
A Human-Computer Interface based on Electromyography 
Command-Proportional Control 

Sergey Lobov1, Nadia Krilova1, Innokentiy Kastalskiy1, Victor Kazantsev1  
and Valeri A. Makarov1,2 

1Lobachevsky State University of Nizhny Novgorod, Gagarin Ave. 23, 603950, Nizhny Novgorod, Russia 
2Instituto de Matemática Interdisciplinar, Applied Mathematics Dept., Universidad Complutense de Madrid,  

Avda Complutense s/n, 28040, Madrid, Spain 
 

Keywords: Electromyography, Human-Computer Interface, Pattern Classification, Artificial Neural Networks. 

Abstract: Surface electromyographic (sEMG) signals represent a superposition of the motor unit action potentials that 
can be recorded by electrodes placed on the skin. Here we explore the use of an easy wearable sEMG 
bracelet for a remote interaction with a computer by means of hand gestures. We propose a human-
computer interface that allows simulating “mouse” clicks by separate gestures and provides proportional 
control with two degrees of freedom for flexible movement of a cursor on a computer screen. We use an 
artificial neural network (ANN) for processing sEMG signals and gesture recognition both for mouse clicks 
and gradual cursor movements. At the beginning the ANN goes through an optimized supervised learning 
using either rigid or fuzzy class separation. In both cases the learning is fast enough and requires neither 
special measurement devices nor specific knowledge from the end-user. Thus, the approach enables 
building of low-budget user-friendly sEMG solutions. The interface was tested on twelve healthy subjects. 
All of them were able to control the cursor and simulate mouse clicks. The collected data show that at the 
beginning users may have difficulties that are reduced with the experience and the cursor movement by 
hand gestures becomes smoother, similar to manipulations by a computer mouse. 

1 INTRODUCTION 

Recent years witness a rapidly growing interest to 
the development of devices controlled by 
electromyographic (EMG) signals through a human-
machine interface. There have been proposed 
interfaces controlling personal computers (PC) 
(Chowdhury et al., 2013; “Myo™ Gesture Control 
Armband”, 2013), mobile and humanoid robots 
(Wang et al., 2012; Lobov et al., 2015a; Lobov et 
al., 2015b), powered prostheses (Roche et al., 2014; 
Hahne et al., 2014), and exoskeletons (Kiguchi and 
Hayashi, 2012; Singh and Chatterji, 2013; Mironov 
et al., 2015), among others. Despite technical differ-
rences in the implementation, such devices in gene-
ral exploit quite similar controlling strategies (see, 
e.g., Peerdeman et al., 2011; Roche et al., 2014). 

The simplest approach uses a single-channel 
recording of the bioelectrical activity of a muscle 
and applies either proportional (gradual) (Bottomley 
and Cowell, 1964) or trigger-like (Kobrinskiy, 1960) 
transformation to generate the controlling output. 
Multi-channel setups allow for simultaneous 

treatment of the activity of several muscles and, in 
general, are more promising due to higher number of 
degrees of freedom involved in the analysis. Then, 
commands sent to an external device can be 
evaluated either by a regression over EMG signals 
or by a classification EMG in terms of the classical 
pattern recognition problem (Kiguchi and Hayashi, 
2012; Roche et al., 2014). 

Some of the proposed techniques have been 
implemented in commercially available devices. For 
example, the wearable bracelet MYO™ (Thalmic 
Labs Inc.) employs classification of five hand 
gestures for managing a personal computer (PC) 
(“Myo™ Gesture Control Armband”, 2013). This 
bracelet, however, does not implement sEMG-based 
proportional control of a PC cursor. Instead, it uses 
measurements of spatial coordinates of a hand. This 
imposes restrictions for the use of the device by 
disabled people, e.g. by amputees.  

The powered prostheses available on the market 
support either single channel or multichannel 
regression strategies generating controlling output 
(Roche et al., 2014). At the time being, pattern 
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recognition methods have not been implemented yet 
due to a limited number of possible types of 
movements. Although the regression based methods 
showed important advances, there also have been 
revealed weak points. For example, the setup tuning 
procedure usually takes relatively long time and 
requires specific instruments for measuring the exact 
position of different parts of the arm (Fougner et al., 
2012; Jiang et al., 2012; Hahne et al., 2014). 

