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Abstract: In this paper, the Optional Prisoner’s Dilemma game in a spatial environment, with coevolutionary rules for
both the strategy and network links between agents, is studied. Using a Monte Carlo simulation approach, a
number of experiments are performed to identify favourable configurations of the environment for the emer-
gence of cooperation in adverse scenarios. Results show that abstainers play a key role in the protection of
cooperators against exploitation from defectors. Scenarios of cyclic competition and of full dominance of
cooperation are also observed. This work provides insights towards gaining an in-depth understanding of the
emergence of cooperative behaviour in real-world systems.

1 INTRODUCTION

Evolutionary game theory in spatial environments
has attracted much interest from researchers who
seek to understand cooperative behaviour among ra-
tional individuals in complex environments. Many
models have considered the scenarios where partici-
pant’s interactions are constrained by particular graph
topologies, such as lattices (Szabó and Hauert, 2002;
Nowak and May, 1992), small-world graphs (Chen
and Wang, 2008; Fu et al., 2007), scale-free graphs
(Szolnoki and Perc, 2016; Xia et al., 2015) and, bi-
partite graphs (Gómez-Gardeñes et al., 2011). It has
been shown that the spatial organisation of strategies
on these topologies affects the evolution of coopera-
tion (Cardinot et al., 2016).

The Prisoner’s Dilemma (PD) game remains one
of the most studied games in evolutionary game the-
ory as it provides a simple and powerful framework to
illustrate the conflicts in the formation of cooperation.
In addition, some extensions of the PD game, such
as the Optional Prisoner’s Dilemma game, have been
studied in an effort to investigate how levels of coop-
eration can be increased. In the Optional PD game,
participants are afforded a third option — that of ab-
staining and not playing and thus obtaining the loner’s
payoff (L). Incorporating this concept of abstinence
leads to a three-strategy game where participants can
choose to cooperate, defect or abstain from a game
interaction.

The vast majority of the spatial models in previ-

ous work have used static and unweighted networks.
However, in many social scenarios that we wish to
model, such as social networks and real biological
networks, the number of individuals, their connec-
tions and environment are often dynamic. Thus, re-
cent studies have also investigated the effects of evo-
lutionary games played on dynamically weighted net-
works (Huang et al., 2015; Wang et al., 2014; Cao
et al., 2011; Szolnoki and Perc, 2009; Zimmermann
et al., 2004) where it has been shown that the coevo-
lution of both networks and game strategies can play
a key role in resolving social dilemmas in a more re-
alistic scenario.

In this paper we adopt a coevolutionary spatial
model in which both the game strategies and the link
weights between agents evolve over time. The in-
teraction between agents is described by an Optional
Prisoner’s Dilemma game. Previous research on spa-
tial games has shown that when the temptation to de-
fect is high, defection is the dominant strategy in most
cases. We believe that the combination of both op-
tional games and coevolutionary rules can help in the
emergence of cooperation in a wider range of scenar-
ios.

The aims of the work are, given an Optional Pris-
oner’s Dilemma game in a spatial environment, where
links between agents can be evolved, to understand
the effect of varying the:

• value of the link weight amplitude (the ratio ∆/δ).

• value of the loner’s payoff (L).
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• value of the temptation to defect (T ).

By investigating the effect of these parameters, we
aim to explore the impact of the link update rules and
to investigate the evolution of cooperation when ab-
stainers are present in the population.

Although some work has considered coevolv-
ing link weights when considering the Prisoner’s
Dilemma in a spatial environment, to our knowledge
the investigation of an Optional Prisoner’s Dilemma
game on a spatial environment, where both the strate-
gies and link weights are evolved, has not been stud-
ied to date.

The results show that cooperation emerges even
in extremely adverse scenarios where the temptation
of defection is almost at its maximum. It can be ob-
served that the presence of the abstainers are funda-
mental in protecting cooperators from invasion. In
general, it is shown that, when the coevolutionary
rules are used, cooperators do much better, being also
able to dominate the whole population in many cases.
Moreover, for some settings, we also observe inter-
esting phenomena of cyclic competition between the
three strategies, in which abstainers invade defectors,
defectors invade cooperators and cooperators invade
abstainers.

