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Abstract: Evolution strategies have been successfully applied to optimization problems with rugged, multi-modal fitness
landscapes, to non linear problems, and to derivative free optimization. Usually evolution is performed by
exploiting the structure of the objective function. In this paper, we present an approach that harnesses the
adapting quantum potential field determined by the spatial distribution of elitist solutions as guidance for the
next generation. The potential field evolves to a smoother surface leveling local optima but keeping the global
structure what in turn allows for a faster convergence of the solution set. We demonstrate the applicability
and the competitiveness of our approach compared with particle swarm optimization and the well established
evolution strategy CMA-ES.

1 INTRODUCTION

Evolution Strategies have shown excellent perfor-
mance in global optimization especially when it
comes to complex multi-modal, high dimensional,
real valued problems (Kramer, 2010; Ulmer et al.,
2003). A major drawback of population based algo-
rithms is the large number of objective function evalu-
ations. Real world problems often face computational
efforts for fitness evaluations; e. g. in Smart Grid load
planning scenarios, fitness evaluation involves simu-
lating a large number of energy resources and their
behaviour (Bremer and Sonnenschein, 2014).

We propose a surrogate approach that harnesses
a continuously updating quantum potential field de-
termined by elitist solutions. On the one hand side,
the quantum field exploits global information by ag-
gregating over scattered fitness information similar to
scale space approaches (Horn and Gottlieb, 2001; Le-
ung et al., 2000), on the other side by continuously
adapting to elitist solutions, the quantum field surface
quickly flattens to a smooth surrogate for guiding fur-
ther sampling directions. To achieve this, the surro-
gate is a result of Schrödinger’s equation of which a
probability function is derived that determines the po-
tential function after a clustering approach (cf. (Horn
and Gottlieb, 2001)). We associate minima of the po-
tential field, created in denser regions of good solu-
tions’ positions with areas of interest for further inves-

tigation. Thus, offspring solutions are generated with
a trend in descending the potential field. By harness-
ing the quantum potential as a surrogate, we achieve
a faster convergence with less objective function calls
compared with using the objective function alone. In
lieu thereof the potential field has to be evaluated at
selected point. Although a fine grained computation
of the potential field would be a computationally hard
task in higher dimensions (Horn and Gottlieb, 2001),
we achieve a better overall performance because we
need to calculate the field only at isolated data points.

The paper starts with a review of using quan-
tum mechanics in computational intelligence and in
particular in evolutionary algorithms; we briefly re-
cap the quantum potential approach for clustering
and present our adaption for integration into evolu-
tion strategies. We conclude with an evaluation of the
approach with the help of several well-known bench-
mark test functions and demonstrate the competitive-
ness to two competitive algorithms: particle swarm
optimization (PSO) and co-variance matrix adaption
evolution strategy (CMA-ES).

2 RELATED WORK

Several evolutionary algorithms have been introduced
to solve nonlinear complex optimization problems
with multi-modal, rugged fitness landscapes. Each
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of these method has its own characteristics, strengths
and weaknesses. A common characteristics in all EAs
is the generation of an offspring solution set in order
to explore the characteristics of the objective function
in the neighbourhood existing solutions. When the
solution space is hard to explore or objective evalu-
ations are costly, computational effort is a common
drawback for all population-based schemes. Many
efforts have been already spent to accelerate conver-
gence of these methods. Example techniques are: im-
proved population initialization (Rahnamayan et al.,
2007), adaptive populations sizes (Ahrari and Shariat-
Panahi, 2013) or exploiting sub-populations (Rigling
and Moore, 1999).

Sometimes a surrogate model is used in case
of computational expensive objective functions
(Loshchilov et al., 2012) to substitute a share of objec-
tive function evaluations with cheap surrogate model
evaluations. The surrogate model represents a learned
model of the original objective function. Recent ap-
proaches use Radial Basis Functions, Polynomial Re-
gression, Support Vector Regression, Artificial Neu-
ral Network or Kriging (Gano et al., 2006); each ap-
proach with individual advantages and drawbacks.