Artificial neural networks (ANNs) have also 
widely been used to solve both sEMG classification 
and regression problems. Their accuracy is rather 
high in comparison to other approaches (see, e.g., 
Peerdeman et al., 2011; Baspinar et al., 2013). 
However, the adaptation of ANNs to commercially-
ready human-computer interfaces is still an open 
problem that also requires investigation of the user 
experience and potential restrictions. 

In this work we describe a low-cost human-
computer interface that uses multichannel sEMG 
signals processed by ANN. An output of the ANN is 
then used as a controlling signal for a PC. Thus, the 
gesture classification and regression are strongly 
overlapping processes made by the ANN. Moreover, 
the ANN learning can be accomplished relatively 
fast and requires no special measurement techniques. 
Using this interface a user can move a mouse cursor 
on a computer screen by hand movements (muscle 
contraction) and simulate mouse clicks. Then 
disabled people and amputees can use such an 
interface in their daily life. 

2 METHODS 

2.1 Subjects and Testing Task 

For experimental purpose we recruited 12 healthy 
volunteers of either sex from 21 to 41 years old. The 
study complied with the Helsinki declaration 
adopted in June 1964 (Helsinki, Finland) and revised 
in October 2000 (Edinburg, Scotland). The Ethics 
Committee of the Lobachevsky State University of 
Nizhny Novgorod approved the experimental 
procedure. All participants gave their written 
consent. 

After machine learning of the interface ANN 
(individual for each subject) all participants were 
asked to move remotely (using hand gestures) a PC 
pointer in Windows OS and to perform the 
following testing task: open calculator application, 
type "2 + 2 =", find the result and close the 
application.  Each participant performed the testing 
task twice to examine two types of the learning 

procedures (see below). Then each participant 
described verbally his/her user experience. 

All subjects had no previous experience with 
sEMG interfaces, except one who used MYO 
bracelet for two weeks. For this "experienced" user 
an additional test was developed. The user was 
asked to connect four points on the computer screen 
forming a diamond: a) by using a computer mouse 
and b) by the sEMG interface. Then the performance 
of "diagonal” movements was evaluated as ܲ = 1 – ௜ܮ − ௠ܮ௠ܮ , (1)

were ܮ௜ and ܮ௠ are the lengths of the curves drawn 
by means of the sEMG interface and computer 
mouse, respectively.  

 

Figure 1: The hardware-software system MyoCursor. User 
with a MYO bracelet placed on forearm controls a PC. 
The bracelet transmits eight sEMG signals through a 
Bluetooth interface to the PC equipped with MyoCursor 
software. 

2.2 Myocursor Hardware-Software 
Setup 

Figures 1 and 2 show the developed hardware-
software system, called MyoCursor. The system 
consists of a MYO bracelet worn on a forearm of the 
user and a PC with specially designed software (Fig. 
1). The bracelet has eight equispaced sensors 
acquiring myographic signals at F = 1 kHz rate. 
However, our tests have shown that it cannot deliver 
data with the frequency above 300 Hz. Missing data 
are filled in by returning previously sampled values. 
The sEMG signals are sent through a Bluetooth 
interface to a PC. We use the MYO SDK to access 
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raw eight-channel data, while the built-in software 
of the bracelet is disabled. Acquired signals are then 
processed by MyoCursor software in real-time (Fig. 
2). The software performs the recognition of hand 
gestures and estimates the muscle efforts that finally 
control the cursor in Windows OS (Microsoft Inc.) 
in a way similar to that one can achieve with 
ordinary computer mouse. 

 

Figure 2: MyoCursor interface. The software processes in 
real time the sEMG signals and generates commands 
controlling the mouse cursor. Left-top: controlling hand 
gestures, red button marks the recognized gesture (wrist 
flexion). Right: Example of eight sEMG signals 
corresponding to the performed gesture (vertical and 
horizontal axes are in mV and s, respectively). Left-
bottom: Controlling toolbars. 

2.3 Basic Hand Gestures Imitating 
Mouse Manipulations 

Natural hand gestures can be extremely rich. For the 
human-computer interface we have selected the 
following seven static hand gestures as basic motor 
patterns: 1) hand at rest is used for eliminating the 
cursor trend (see below); 2) hand clenched in a fist 
simulates mouse-left click; 3,4) wrist flexion and 
extension imitates the cursor movement to the left 
and to the right, respectively; 5,6) radial and ulnar 
deviations simulate up and down cursor movements, 
respectively; and 7) extended palm (fingers together 
or separately) is used for imitation of the mouse-
right click. An artificial neural network (see below) 
should learn sEMG patterns associated with these 
basic motor patterns. For machine learning we 
adopted two procedures: 

i) A user performs two series each consisting 
seven basic gestures.  

ii) A user performs two series as in (i) and four 
additional gestures that are combination of pair 

gestures 3-6 (e.g. simultaneous wrist flexion 
(3) and radial deviation (5), which serves for 
diagonal left-up movement). 