The paper outline is as follows: Section 2 presents
a brief overview of the previous work in both spa-
tial evolutionary game theory with dynamic networks
and in the Optional Prisoner’s Dilemma game. Sec-
tion 3 gives an overview of the methodology em-
ployed, outlining the Optional Prisoner’s Dilemma
payoff matrix, the coevolutionary model used (Monte
Carlo simulation), the strategy and link weight update
rules, and the parameter values that are varied in order
to explore the effect of coevolving both strategies and
link weights. Section 4 features the results. Finally,
Section 5 summarizes the main conclusions and out-
lines future work.

2 RELATED WORK

The use of coevolutionary rules constitute a new trend
in evolutionary game theory. These rules were first in-
troduced by Zimmermann et al. (2001), who proposed
a model in which agents can adapt their neighbour-
hood during a dynamical evolution of game strategy
and graph topology. Their model uses computer sim-
ulations to implement two rules: firstly, agents play-
ing the Prisoner’s Dilemma game update their strat-
egy (cooperate or defect) by imitating the strategy of
an agent in their neighbourhood with a higher pay-
off; and secondly, the network is updated by allowing
defectors to break their connection with other defec-

tors and replace the connection with a connection to
a new neighbour selected randomly from the whole
network. Results show that such an adaptation of the
network is responsible for an increase in cooperation.

In fact, as stated by Perc and Szolnoki (2010),
the spatial coevolutionary game is a natural upgrade
of the traditional spatial evolutionary game initially
proposed by Nowak and May (1992), who consid-
ered static and unweighted networks in which each
individual can interact only with its immediate neigh-
bours. In general, it has been shown that coevolving
the spatial structure can promote the emergence of co-
operation in many scenarios (Wang et al., 2014; Cao
et al., 2011), but the understanding of cooperative be-
haviour is still one of the central issues in evolutionary
game theory.

Szolnoki and Perc (2009) proposed a study of the
impact of coevolutionary rules on the spatial version
of three different games, i.e., the Prisoner’s Dilemma,
the Snow Drift and the Stag Hunt game. They intro-
duce the concept of a teaching activity, which quanti-
fies the ability of each agent to enforce its strategy on
the opponent. It means that agents with higher teach-
ing activity are more likely to reproduce than those
with a low teaching activity. Differing from previ-
ous research (Zimmermann et al., 2004, 2001), they
also consider coevolution affecting either only the de-
fectors or only the cooperators. They discuss that, in
both cases and irrespective of the applied game, their
coevolutionary model is much more beneficial to the
cooperators than that of the traditional model.

Huang et al. (2015) present a new model for the
coevolution of game strategy and link weight. They
consider a population of 100× 100 agents arranged
on a regular lattice network which is evolved through
a Monte Carlo simulation. An agent’s interaction is
described by the classical Prisoner’s Dilemma with a
normalized payoff matrix. A new parameter, ∆/δ, is
defined as the link weight amplitude and is calculated
as the ratio of ∆/δ. They found that some values of
∆/δ can provide the best environment for the evolu-
tion of cooperation. They also found that their coevo-
lutionary model can promote cooperation efficiently
even when the temptation of defection is high.

In addition to investigations of the classical Pris-
oner’s Dilemma on spatial environments, some exten-
sions of this game have also been explored as a means
to favour the emergence of cooperative behaviour.
For instance, the Optional Prisoner’s Dilemma game,
which introduces the concept of abstinence, has been
studied since Batali and Kitcher (1995). In their
work, they proposed the opt-out or “loner’s” strategy
in which agents could choose to abstain from play-
ing the game, as a third option, in order to avoid co-
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operating with known defectors. There have been a
number of recent studies exploring this type of game
(Xia et al., 2015; Ghang and Nowak, 2015; Olejarz
et al., 2015; Jeong et al., 2014; Hauert et al., 2008).
Cardinot et al. (2016) discuss that, with the introduc-
tion of abstainers, it is possible to observe new phe-
nomena and a larger range of scenarios where coop-
erators can be robust to invasion by defectors and can
dominate.