At the same time, quantum mechanics has in-
spired several fields of computational intelligence
such as data mining, pattern recognition or optimiza-
tion. In (Horn and Gottlieb, 2001) a quantum me-
chanics based method for clustering has been in-
troduced. Quantum clustering extends the ideas of
Scale Space algorithms and Support Vector Cluster-
ing (Ben-Hur et al., 2001; Bremer et al., 2010) by
representing an operator in Hilbert space by a scaled
Schrödinger equation that yields a probability func-
tion as result. The inherent potential function of the
equation that can be analytically derived from the
probability function is used to identify barycenters of
data cluster by associating minima with centers. In
(Weinstein and Horn, 2009a) this approach has been
extended to a dynamic approach that uses the fully
fledged time dependant variant of the Schrödinger
equation to allow for a interactive visual data mining
especially for large data sets (Weinstein et al., 2013).

We adapted and extended the quantum field part
of the clustering approach to optimization and use
the potential function to associate already found so-
lutions from the objective domain with feature vec-
tors in Hilbert space; but with keeping an emphasis of
the total sum (cf. (Horn and Gottlieb, 2001)) and thus
with keeping in mind all improvements of the ongo-
ing optimum search.

(Rapp and Bremer, 2012) used a quantum po-
tential approach derived from quantum clustering
to detect abnormal events in multidimensional data

streams. (Yu et al., 2010) used quantum clustering
for weighing linear programming support vector re-
gression. In this work, we derive a sampling method
for a pµ`λq-ES from the quantum potential approach
originally used for clustering by (Horn and Gottlieb,
2002).

A quantum mechanical extension to particle
swarm optimization has been presented e.g. in (Sun
et al., 2004; Feng and Xu, 2004). Here particles move
according to quantum mechanical behavior in contrast
to the classical mechanics ruled movement of parti-
cles in standard PSO. Usually a harmonic oscillator
is used. In (Loo and Mastorakis, 2007) both meth-
ods quantum clustering and quantum PSO have been
combined by deriving good particle starting positions
from the clustering method first. For the simulated
Annealing (SA) approach also a quantum extension
has been developed (Suzuki and Nishimori, 2007).
Whereas in classical SA local minima are escaped by
leaping over the barrier with a thermal jump, quantum
SA introduces the quantum mechanical tunneling ef-
fect for such escapes.

We integrated the quantum concept into evolution
strategies; but by using a different approach: we har-
ness the information in the quantum field about the
so far gained success as a surrogate for generating the
offspring generation. By using the potential field, in-
formation from all samples at the same time is con-
densed into a directed generation of the next genera-
tion.

3 THE SCHRÖDINGER
POTENTIAL

We start with a brief recap of the Schrödinger po-
tential and describe the concept following (Horn and
Gottlieb, 2002; Horn and Gottlieb, 2001; Weinstein
and Horn, 2009b). Let

Hψ” p´σ2
pot

2
∇2`V pxxxqqψpxxxq “ Eψpxxxq (1)

be the Schrödinger equation rescaled to a single free
parameter σpot and eigenstate ψpxxxq. H denotes the
Hamiltonian operator corresponding to the total en-
ergy E of the system. ψ is the wave function of the
quantum system and ∇2 denotes the Laplacian differ-
ential operator. V corresponds to the potential energy
in the system. In case of a single point at xxx0 Eq. (1)
results in

V “ 1
2

σ2
potpxxx´ xxx0q2 (2)

E “ d
2

(3)
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Figure 1: Function (left column) and exemplary evolution (after 1, 3 and 8 iterations) of the quantum potential that guides the
search for minima for the test functions: Alpine, Goldstein-Price and Himmelblau (from top to bottom).

with d denoting the dimension of the field. In this case
ψ is the ground state of a harmonic oscillator. Given
an arbitrary set of points, the potential at a point xxx can
be expressed by

V pxxxq “ E`
σ2

pot
2 ∇2ψ

ψ

“ E´ d
2
` 1

2σ2
potψ

ÿ

i

pxxx´ xxxiq2e
´ pxxx´xxxiq2

2σ2
pot .

(4)

In Eq. (4) the Gaussian wave function

ψpxxxq “
ÿ

i

pxxx´ xxxiq2e
´ pxxx´xxxiq2

2σ2
pot (5)

is associated to each point and summed up. Please
note that the bandwidth parameter (usually named σ,
cf. (Horn and Gottlieb, 2002)) has been denoted σpot
to discriminate the bandwidth of the wave function
and the variance σ in the mutation used in the evo-
lutions strategy later. In quantum mechanics, usually

the potential V pxxxq is given and solutions or eigenfunc-
tions ψpxxxq are sought. In our approach we are already
given ψpxxxq determined by a set of data points. The
set of data points is given by elitist solutions. We then
look for the potential V pxq whose solution is ψpxxxq.

