj’ ⋃ e 
   GSj’=Predecessors(e.Y,Fn 
,GSj,GSj’,Wmin) 
return GSj’ 

The final semantic layer subgraph is an union of 
the recursively constructed predecessor ܦܩ௝′ and 
successor  ܩ ௝ܵ′ graphs: Gj’ = GDj’ ⋃ GSj’ 
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4.5 Dependency Score Calculation 

We use the derived dependency graph to solve 
different business tasks by calculating the selected 
component(s) lineage or impact over available layers 
and chosen details. Business questions like: “What 
reports are using my data?”, “Which components 
should be changed or tested?” or “What is the time 
and cost of change?” are converted to directed 
subgraph navigation and calculation tasks. The 
following definitions add new quantitative measures 
to each component or node in the calculation. We use 
those measures in the user interface to sort and select 
the right components for specific tasks. 

Definition 6. Local Lineage Dependency % 
(LLD) is calculated as the ratio over the sum of the 
local source and target lineage weights Wt. 

	ܦܮܮ ൌ
∑ sourceሺ ௧ܹሻ	
	

∑ sourceሺ ௧ܹሻ	
	 ൅ ∑ targetሺ ௧ܹሻ	

	
 

Local Lineage Dependency 0 % means that there 
are no data sources detected for the object. Local 
Lineage Dependency 100 % means that there are no 
data consumers (targets) detected for the object. 
Local Lineage Dependency about 50 % means that 
there are equal numbers of weighted sources and 
consumers (targets) detected for the object. 

Definition 7. Local Impact Dependency % (LID) 
is calculated as the ratio over the sum of local source 
and target impact weights W(Wt,,Wf). 

	ܦܮܮ ൌ
∑ sourceሺ 	ܹሻ	
	

∑ sourceሺ 	ܹሻ	
	 ൅ ∑ targetሺ 	ܹሻ	

	
 

5 CASE STUDIES 

The previously described algorithms have been used 
to implement an integrated toolset. Both the scanners 
and the visualization tools have been enhanced and 
tested in real-life projects and environments to 
support several popular data warehouse platforms 
(e.g. Oracle, Greenplum, Teradata, Vertica, 
PostgreSQL, MsSQL, Sybase), ETL tools (e.g. 
Informatica, Pentaho, Oracle Data Integrator, SSIS, 
SQL scripts and different data loading utilities) and 
business intelligence tools (e.g. SAP Business 
Objects, Microstrategy, SSRS). The dynamic 
visualization and graph navigation tools are 
implemented in Javascript using the d3.js graphics 
libraries.  

Current implementation has rule system which is 
implemented in PostgreSQL database using SQL 

 
2 http://www.dlineage.com/ 

queries for graph calculation (rules 1-3 in section 4.1) 
and specialized tables for graph storage. The DB and 
UI interaction tested with the specialized pre-
calculated model (see section 4.2) but also with the 
recursive queries without special storage and pre 
calculations. The algorithms for interactive transitive 
calculations (see sections 4.3) and semantic layer 
calculation (see section 4.4) are implemented in 
Javascript and works in browser for small and local 
subgraph optimization or visualization. Due to space 
limitations we do not stop here for discussion and the 
details of case studies. Technical details and more 
information can be found on our dLineage2 online 
demo site. We present different datasets processing 
and performance analysis in the next section and 
illustrate the application and algorithms with the 
graph visualizations technique (section 5.2). 

5.1 Performance Evaluation 

We have tested our solution in several real-life case 
studies involving a thorough analysis of large 
international companies in the financial, utilities, 
governance, telecom and healthcare sectors. The case 
studies analyzed thousands of database tables and 
views, tens of thousands of data loading scripts and 
BI reports. Those figures are far over the capacity 
limits of human analysts not assisted by the special 
tools and technologies. 

The following six different datasets with varying 
sizes have been used for our system performance 
evaluation. The datasets DS1 to DS6 represent data 
warehouse and business intelligence data from 
different industry sectors and is aligned according to 
the dataset size (Table 1). The structure and integrity 
of the datasets is diverse and complex, hence we have 
analyzed the results at a more abstract level (e.g. the 
number of objects and processing time) to evaluate 
the system performance under different conditions. 

Table 1: Evaluation of processed datasets with different 
size, structure and integrity levels. 