However, the inclusion of optional games with co-
evolutionary rules has not been studied yet. There-
fore, our work aims to combine both of these trends
in evolutionary game theory in order to identify
favourable configurations for the emergence of coop-
eration in adverse scenarios, where, for example, the
temptation to defect is very high.

3 METHODOLOGY

The goal of the experiments outlined in this section
is to investigate the environmental settings when co-
evolution of both strategy and link weights of the
Optional Prisoner’s Dilemma on a weighted network
takes place.

Firstly, the Optional Prisoner’s Dilemma (PD)
game will be described; secondly, the spatial environ-
ment is described; thirdly, the coevolutionary rules for
both the strategy and link weights are described and
finally, the experimental set-up is outlined.

In the classical version of the Prisoner’s Dilemma,
two agents can choose either cooperation or defec-
tion. Hence, there are four payoffs associated with
each pairwise interaction between the two agents.
In consonance with common practice (Huang et al.,
2015; Nowak and May, 1992), payoffs are character-
ized by the reward for mutual cooperation (R = 1),
punishment for mutual defection (P = 0), sucker’s
payoff (S = 0) and temptation to defect (T = b, where
1< b< 2). Note that this parametrization refers to the
weak version of the Prisoner’s Dilemma game, where
P can be equal to S without destroying the nature of
the dilemma. In this way, T > R > P ≥ S maintains
the dilemma.

The extended version of the PD game presented
in this paper includes the concept of abstinence, in
which agents can not only cooperate (C) or defect (D)
but can also choose to abstain (A) from a game inter-
action, obtaining the loner’s payoff (L = l) which is
awarded to both players if one or both abstain. As de-
fined in other studies (Cardinot et al., 2016; Szabó and
Hauert, 2002), abstainers receive a payoff greater than
P and less than R (i.e., P < L < R). Thus, considering
the normalized payoff matrix adopted, 0 < l < 1. The

payoff matrix and the associated values are illustrated
in Tables 1 and 2.

Table 1: The Optional Prisoner’s Dilemma game matrix.

C D A

C
HHHHHR

R HHHHHS
T HHHHHL

L

D
HHHHHT

S HHHHHP
P HHHHHL

L

A
HHHHHL

L HHHHHL
L HHHHHL

L

Table 2: Payoff values.

Payoff Value
Temptation to defect (T) ]1,2[
Reward for mutual cooperation (R) 1
Punishment for mutual defection (P) 0
Sucker’s payoff (S) 0
Loner’s payoff (L) ]0,1[

In these experiments, the following parameters are
used: a 100×100 (N = 1002) regular lattice grid with
periodic boundary conditions is created and fully pop-
ulated with agents, which can play with their eight
immediate neighbours (Moore neighbourhood). We
adopt an unbiased environment in which initially each
agent is designated as a cooperator (C), defector (D)
or abstainer (A) with equal probability. Also, each
edge linking agents has the same weight w = 1, which
will adaptively change in accordance with the interac-
tion.

Monte Carlo methods are used to perform the Op-
tional Prisoner’s Dilemma game. In one Monte Carlo
(MC) step, each player is selected once on average.
This means that one MC step comprises N inner steps
where the following calculations and updates occur:

• Select an agent (x) at random from the population.

• Calculate the utility uxy of each interaction of x
with its eight neighbours (each neighbour repre-
sented as agent y) as follows:

uxy = wxyPxy, (1)

where wxy is the edge weight between agents x
and y, and Pxy corresponds to the payoff obtained
by agent x on playing the game with agent y.

• Calculate Ux the accumulated utility of x, that is:

Ux = ∑
y∈Ωx

uxy, (2)

where Ωx denotes the set of neighbours of the
agent x.

• In order to update the link weights, wxy between
agents, compare the values of uxy and the average
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accumulated utility (i.e., Ūx =Ux/8) as follows:

wxy =





wxy +∆ if uxy > Ūx

wxy−∆ if uxy < Ūx

wxy otherwise
, (3)

where ∆ is a constant such that 0≤ ∆/δ≤ 1.