The wave function part corresponds with the
Parzen window estimator approach for data clustering
(Parzen, 1962) or with scale-space clustering (Leung
et al., 2000) that interprets this wave function as the
density function that could have generated the under-
lying data set. The maxima of this density function
correspond therefore with data centers.

In quantum clustering and by requiring ψ to be the
ground state of the Hamiltonian H the potential field
V establishes a surface that shows more pronounced
minima (Weinstein and Horn, 2009b). V is unique up
to a constant factor. By setting the minimum of V to
zero it follows that

E “´min
σ2

pot
2 ∇2ψ

ψ
. (6)
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With this convention V is determined uniquely with
0ď E ď d

2 . In this case, E is the lowest eigenvalue of
the operator H and thus describes the ground state.

V is expected to exhibit one or more minima
within some region around the data set and grow
quadratically on the outside (Horn and Gottlieb,
2002). In quantum clustering, these minima are as-
sociated with cluster centers. We will interpret them
as balance points or nuclei where the minimum of an
associated function f lies if the set of data points that
defines V is a selection of good points (in the sense of
a good fitness according to f ).

4 THE ALGORITHM

We start with a general description of the idea. In our
approach we generate the quantum potential field of
an elitist selection of samples. Out of a sample of
λ solutions the best µ are selected according to the
objective function. These µ solutions then define a
quantum potential field that exhibits troughs at the
barycenters of good solution taking into account all
good solutions at the same time. In the next step this
potential field is used to guide the sampling of the next
generation of λ offspring solutions from which the
next generation is selected that defines the new field.
In this way, the potential field continuously adapts in
each iteration to the so far found best solutions.

The advantage of using the potential field results
from its good performance in identifying the barycen-
ters of data points. Horn and Gottlieb (Horn and Got-
tlieb, 2001) demonstrated the superior performance
compared with density based approaches like Scale
Space or Parzen Window approaches (Roberts, 1997;
Parzen, 1962). Transfered to optimization this means
the quantum potential allows for a better identification
of local optima. As they can be explored faster they
can be neglected earlier which in turn leads to a faster
convergence of the potential field towards the global
optimum (cf. Figure 1).

Figure 1 gives an impression of the adaption pro-
cess that transforms the quantum field into an easier
searchable function. Each row shows the situation af-
ter 1, 3 and 8 iterations for different 2-dimensional ob-
jective functions. The left column displays the origi-
nal objective function; from left to right the evolving
potential field is displayed together with the respec-
tive offspring solutions that represent the so far best.
The minimum of the potential field evolves towards
the minimum of the objective function (or towards
more than one optimum if applicable).

Figure 2 shows the approach formally. Starting
from an initially generated sample X equally dis-

X – txxxi „Upxlo,xupqdu, 1ď iď n
repeat

S ÐH
repeat

xxxz – xxxi P X , i„Up1, |X |q
sss„N pxxxz,σ2q
if pď eV pxxxzq´V psssq, p„Up0,1q then

SSSÐ SSSY sss
end if

until |S | ““ λ
V ÐV pS ,σpotq
X Ð selectpS , f ,µq
σÐ σ ¨ω

until } f pxbestq´ f px˚q} ď ε
Figure 2: Basic scheme for the Quantum Sampling ES Al-
gorithm.

tributed across the whole search domain defined by
a box constraint in each dimension. Next, the off-
spring is generated by sampling λ points normally
distributed around the µ solutions from the old gen-
eration with an each time randomly chosen parent
solution as expectation and with variance σ2 that
decreases with each generation. We use a rejec-
tion sampling approach with the metropolis criterion
(Metropolis et al., 1953) for acceptance applied to the
difference in the potential field between a new candi-
date solution and the old solution. The new sample is
accepted with probability

pa “minp1,e∆V q. (7)

∆V “ V pxoldq´V pxnewq denotes the level difference
in quantum field. A descent within the potential field
is always accepted. A (temporary) degradation in
quantum potential level is accepted with a probabil-
ity Pa (eq. 7) determined by the level of degradation.