 DS1 DS2 DS3 DS4 DS5 DS6
Scanned objects 1,341,863 673,071 132,588 120,239 26,026 2,369
DB objects 43,773 179,365 132,054 120,239 26,026 2,324 
ETL objects 1,298,090 361,438 534 0 0 45 
BI objects 0 132,268 0 0 0 0 
Scan time (min) 114 41 17 33 6 0
Parsed scripts 6,541 8,439 7,996 8,977 1184 495 
Parsed queries 48,971 13,946 11,215 14,070 1544 635 

Parse success rate (%) 96 98 96 92 88 100 
Parse/resolve 
perform..(queries/sec) 

3.6 2.5 26.0 12.1 4.1 6.3 

Parse/resolve time (min) 30 57 5 12 5 1
Graph nodes 73,350 192,404 24,878 17,930 360 1,930 
Graph links 95,418 357,798 24,823 15,933 330 2,629 
Graph processing time 
(min) 

36 62 14 15 6 2 

Total processing time 
(min)

150 103 31 48 12 2 
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The biggest dataset DS1 contained a big set of 
Informatica ETL package files, a small set of 
connected DW database objects and no business 
intelligence data. The next dataset DS2 contained a 
data warehouse, SQL scripts for ETL loadings and a 
SAP Business Object for reporting for business 
intelligence. The DS3 dataset contained a smaller 
subset of the DW database (MsSql), SSIS ETL 
loading packages and SSRS reporting for business 
intelligence. The DS4 dataset had a subset of the data 
warehouse (Oracle) and data transformations in 
stored procedures (Oracle). The DS5 dataset is a 
similar but much smaller to DS4 and is based on the 
Oracle database and stored procedures. The DS6 
dataset had a small subset of a data warehouse in 
Teradata and data loading scripts in the Teradata TPT 
format.  

The datasets size, internal structure and 
processing time are visible in Figure 2 where longer 
processing time of DS4 is related to very big Oracle 
stored procedure texts and loading of those to 
database. 

 

Figure 2: Datasets size and structure compared to overall 
processing time.  

 

Figure 3: Calculated graph size and structure compared to 
the graph data processing time. 

The initial dataset and the processed data 
dependency graphs have different graph structures 
(see Figure 3) that do not correspond necessarily to 
the initial dataset size. The DS2 has a more integrated 
graph structure and a higher number of connected 
objects (Figure 4) than the DS1. At the same time the 
DS1 has about two times bigger initial row data size 
than the DS2. 

We have additionally analyzed the correlation of 
the processing time and the dataset size (see Figure 4 
and Figure 5) and showed that the growth of the 
execution time follows the same linear trend as the 
size and complexity growth. The data scan time is 
related mostly to the initial dataset size. The query 
parsing, resolving and graph processing time also 
depends mainly on the initial data size, but also on the 
calculated graph size (Figure 4). The linear 
correlation between the overall system processing 
time (seconds) and the dataset size (object count) can 
be seen in Figure 5.   

 

Figure 4: Dataset processing time with two main sub-
components. 

 

Figure 5: Dataset size and processing time correlation with 
linear regression (semi-log scale). 
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5.2 Dataset Visualization 

The Enterprise Dependency Graph examples (Figures 
6-8) are an illustration of the complex structure of 
dependencies between the DW storage scheme, 
access views and user reports. The example is 
generated using data warehouse and business 
intelligence lineage layers. The details are at the 
database and reporting object level, not at column 
level. At the column and report level the full data 
lineage graph would be about ten times bigger and too 
complex to visualize in a single picture. The 
following graph from the data warehouse structures 
and user reports presents about 50,000 nodes (tables, 
views, scripts, queries, reports) and about 200,000 
links (data transformations in views and queries) on a 
single image (see Figure 6). 

The real-life dependency graph examples 
illustrate the automated data collection, parsing, 
resolving, graph calculation and visualization tasks 
implemented in our system. The system requires only 
the setup and configuration tasks to be performed 
manually. The rest will be done by the scanners, 
parsers and the calculation engine. 

 

Figure 6: Data flows (blue, red) and control flows (green, 
yellow) between tables, views and reports. 

The end result consists of data flows and system 
component dependencies visualized in the navigable 
and drillable graph or table form. The result can be 
viewed as a local subgraph with fixed focus and 
suitable filter set to visualize data lineage path from 
any sources to single report with click and zoom 
navigation features. The big picture of the 
dependency network gives the full scale overview 
graph of the organization’s data flows. It allows to see 

us possible architectural, performance or security 
problems. 

 

Figure 7: Data flows between tables, views (blue) and 
reports (red). 

 

Figure 8: Control flows in scripts, queries (green) and 
reporting queries (yellow) are connecting tables, views and 
reports. 

6 CONCLUSIONS 

We have presented several algorithms and techniques 
for quantitative impact analysis, data lineage and 
change management. The focus of these methods is 
on automated analysis of the semantics of data 
conversion systems followed by employing 
probabilistic rules for calculating chains and sums of 
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impact estimations. The algorithms and techniques 
have been successfully employed in several large case 
studies, leading to practical data lineage and 
component dependency visualizations. We continue 
this research by performance measurement with the 
number of different big datasets, to present practical 
examples and draw conclusion of our approach. 

We also considering a more abstract, conceptual 
and business level approach in addition to the current 
physical/technical level of data lineage representation 
and automation. 
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