• In line with previous research (Huang et al., 2015;
Wang et al., 2014), wxy is adjusted to be within the
range of 1− δ to 1+ δ, where δ (0 < δ ≤ 1) de-
fines the weight heterogeneity. Note that when ∆
or δ are equal to 0, the link weight keeps constant
(w = 1), which results in the traditional scenario
where only the strategies evolve.

• In order to update the strategy of x, the accumu-
lated utility Ux is recalculated (based on the new
link weights) and compared with the accumulated
utility of one randomly selected neighbour (Uy).
If Uy >Ux, agent x will copy the strategy of agent
y with a probability proportional to the utility dif-
ference (Equation 4), otherwise, agent x will keep
its strategy for the next step.

p(sx = sy) =
Uy−Ux

8(T −P)
, (4)

where T is the temptation to defect and P is the
punishment for mutual defection. This equation
has been considered previously by Huang et al.
(2015).

Simulations are run for 105 MC steps and the frac-
tion of cooperation is determined by calculating the
average of the final 1000 MC steps. To alleviate the
effect of randomness in the approach, the final results
are obtained by averaging 10 independent runs.
The following scenarios are investigated:

• Exploring the effect of the link update rules
by varying the values of ∆/δ. Specifically,
the value of the link weight amplitude ∆/δ
is varied for a range of fixed values of the
loner’s payoff (l = [0.0, 1.0]), temptation to de-
fect (b = [1.0, 2.0]) and the weight heterogeneity
(δ = (0.0, 1.0]).

• Investigating the evolution of cooperation when
abstainers are present in the population.

• Considering snapshots of the evolution of the pop-
ulation over time at Monte Carlo steps of 0, 45,
1113, and 105.

• Investigating the relationship between ∆/δ, b and
l. Specifically, the values of b, l and ∆/δ are var-
ied for a fixed value of δ (δ = 0.8).

It is noteworthy that a wider range of values for
l, b and δ were considered in our simulations, but

for the sake of simplicity, we report only the values
of l = {0.0, 0.6}, b = {1.18, 1.34, 1.74, 1.90} and
δ = {0.2, 0.4, 0.8}, which are representative of the
outcomes at other values also.

4 RESULTS

In this section, we present some of the relevant ex-
perimental results of the simulations of the Optional
Prisoner’s Dilemma game on the weighted network.

4.1 Varying the Values of ∆/δ

Figure 1 shows the impact of the coevolutionary
model on the emergence of cooperation when the link
weight amplitude ∆/δ varies for a range of fixed val-
ues of the loner’s payoff (l), temptation to defect (b)
and weight heterogeneity (δ). In this experiment, we
observe that when l = 0.0, the outcomes of the coevo-
lutionary model for the Optional Prisoner’s Dilemma
game are very similar to those in the classical Pris-
oner’s Dilemma game (Huang et al., 2015). This re-
sult can be explained by the normalized payoff matrix
adopted in this work (Table 1). Clearly, when l = 0.0,
there is no advantage in abstaining from playing the
game, thus agents choose the option to cooperate or
defect.

In cases where the temptation to defect is less than
or equal to 1.34 (b ≤ 1.34), it can be observed that
the level of cooperation does not seem to be affected
by the increment of the loner’s payoff, except when
the advantage in abstaining is very high, i.e., l ≥ 0.8.
However, these results highlight that the presence of
the abstainers may protect cooperators from invasion.
Moreover, the difference between the traditional case
(∆/δ = 0.0) for l = {0.0, 0.6} and all other values of
∆/δ is strong evidence that our coevolutionary model
is very advantageous to the promotion of coopera-
tive behaviour. Namely, when l = 0.6, in the tra-
ditional case with a static and unweighted network
(∆/δ = 0.0), the cooperators have no chance of sur-
viving; in this scenario, when the temptation to defect
b is low, abstainers always dominate, otherwise, when
b is high, defection is always the dominant strategy.
However, when the coevolutionary rules are used, co-
operators do much better, being also able to dominate
the whole population in many cases.