As long as there exists at least one pair txxx1,xxx2u Ă
S with xxx1 ‰ xxx2, the potential field has a minimum at
xxx1 with xxx1 ‰ xxx1^xxx1 ‰ xxx1. Thus, the sampling will find
new candidates. The sample variance σ2 is decreased
in each iteration by a rate ω. Finally, for the next iter-
ation, the solution set X is updated by selecting the µ
best from offspring S .

The process is repeated until any stopping crite-
rion is met; apart from having come near enough the
minimum we regularly used an upper bound for the
maximum number of iterations (or rather: number of
fitness evaluations respectively).

5 RESULTS

We evaluated our evolution strategy with a set of
well known test functions developed for benchmark-
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Figure 3: Comparing the convergence of using the quantum
field as surrogate with the plain approach working on the
objective function directly. For testing, the 2-dimensional
Alpine function has been used.

ing optimization heuristics. We used the follow-
ing functions: Alpine, Goldstein-Price, Himmelblau,
Bohachevsky 1, generalized Rosenbrock, Griewank,
Sphere, Booth, Chichinadze and Zakharov (Ulmer
et al., 2003; Ahrari and Shariat-Panahi, 2013; Him-
melblau, 1972; Yao et al., 1999); see also appendix
A. These functions represent a mix of multi-modal, 2-
dimensional and multi-dimensional functions, partly
with a huge number of local minima and steep as
well as shoal surroundings of the global optimum and
broad variations in characteristics and domain sizes.

Figure 1 shows some of the used functions (left
column) together with the respective evolution of the
quantum potential field that guides the search towards
the minimum at p0,0q for the Alpine function and
p0,´1q for Goldstein-Price; the Himmelblau function
has four global minima which are all found. The fig-
ure also shows the evolution of the solution popula-
tion. In the next step, we tested the performance of
our approach against competitive approaches.

First, we tested the effect of using the quantum
field as adaptive surrogate compared with the same
update strategy working directly on the fitness land-
scape of the objective function. Figure 3 shows the
convergence of the error on the Alpine test function
for both cases. Although the approach with surrogate
converges slightly slower in the beginning it clearly
outperforms the plain approach without quantum sur-
rogate. Figure 4 shows the same effect for the 20-
dimensional case. Both results show the convergence
of the mean error for 100 runs each.

In a next step, we compared our approach
with two well-known heuristics: particle swarm
optimization (PSO) from (Kennedy and Eber-
hart, 1995) and the covariance matrix adaption
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Figure 4: Convergence of using the quantum field as sur-
rogate compared to the plain approach. Depicted are the
means of 100 runs on the 20-dimensional Alpine function.
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Figure 5: Comparing the convergence (means of 100
runs) of CMA-ES and the quantum approach on the 2-
dimensional Booth function.
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Figure 6: Comparing the convergence of CMA-ES and the
quantum approach on the 20-dimensional Griewank func-
tion on the domain r´2048,2048s20. Both algorithms have
been stopped after 1500 iterations.
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evolution strategy (CMA-ES) by (Hansen, 2011).
Both strategies are well-known, established, and
have been applied to wide range of optimiza-
tion problems. We used readily available and
evaluated implementations from Jswarm-PSO
(http://jswarm-pso.sourceforge.net) and commons
math (http://commons.apache.org/proper/commons-
math).

All algorithms have an individual, strategy spe-
cific set of parameters that usually can be tweaked to
some degree for a problem specific adaption. Never-
theless, default values that are applicable for a wide
range of functions are usually available. For our ex-
periments, we used the following default settings. For
the CMA-ES, the (external) strategy parameters are
λ,µ,wi“1...µ, controlling selection and recombination;
cσ and dσ for step size control and cc and µcov control-
ling the covariance matrix adaption. We have chosen
to set these values after (Hansen, 2011).

λ“ 4` t3lnnu, µ“
„

λ
2


, (8)

wwwi “ lnpλ
2 `0.5q´ ln i

ř j“1
µ

λ
2 `0.5q´ ln i

, i“ 1, . . . ,µ (9)

Cc “ 4
n`4

, µcov “ µe f f , (10)

Ccov “ 1
µcov

2
pn`?2q2

`
ˆ

1´ 1
µcov

˙
min

ˆ
1,

2µcov´1
pn`2q2`µcov

˙
,

(11)

These settings are specific to the dimension N of the
objective function. An in-depth discussion of these
parameters is also given in (Hansen and Ostermeier,
2001).