In either case the users performed each gesture 
during 2-3 seconds with a 2-3 seconds relaxing 
pause between gestures. 

2.4 Signal Analysis and Neural 
Network 

We divide in real-time the sEMG data flow, x(t), 
into 100 ms time windows ((ݐ)ݔ ∈ ℝ଼). Windowing 
is performed every 50 ms. At this rate an artificial 
neural network performs calculations and provides 
the cursor controlling signal (Fig. 3).  

At the first step the root mean square (RMS) of 
the EMG activity over 100 ms time window is 
evaluated: 

(ݐ)ݖ = ඩ1ܰ ෍ ݐ)ݔ − ݊)ଶேିଵ
௡ୀ଴ , (2)

where N = 0.1F is the number of samples in time 
window. The RMS data, as a composite feature of 
the current hand gesture, are fed into an ANN with 
one hidden layer containing eight neurons (Fig. 3, 
but see also Sect. 3.2). Each network neuron applies 
weighted sum over its inputs and uses sigmoidal 
activation function to generate the output, y: ݕ = ݓ)ܨ ∙ ,(ݖ (ݑ)ܨ = ଵଵା௘షೠ, (3)

where	ݓ ∈ ℝ଼ is the vector of synaptic weights 
related to the given neuron and dot stands for inner 
product. The learning, i.e., adjustment of the 
neuronal weights {w}, is achieved by the standard 
back-propagation algorithm (Rumelhart et al., 1985). 

For training and testing purposes we use sets 
containing 40-60 samples corresponding to each 
class. The classification error is calculated both for 
the training and for testing sets. It serves as a 
criterion for stopping the learning procedure as soon 
as the error starts increasing on test samples. In 
average the learning process on an optimized ANN 
requires about 5000 training epochs and takes less 
than 1 min on a standard Intel Core i5 PC. In case of 
examining different parameters of the ANN (e.g. the 
number of neurons in the hidden layer) the learning 
time changes accordingly (could be higher or lower). 

For the first learning procedure, (i), each gesture 
corresponds to a single target class (Fig. 2). This 
facilitates the learning procedure since each output 
neuron  should  produce  binary output: 1 for its own 
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Figure 3: Data flux in the MyoCursor system. Raw sEMG 
activity is mapped into cursor movements and mouse 
clicks in Windows OS. First RMS and MAV activity is 
evaluated in a 100 ms time window. The RMS pattern is 
fed into the input layer of an artificial neural network with 
one hidden layer. Every 50 ms the network output from 
seven neurons provides two commands for mouse-like 
clicking and four commands for cursor movements. The 
latter are multiplied by the MAV to gain the cursor speed.  

class and 0 for the others. To accommodate 
compound gestures added in the second learning 
procedure, (ii), we used the target value 1/√2 for 
the two output neurons participating in the 
corresponding compound gesture. Such choice of the 
target value ensures the generation of a compound 
vector output with unitary length when both neurons 
are activated (i.e., adding two orthogonal vectors of 
this length results in a unitary length vector). 

2.5 Proportional Control of Cursor  

Once the learning is deemed finished, online 
controlling of the Windows interface can be enabled. 
The cursor movement along the X-axis (Y-axis) is 
proportional to the difference of the output neurons 
responsible for the gestures "left" and "right" ("up" 
and "down", Fig. 3). This difference is a step-like 
function, which is not optimal for the cursor 
manipulation. To introduce a proportional control 
we employ an approach similar to that described by 
Lobov et al. (2015b). 