4.2 Presence of Abstainers

In addition to the fact that the levels of cooperation are
usually improved in the coevolutionary model, as the
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Figure 1: Relationship between cooperation and link weight amplitude ∆/δ when the loner’s payoff (l) is equal to 0.0 (left)
and 0.6 (right).

value of the loner’s payoff increases we also observe
newer phenomena.

In the classical Prisoner’s Dilemma in this type of
environment, when the defector’s payoff is very high
(i.e., greater than 1.75) defectors spread quickly and
dominate the environment. However, Figure 1 also
shows that, for some values of l, it is possible to reach
high levels of cooperation even when the temptation
of defection b is almost at its peak.

Therefore, abstainers seem to help the popula-
tion to increase their fraction of cooperation in many
cases, but mainly in the case where the link weight
amplitude ∆/δ is higher than 0.7. This is usually a bad
scenario in the classical Prisoner’s Dilemma game.

4.3 Snapshots at Different Monte Carlo
Steps

In order to further explain the results witnessed in the
previous experiments, we investigate how the popu-
lation evolves over time. Figure 2 features the time
course of cooperation for three different values of
∆/δ = {0.0, 0.2, 1.0}, which are some of the criti-
cal points when b = 1.9, l = 0.6 and δ = 0.8. Based
on these results, in Figure 3 we show snapshots for the
Monte Carlo steps 0, 45, 1113 and 105 for the three
scenarios shown in Figure 2.

We see from Figure 2 that for the traditional case
(i.e., ∆/δ = 0.0), abstainers spread quickly and reach
a stable state in which single defectors are completely
isolated by abstainers. In this way, as the payoffs ob-
tained by a defector and an abstainer are the same,
neither will ever change their strategy. In fact, even
if a single cooperator survives up to this stage, for
the same aforementioned reason, its strategy will not
change either.

When ∆/δ = 0.2, it is possible to observe some
sort of equilibrium between the three strategies. They

reach a state of cyclic competition in which abstain-
ers invade defectors, defectors invade cooperators and
cooperators invade abstainers.

This behaviour, of balancing the three possible
outcomes, is very common in nature where species
with different reproductive strategies remain in equi-
librium in the environment. For instance, the same
scenario was observed as being responsible for pre-
serving biodiversity in the neighbourhoods of the Es-
cherichia coli, which is a bacteria commonly found in
the lower intestine of warm-blooded organisms. Ac-
cording to Fisher (2008), studies were performed with
three natural populations mixed together, in which
one population produces a natural antibiotic but is im-
mune to its effects; a second population is sensitive to
the antibiotic but can grow faster than the third popu-
lation; and the third population is resistant to the an-
tibiotic.

Because of this balance, they observed that each
population ends up establishing its own territory in the
environment, as the first population could kill off any
other bacteria sensitive to the antibiotic, the second
population could use their faster growth rate to dis-
place the bacteria which are resistant to the antibiotic,
and the third population could use their immunity to
displace the first population.

Another interesting behaviour is noticed for
∆/δ = 1.0. In this scenario, defectors are dominated
by abstainers, allowing a few clusters of cooperators
to survive. As a result of the absence of defectors,
cooperators invade abstainers and dominate the envi-
ronment.

4.4 Investigating the Relationship
between ∆/δ, b and l

To investigate the outcomes in other scenarios, we ex-
plore a wider range of settings by varying the values
of the temptation to defect (b), the loner’s payoff (l)
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Figure 2: Progress of the fraction of cooperation ρc during a Monte Carlo simulation for b = 1.9, l = 0.6 and δ = 0.8.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure 3: Snapshots of the distribution of the strategy in the Monte Carlo steps 0, 45, 1113 and 105 (from left to right) for
∆/δ equal to 0.0, 0.2 and 1.0 (from top to bottom). In this Figure, cooperators, defectors and abstainers are represented by
the colours blue, red and green respectively. All results are obtained for b = 1.9, l = 0.6 and δ = 0.8.

and the link weight amplitude (∆/δ) for a fixed value
of weight heterogeneity (δ = 0.8).