For the PSO, we used values of 0.9 for the weights
and 1 for the inertia parameter as default setting (Shi
and Eberhart, 1998).

For the quantum field strategy, we empirically
found the following values as a useful setting for a
range of objective functions. The initial mutation
variance has been set to σ “ d{10 for an initial di-
ameter d of the search space (domain of the objec-
tive function). The shrinking rate of the variance has
been set to ω“ 0.98 and the bandwidth in the poten-
tial equation (4) has been set to σpot “ 0.4. For the
population size we chose µ “ 10 and λ “ 50 if not
otherwise stated.

First, we compared the convergence of the quan-
tum strategy with the CMA-ES. Figure 5 shows a
first result for the 2-dimensinal Booth function (with
a minimum of zero). The quantum approach has been
stopped at errors below 1ˆ 10´21 to avoid numeri-
cal instabilities. The used CMA-ES implementation

has a similar condition integrated into its code. Com-
paring iterations, the quantum approach converges
faster than CMA-ES. Figure 5 shows the result for
the 20-dimensional Griewank function with a search
domain of r´2049,2048s20. Here, the quantum ap-
proach achieves about the same result as the CMA-ES
within less iterations. Comparing iterations does not
yet shed light on performance.

As the performance is determined by the number
of operations that have to be conducted in each itera-
tion, the following experiments consider the number
of function evaluation calls rather than iterations. Ta-
ble 1 shows the results for a bunch of 2-dimensional
test functions. For each test function and each al-
gorithm the achieved mean (averaged over 100 runs)
solution quality and the needed number of function
evaluations is displayed. The solution quality is ex-
pressed as the error in terms of remaining difference
to the known global optimum. As stopping criterion
this time each algorithm has been equipped with two
conditions: error below 5ˆ10´17 and a given budget
of at most 5ˆ 107 evaluations. For the quantum ap-
proach two counts of evaluation functions are given,
because due to the nature of surrogate approaches a
share of function evaluations is substituted by surro-
gate evaluations. Thus, total evaluations refers to the
sum of function and surrogate evaluations.

The results show that CMA-ES is in general un-
beatable in terms of function evaluations whereas the
quantum approach in half of the cases gains the more
accurate result. The PSO succeeds for the Griewank
and the Chichinadze function. For the 20-dimensional
cases in Table 2 the quantum approach gains the most
accurate result in most of the cases. The CMA-ES
winning margin of a low number of evaluations de-
creases compared with the quantum approach, but is
still prominent. Nevertheless, the number of neces-
sary function evaluations for the quantum approach
can still be reduced when using a lower population
size. But, such tuning is subject to the problem at
hand. On the other hand, notwithstanding the low
number of objective evaluations, the CMA-ES needs
higher processing time for high-dimensional prob-
lems due to the fact that CMA-ES needs – among oth-
ers – to conduct eigenvalue decompositions of its co-
variance matrix (Opn3q) with number of dimensions n
(Knight and Lunacek, 2007). Table 3 gives an expres-
sion for necessary computation (CPU-) times (Java 8,
2.7 GHz Quadcore) for the 100-dimensional Sphere
function for CMA-ES and a quantum approach with
reduced populations size (µ“ 4, λ“ 12).

All in all, the quantum approach is competitive to
the established algorithms and in some cases even su-
perior.
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Table 1: Results for comparing CMA-ES, PSO and the quantum approach with a set of 2-dimensional test functions. The
error denotes the remaining difference to the known optimum; obj. evaluations and total evaluations refer to the number of
conducted function evaluations and the sum of function and quantum surrogate evaluations respectively. The latter is only
applicable to the quantum approach.

problem algorithm error obj. evaluations total evaluations

Alpine
CMA-ES 3.954ˆ10´12 ˘ 4.797ˆ10´12 746.38 ˘ 90.81 n/a

PSO 5.543ˆ10´9 ˘ 3.971ˆ10´8 500000.00 ˘ 0.00 n/a
quantum 8.356ˆ10´16 ˘ 4.135ˆ10´16 99363.00 ˘ 66100.02 198996.53 ˘ 132200.50