We estimate the muscle effort by evaluating the 
mean absolute value (MAV) averaged over all EMG 
sensors: 

(ݐ)ܣ = ݐ)௞ݔ|෍෍ܭ1ܰ − ݊)|ேିଵ
௡ୀ଴

௄
௞ୀଵ , (4)

where K is the number of sEMG channels (in our 
case K = 8). Then the cursor speed can be set 
proportional to the MAV (Fig. 3). However, due to 
some intrinsic jitter in the muscle tone we usually 
have observed a slow involuntary cursor drift. To 

eliminate this artifact, the trend defined by relaxed 
hand state is subtracted from the cursor controlling 
signals. Thus, we define the cursor velocity by: (ݐ)ݒ = (ݐ)ܣ) − (ݐ)ܣ)ܪ(௧௛ܣ − ௧௛) (5)ܣ

where H is the Heaviside step function and ݐܣℎ is the 
drift threshold, corresponding to A(t) evaluated over 
time intervals with hand at rest. 

Finally, the cursor displacement, ߂, along the X- 
and Y-axes is given by: ߂௫ = 5ݒ ௥ݍ) − ,(௟ݍ ௬߂ = 5ݒ ௨ݍ) − , (6)	ௗ)ݍ

where	ݍ௥, ݍ௟, ݍ௨, and ݍௗ are the network output (Fig. 
3) corresponding to the gestures “move right”, 
“move left”,  “move up”, and “move down”, 
respectively. 

3 RESULTS 

To perform the testing task described in Methods a 
user should be able to move the PC cursor on the 
screen and to simulate clicks of mouse buttons. We 
then implemented the hardware-software setup that 
replaced a physical computer mouse by a virtual 
pointer controlled by the human-computer interface 
based on sEMG signals (Fig. 1). 

3.1 Mouse Clicks 

We associated the left and right clicks of “mouse 
buttons” to two single hand gestures (see Methods). 
The gesture selection was not trivial. Indeed, the 
gestures assigned to the clicks must differ 
significantly from gestures for cursor movements. 
Otherwise, the ANN may confuse them, which can 
significantly diminish the user experience (usually 
clicks should be done at precise cursor positions).  

At the beginning we performed experiments 
using nine gestures, including besides those 
described in Methods the supination and pronation. 
Then the latter two were refused since supination 
was badly recognized due to the electrode 
localization (around forearm), while pronation was 
confused sometimes with the forearm flexion.  

To optimize the ANN performance we ran the 
process of gesture recognition on the same set of 
data varying the number of neurons in the hidden 
layer of the ANN and the learning rate. Figure 4 
shows the results. The ANN error drops significantly 
between 4 and 8 neurons and then stays unchanged, 
while the learning time increases (Fig. 4A). Thus, 
we selected a network with eight hidden neurons for 
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further experiments. We also observe that the 
learning rate 0.01 optimizes both the learning error 
and the learning time. Thus, this value has been used 
in all experimental tests of the interface. 

 

Figure 4: Performance of the artificial neural network 
(mean squared error and learning time) at classifying hand 
gestures with different number of neurons in the hidden 
layer (A) and different values of the learning rate (B). In 
case (A) the learning rate was set to 0.01. Error bars show 
the standard error. 

3.2 Cursor Movement: Naïve 
Approach 

A naïve approach to control the cursor movements 
can be implemented by the event coding similar to 
that used for the mouse clicks described above. We 
can set the speed of the cursor movement to a 
constant. Then the user will use gestures to start and 
stop the movement. The drawback of such a strategy 
resides in the inevitable trade off between the speed 
(responsiveness of the interface) and the accuracy of 
the cursor movement. Our experiments have shown 
that this strategy significantly downgrades the user 
experience. Nevertheless, we used these data to 
 

Table 1: Gesture classification error and time of execution 
of the user task (see Methods). User’s body types: asthenic 
(a), normosthenic (n), and hypersthenic (h). 

Subject number; 
sex; body type; 

age (years) 

Classification 
error, % 

Task execution 
time, s 

rigid 
classes 

fuzzy 
classes 

rigid 
classes 

fuzzy 
classes

1 male n 28 0.4 6.6 46 56 
2 female n 28 2.1 7.3 83 110 
3 male n 41 3.8 4.8 44 71 
4 female n 40 0.8 6.7 64 300 
5 male n 28 1.1 8.5 55 235 
6 female n 21 1.2 8 76 207 
7 male n 35 0.7 4.8 47 60 
8 female h 21 7.8 12 169 257 
9 female a 26 2.2 5.8 103 109 
10 female n 28 1.4 3.1 113 179 
11 male n 21 5.6 9.7 113 113 
12 female h 23 4.6 5.8 120 100 
mean ± s.e. 2.6±0.7 6.9 ± 0.7 86 ± 11 150 ± 23 

evaluate the classification accuracy that can be 
achieved in real tasks (Table 1, column “rigid 
classes”). Our results confirmed that the mean ANN 
error (2.6± 0.7%) is low enough for implementing 
the sEMG interface. 