As shown in Figure 4, cooperation is the dominant
strategy in the majority of cases. Note that in the tra-
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Figure 4: Ternary diagrams of different values of b, l and ∆/δ for δ = 0.8.

ditional case, with an unweighted and static network,
i.e., ∆/δ= 0.0, abstainers dominate in all scenarios il-
lustrated in this ternary diagram. In addition, it is also
possible to observe that certain combinations of l, b
and ∆/δ guarantee higher levels of cooperation. In
these scenarios, cooperators are protected by abstain-
ers against exploitation from defectors. In most cases,
for populations with the loner’s payoff, l = [0.4,0.8],
cooperation is promoted the most.

Although the combinations shown in Figure 4 for
higher values of b (b > 1.8) are just a small subset
of an infinite number of possible values, it is clearly
shown that a reasonable fraction of cooperators can
survive even in an extremely adverse situation where
the advantage of defecting is very high. Indeed, our
results show that some combinations of high values
of l and ∆/δ such as for ∆/δ = 1.0 and l = 0.6, can
further improve the levels of cooperation, allowing for
the full dominance of cooperation.

In summary, we see that the use of a coevolution-
ary model in the Optional Prisoner’s Dilemma game
allows for the emergence of cooperation.

5 CONCLUSIONS AND FUTURE
WORK

In this paper, we studied the impact of abstinence in
the Prisoner’s Dilemma game using a coevolutionary
spatial model in which both game strategies and link
weights between agents evolve over time. We consid-
ered a population of agents who were initially organ-
ised on a lattice grid where agents can only play with
their eight immediate neighbours. Using a Monte
Carlo simulation approach, a number of experiments
were performed to observe the emergence of coopera-
tion, defection and abstinence in this environment. At
each Monte Carlo time step, an agent’s strategy (co-
operate, defect, abstain) and the link weight between
agents can be updated.

The payoff received by an agent after playing with
another agent is a product of the strategy played and

the weight of the link between agents. We explored
the effect of the link update rules by varying the val-
ues of the link weight amplitude ∆/δ, the loner’s pay-
off l, and the temptation to defect b. The aims were
to understand the relationship between these parame-
ters and also investigate the evolution of cooperation
when abstainers are present in the population.

Results showed that, in adverse scenarios where
b is very high (i.e. b ≥ 1.9), some combinations of
high values of l and ∆/δ, such as for ∆/δ = 1.0 and
l = 0.6, can further improve the levels of cooperation,
even resulting in the full dominance of cooperation.

When ∆/δ = 0.2, b = 1.9 and δ = 0.8, it was pos-
sible to observe a balance among the three strategies,
indicating that, for some parameter settings, the Op-
tional Prisoner’s Dilemma game is intransitive. In
other words, such scenarios produce a loop of dom-
inance in which abstainer agents beat defector agents,
defector agents beat cooperator agents and cooperator
agents beat abstainer agents.

In summary, the difference between the outcomes
of ∆/δ = 0.0 (i.e., a static environment with un-
weighted links) and ∆/δ = (0.0, 1.0] clearly showed
that the coevolutionary model is very advantageous
to the promotion of cooperative behaviour. In
most cases, with populations with the loner’s pay-
off, l = [0.4, 0.8], cooperation is promoted the most.
Moreover, results also showed that cooperators are
protected by abstainers against exploitation from de-
fectors.

Although recent research has considered coevolv-
ing game strategy and link weights (Section 2), to our
knowledge the investigation of such a coevolutionary
model with optional games has not been studied to
date. We conclude that the combination of both of
these trends in evolutionary game theory may shed
additional light on gaining an in-depth understanding
of the emergence of cooperative behaviour in real-
world scenarios.

Future work will consider the exploration of dif-
ferent topologies and the influence of a wider range
of scenarios, where, for example, agents could rewire
their links, which, in turn, adds another level of com-
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plexity to the model. Future work will also involve
applying our studies and results to model realistic sce-
narios, such as social networks and real biological
networks.
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