Griewank
CMA-ES 2.821ˆ102 ˘ 2.254ˆ102 174.22 ˘ 137.63 n/a

PSO 4.192ˆ10´4 ˘ 1.683ˆ10´3 500000.00 ˘ 0.00 n/a
quantum 6.577ˆ10´3 ˘ 5.175ˆ10´3 201361.50 ˘ 47207.02 472348.75 ˘ 94420.25

GoldsteinPrice
CMA-ES 0.459ˆ101 ˘ 1.194ˆ102 613.96 ˘ 203.03 n/a

PSO 1.698ˆ100 ˘ 1.196ˆ101 500000.00 ˘ 0.00 n/a
quantum 1.130ˆ100 ˘ 1.255ˆ101 250000.00 ˘ 0.00 500012.75 ˘ 3.48

Bohachevsky1
CMA-ES 3.301ˆ10´2 ˘ 1.094ˆ10´1 672.70 ˘ 59.91 n/a

PSO 1.626ˆ10´10 ˘ 1.568ˆ10´9 500000.00 ˘ 0.00 n/a
quantum 4.707ˆ10´16 ˘ 3.246ˆ10´16 39641.50 ˘ 1672.63 87548.03 ˘ 3377.00

Booth
CMA-ES 4.826ˆ10´17 ˘ 1.124ˆ10´16 605.68 ˘ 49.55 n/a

PSO 5.985ˆ10´14 ˘ 3.743ˆ10´13 500000.00 ˘ 0.00 n/a
quantum 5.695ˆ10´16 ˘ 2.957ˆ10´16 33696.00 ˘ 1357.07 68283.18 ˘ 2711.51

Chichinadze
CMA-ES 0.953ˆ101 ˘ 4.125ˆ101 698.44 ˘ 200.31 n/a

PSO 0.226ˆ100 ˘ 2.247ˆ10´1 500000.00 ˘ 0.00 n/a
quantum 1.327ˆ101 ˘ 8.376ˆ100 50.00 ˘ 0.00 180.68 ˘ 12.63

Table 2: Results for comparing CMA-ES, PSO and the quantum approach with a set of 20-dimensional test functions with the
same setting as in Table 1.

problem algorithm error obj. evaluations total evaluations

Rosenbrock
CMA-ES 1.594ˆ107 ˘ 6.524ˆ107 10678.60 ˘ 6514.47 n/a

PSO 1.629ˆ1010 ˘ 1.759ˆ1010 50000000 ˘ 0.00 n/a
quantum 3.884ˆ107 ˘ 1.470ˆ108 23291850.00 ˘ 3166.67 50001008.27 ˘ 557.53

Griewank
CMA-ES 5.878ˆ101 ˘ 1.082ˆ102 8734.48 ˘ 7556.50 n/a

PSO 1.429ˆ102 ˘ 3.539ˆ102 50000000 ˘ 0.00 n/a
quantum 2.267ˆ10´3 ˘ 3.973ˆ10´3 6929090.0 ˘ 974963.9 17269617.9 ˘ 1949920.8

Zakharov
CMA-ES 9.184ˆ10´16 ˘ 1.068ˆ10´15 8902.24 ˘ 845.05 n/a

PSO 7.711ˆ101 ˘ 5.961ˆ101 50000000 ˘ 0.00 n/a
quantum 8.978ˆ10´17 ˘ 9.645ˆ10´18 1021370.00 ˘ 4802.47 2962737.19 ˘ 10126.34

Spherical
CMA-ES 1.200ˆ10´15 ˘ 1.258ˆ10´15 8678.80 ˘ 912.13 n/a

PSO 2.637ˆ100 ˘ 7.517ˆ100 50000000 ˘ 0.00 n/a
quantum 8.943ˆ10´17 ˘ 1.036ˆ10´17 973750.00 ˘ 4243.53 2674716.70 ˘ 8844.04

Alpine
CMA-ES 9.490ˆ10´12 ˘ 3.331ˆ10´11 15196.48 ˘ 570.76 n/a

PSO 4.021ˆ100 ˘ 2.442ˆ100 50000000 ˘ 0.0 n/a
quantum 9.272ˆ10´17 ˘ 5.857ˆ10´18 1867830.0 ˘ 3795.41 4771580.5 ˘ 8390.4
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Table 3: Comparing computational performace of CMA-ES and quantum approach with the 100-dimensional Sphere function.

algorithm error total evaluations CPU time / nsec.