3.3 Proportional Control of Cursor 

As abovementioned, to achieve a flexible cursor 
movement we aim at a combined command-
proportional control with two degrees of freedom. In 
this case the cursor movement direction is defined 
by gestures, while its speed is controlled by the 
degree of muscle contraction (MAV), which is 
almost equivalent to the palm angle. This may 
significantly improve the user experience.  

Experiments conducted with twelve subjects 
showed that all users were able to move the cursor 
and successfully simulate left and right mouse 
clicks. Then we studied the performance in cases of 
using rigid and fuzzy classes (see also Sect. 2.3). 

3.3.1 Rigid Classes 

After the network training with rigid correspondence 
between hand gestures and cursor movements, all 
users managed to control the cursor. Performing the 
testing task (Sect. 2.1) took from 44 s to 169 s 
depending on the user with the mean 86 ± 11 s 
(Table 1, “rigid classes”). Nevertheless, after the test 
users reported a number of repetitive difficulties: i) 
Performing the task using the sEMG-interface was 
much harder than using a physical mouse. For 
comparison, the same test performed by using a 
hardware mouse was 10 times faster in average; ii) 
Diagonal cursor movements, requiring simultaneous 
displacement along the X and Y axes, were 
significantly more difficult than movements 
involving one axis only. 

3.3.2 Fuzzy Classes 

An important limiting factor of the “rigid classes” 
scheme resides in the intrinsic feature of the 
standard neural network approach, i.e., sharp 
boundaries among classes. It leads to the “winner 
takes all” phenomenon and difficulties in smooth 
controlling the cursor movement. The cursor usually 
follows a steps-like trajectory advancing in X or Y 
directions separately instead of a smooth diagonal 
movement (Fig. 5, green curve). To overcome this 
problem we introduced fuzzy class overlapping (see 
Methods).  

The implementation of fuzzy classes indeed 
facilitated the diagonal movements of the cursor. 
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However, our tests showed that only 4 out of 12 
users found this way better than using the rigid 
classes approach. In average the error of gesture 
identification increased to 6.9 ± 0.7% (Table 1). 
Moreover, the testing task execution time 
significantly increased to 150 ± 23 s. Subjectively 
this performance downgrade the users explained by 
the need of making unnatural gestures. For example, 
simultaneous wrist extension and ulnar deviation 
(required for the diagonal right-down movement) 
were reported as a pattern complex to perform. 
Then, an increase in wrong classification of 
compound gestures leaded to the cursor movement 
in wrong direction. This, in turn, increased the test 
time. Table 2 summarizes the subjective user 
experience and comparison of both schemes. 

 

Figure 5: Representative example of line drawing by an 
experienced user. The task consists in connecting blue 
circles by a cursor by following directions shown by blue 
arrows. Grey, green, and red curves mark cursor traces 
corresponding to the use of a physical mouse, sEMG with 
ridged classes, and sEMG with fuzzy classes interfaces, 
respectively. 

3.3.3 Performance of Experienced User 

Since the results of experimental tests were quite 
unexpected, we hypothesized that the inconvenience 
of working with the sEMG-interface with fuzzy 
classes might be explained by the absence of the 
experience of dealing with such an interface. Indeed, 
all subjects were used to common mouse interface, 
while working with sEMG may require some 
preliminary practice. Thus, we selected one of the 
users and asked him to work with the sEMG-
interface regularly during two weeks. Then we 
repeated the testing task.  

Figure 5 shows the drawing made by this user 
employing three different interfaces: 1) Common 
mouse (grey curve); 2) sEMG with rigid classes 
(green curve); and 3) sEMG with fuzzy classes (red 
curve). As expected, the training significantly 
improved the sEMG performance. Taking the 
performance of the mouse interface as 100%, we 
obtained 75.1% for the "diagonal” performance (see 
Methods) by using MyoCursor with rigid classes and 
92.5% for MyoCursor with fuzzy classes. Thus, 
training may improve significantly the user 
experience and the user may approach the 
performance close to the mouse interface. 

Table 2: Subjective user experience with different types of 
interfaces. 