CMA-ES 1.593ˆ10´16 ˘ 1.379ˆ10´16 129204.4 ˘ 18336.1 5.189ˆ1010 ˘ 6.918ˆ109

quantum 9.861ˆ10´17 ˘ 1.503ˆ10´18 161172.8 ˘ 626.8 4.029ˆ109 ˘ 1.040ˆ108

6 CONCLUSION

We introduced a novel evolution strategy for global
optimization that uses the quantum potential field de-
fined by elitist solutions for generating the offspring
solution set.

By using the quantum potential, information about
the fitness landscape of scattered points is condensed
into a surrogate for guiding further sampling instead
of looking at different single solutions; one at a time.
In this way, the quantum surrogate tries to fit the
search distribution to the shape of the objective func-
tion like CMA-ES (Hansen, 2006). The quantum sur-
rogate adapts continuously as the optimization pro-
cess zooms into areas of interest.

Compared with a population based solver and
CMA-ES as established evolution strategy, we
achieved a competitive and sometimes faster conver-
gence with less objective function calls. We tested
our method on ill-conditioned problems as well as on
simple problems finding it performing equally good
on both.
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APPENDIX

Used test functions (Ulmer et al., 2003; Ahrari and
Shariat-Panahi, 2013; Himmelblau, 1972; Yao et al.,
1999; Mishra, 2006).

Alpine:

f1pxxxq “
nÿ

i“1

|xi sinpxiq`0.1xi|, (12)

´10ď xi ď 10 with xxx˚ “ p0, . . . ,0q and f1pxxx˚q “ 0.
Goldstein-Price:
f2pxxxq “p1`px1` x2`1q2¨

p19´14x1`2x2
1´14x2`6x2x2`3x2

2qq¨
p30`p2x1´3x2q2¨
p18´32x1`12x2

1`48x2´36x1x2`27x22qq,
(13)

´2ď x1,x2 ď 2 with xxx˚ “ p0,´1q and f2pxxx˚q “ 3.
Himmelblau:

f3pxxxq “ px2
1` x2´11q2`px1` x2

2´7q2 (14)

´10 ď x1,x2 ď 10 with f3pxxx˚q “ 0 at four identical
local minima.
Bohachevsky 1:

f4pxxxq“ x2
1`2x2

2´0.3cosp2πx1q´0.4cosp4πx2q`0.7,
(15)

´100ď x1,x2 ď 100 with xxx˚ “ p0,0q and f4pxxx˚q “ 0.
Generalized Rosenbrock:

f5pxxxq “
n´1ÿ

i“1

pp1´ xiq2`100pxi`1´ x2
i q2q, (16)

´2048ď xi ď 2048 with xxx˚ “ p1, . . . ,1q f5pxxx˚q “ 0.
Griewank:

f6pxxxq “ 1` 1
200

nÿ

i“1

x2
i ´

nź

i“0

cosp xi?
i
q, (17)

´100ď xi ď 100 with xxx˚ “ p0, . . . ,0q f6pxxx˚q “ 0.
Zakharov:

f7pxxxq “
nÿ

i“1

x2
i `p

nÿ

i“1

0.5ixiq2`p
nÿ

i“1

0.5ixiq4, (18)

´5ď xi ď 10 with xxx˚ “ p0, . . . ,0q f7pxxx˚q “ 0.
Sphere:

f8pxxxq “
nÿ

i“1

x2
i , (19)

´5ď xi ď 5 with xxx˚ “ p0, . . . ,0q f8pxxx˚q “ 0.
Chichinadze:

f9pxxxq “ x2
1´12x1`11`10cospπx1{2q

`8sinp5πx1q´p1{5q0.5e´0.5px2´0.5q2 ,
(20)

´30ď x1,x2 ď 30 with xxx˚ “ p5.90133,0.5q f9pxxx˚q “
´43.3159.
Booth:

f10pxxxq “ px1`2x2´7q2p2x1` x2´5q2, (21)

´20ď x1,x2 ď 20 with xxx˚ “ p1,3q f9pxxx˚q “ 0.
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