N 
User comments 

Preferred 
method 

Critical remarks 

1 rigid 

- Cursor drift 
- Direction of movement coincides badly 
with the desired direction 
- Mouse clicks are difficult because of the 
high threshold 

2 fuzzy Clicks provoke cursor jumps 

3 fuzzy 
Fuzzy method is easier to move the cursor 
diagonally 

4 rigid – 
5 rigid – 

6 rigid 
"Right-down" movement is confused with 
plain "down" 

7 rigid 
- "Right-down" is badly detected 
- 2nd test is done with a tired hand 

8 fuzzy 

- "Left" movement is confused with plain 
"down" and "rest" 
- If the hand is not relaxed before click, then 
the cursor goes down 

9 rigid "Right-up" is confused with plain "right" 

10 fuzzy 
- "Right-down" is confused with plain 
"down" 
- Clicks are complicated 

11 rigid 
- "Right-down" is confused with plain 
"down" 
- Clicks are complicated 

12 rigid 
- "Right-down" is confused with plain 
"down" 

4 DISCUSSION 

In this work we have proposed a human-computer 
interface based on a real-time recording and 
processing of the surface electromyographic signals. 
The interface allows controlling a PC with Windows 
OS by natural hand gestures. The signal acquisition 
has been implemented through an easy wearable 
commercially available sEMG bracelet. This, 
together with simplified software learning 
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procedure, enables building low-budget and user-
friendly sEMG solutions that may also be useful for 
disabled people and amputees. 

The main difference in the algorithmic part of 
our approach with existing methods based on the 
regression techniques (Roche et al., 2014; Hahne et 
al., 2014; Fougner et al., 2014) is the use of an 
artificial neural network performing the gesture 
classification. The ANN is trained at the beginning 
by a relatively small set of simple hand gestures: 
seven or eleven gestures depending on the method 
type. This allows avoiding long lasting tuning 
process common for the regression approaches, 
which stems from gradual sampling of changes of 
muscle tension in different movements and their 
combinations. Once the ANN has been trained, it 
can detect commands for simulating the right and 
left mouse clicks, and for moving cursor on the PC 
screen. Using an estimate of the mean muscle effort 
we have implemented a proportional control of the 
cursor movement. Thus, the user can easily change 
the cursor velocity and hence the movement 
precision by “applying” more or less effort to the 
gesture. 

We have tested the method on twelve healthy 
subjects of either sex. To do it we implemented two 
types of the cursor controlling strategies: “rigid” 
classes with four individual gestures for moving 
right, left, up, and down; and "fuzzy" classes with 
additional compound gestures for diagonal 
movements. In both cases all subjects were able to 
control cursor. Our experience suggests that the 
fuzzy approach is potential preferable (see Fig. 5). 
However, the experimental results have shown that 
in average the controlling performance decreases for 
this approach, despite a theoretically attractive 
possibility to move the cursor diagonally. 

The subjective evaluation of the user experience 
has suggested that, on the one hand, the performance 
reduction can be linked with the requirement to 
perform unnatural gestures (for example 
simultaneous wrist extension and ulnar deviation). 
On the other hand, we can anticipate that in the 
fuzzy case there may exist a competition in the 
output layer of the ANN, which may have negative 
influence on the cursor controlling function. Thus, 
we can alert the reader on the necessity of future 
research involving optimization of the set of gestures 
and the ANN architecture. 

In the present study specific features of the users 
(e.g. the degree of fitness) have been left out due to 
small size of the data set. However, the collected 
data allow us foreseeing that the type of constitution 
may play an important role in the success of the 

human-computer interface. For example, Table 1 
suggests that hypersthenics may show worst results, 
though statistically significant conclusions require 
additional experiments. 

Another point for discussion is the user readiness 
to a specific control of a PC by gestures. It is worth 
noting that all subjects had no previous experience 
in the use of such type of interfaces, while all of 
them used the common mouse interface in their 
daily life. Therefore, fair comparison between the 
mouse and gesture types of interfaces requires either 
special sampling over subjects (for example the use 
of elderly, with no experience with PC) or training 
subjects to use the MyoCursor system before testing. 
An experiment with one user has shown that the user 
training may improve significantly the ability to use 
the fuzzy sEMG-interface in such a way that its 
performance may approach the performance of the 
mouse interface (92% vs 100% performance reached 
in the test). 
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