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Abstract: The present paper investigates the effectiveness of the Abstract State Machine (ASM) formalism into studying 
the deadlock-freedom property in distributed systems. To this end, the well-known Dining Philosophers prob-
lem, prone to deadlock, is here modeled through ASMs and deadlock is studied. The experience suggests a 
provisional reformulation of the classic necessary conditions for deadlock in terms of ASMs. 

1 INTRODUCTION 

The problem of detecting and preventing deadlock in 
distributed systems has been faced by both academia 
and practitioners since a long time; however, it is far 
from a generally adopted solution. This is due to the 
intrinsic feature of the deadlock analysis problem to 
be semi-decidable. In order to deepen into the analy-
sis of this issue, the present paper is aimed at investi-
gating the adequateness of the Abstract State Machine 
formalism (simply ASM in the following) (Gurevich, 
2000) in treating this problem. Provisional results on 
applying ASMs to starvation-freedom analysis are 
provided in (Bianchi et al., 2016). 

In comparison with other well-known approaches, 
we focus on ASMs because of the advantages they 
provide under several viewpoints. When expressivity 
is considered, ASMs represent a general model of 
computation which subsumes all other classic com-
putational models (Gurevich, 1995). Considering 
methodological issues, the ASM formalism has been 
successfully applied for the design and analysis of 
critical and complex systems in several domains, and 
a specific development method got prominence in the 
last years (Börger and Stärk, 2003). Finally, consid-
ering the implementation point of view, the capability 
of translating formal specifications into executable 
code, in order to conduct simulations of the models, 
is provided by tools like CoreASM (Farahbod et al., 
2007a). 

For the purposes of the present work we assume 
that a deadlock happens when processes require the 
access to resources held by other processes, but they 

themselves hold resources that the other processes 
need. Until deadlock is not resolved, processes are 
blocked indefinitely. We recall that (Coffman et al., 
1971) stated four general necessary conditions, that 
must hold simultaneously, for a deadlock to occur: 

 
• Mutual Exclusion: processes claim exclusive 

control of the resources they require. 
• Resource Holding: processes hold resources al-

ready allocated to them while waiting for the 
other requested resources. 

• No Preemption: resources cannot be removed 
from the processes holding them until they are 
used to completion. 

• Circular Wait: a circular chain of processes ex-
ists so that each process holds (at least) one re-
source that is requested by the next process in the 
chain. In other words, there is a set of processes 
{P1, …, Pn} such that Pi is waiting for a resource 
held by Pi + 1 mod n. 

 
In this paper the well-known Dining Philosophers 

problem (Dijkstra, 1971), prone to deadlock, is mod-
eled with ASMs and deadlock is studied. The analysis 
of the model allows us to derive the characteristics of 
the model driving the risk of deadlock, so providing a 
provisional reformulation of the classic necessary 
conditions for deadlock in terms of ASMs. 

The rest of this paper is organized in the following 
fashion. Section 2 is about related work. Section 3 
provides background knowledge on the ASM frame-
work. Section 4 deals with the ASM-based Dining 
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Philosophers problem and its analysis. Section 5 dis-
cusess the experience. Finally, Section 6 concludes 
the paper. 

2 RELATED WORK 

The capability of Abstract State Machines to subsume 
all other classic computational models has been stated 
in several works, e.g. (Gurevich, 1995), (Reisig, 
2003), (Dershowitz, 2013). Thanks to this generality, 
an ASM sequential thesis has been proved by 
(Gurevich, 2000). It states that ASMs suffice to cap-
ture the behavior of wide classes of sequential sys-
tems at any desired level of abstraction. Research ef-
fort has then been devoted to extend this thesis to par-
allel machines (Blass and Gurevich, 2003) and con-
current computations (Glausch and Reisig, 2009), 
(Börger and Schewe, 2015). The latter results seem to 
comprise a large class of distributed algorithms. Alt-
hough no theoretical result proves that ASMs suffice 
to capture the behavior of all classes of distributed al-
gorithms, they have shown to be sufficiently expres-
sive to model concurrency in many applications: net-
work consensus, master-slave agreement, leader elec-
tion, phase synchronization, load balance, mobile ad-
hoc networks, and so on. These observations justify 
the suitability of the ASM framework in analyzing 
systems properties in a wide range of domains, in-
cluded deadlock-freedom. 

In the state of the art, ASMs already support both 
manual and automatic formal verification of systems. 
Concerning manual analysis, ASMs are machines 
equipped with a notion of run that lend themselves to 
traditional mathematical reasoning or manual simula-
tion. Such proofs range from simple to complex and 
are conceived for being used by human experts. An 
interesting manual approach is provided in (Gabrisch 
and Zimmermann, 2012), where a verification calcu-
lus based on the Hoare logic is proposed. However, 
the calculus only considers partial correctness, i.e. the 
result of the computation is what was expected, and 
is only tailored for a specific class of ASMs. Moreo-
ver, it is worth noting that a logic for ASMs exists 
(Stärk and Nanchen, 2001). However, it does not pro-
vide operational characterizations of properties, such 
as deadlock-freedom. The ASM notion of run is very 
helpful for supporting the practitioners’ work, inde-
pendently from the possibility of developing auto-
matic verification mechanisms. Nevertheless, since it 
requires human effort, the manual approach does not 
offer absolute guarantee and is error-prone. 

Concerning automatic analysis, several examples 
of model checking techniques applied to ASMs exist, 

e.g. (Del Castillo and Winter, 2000), (Farahbod et al., 
2007b), (Arcaini et al., 2010), (Rafe and Doostali, 
2012). However, the Turing-completeness of the for-
malism (Gurevich, 2000) causes an unavoidable 
drawback: properties are, in general, undecidable, so 
the formal verification of ASM specifications cannot 
be fully automatized (Spielmann, 1999). For this rea-
son, the translation of the ASM under study into the 
input required by the adopted model checker may 
cause a loss of expressive power. 

For what specifically concerns deadlock analysis, 
deadlock was pointed out for the first time in (Dijks-
tra, 1968). Thereafter, many studies have been de-
voted to investigate this issue from different aspects, 
for example in operating systems (Kameda, 1980), 
distributed databases (Knapp, 1987) and communica-
tion networks (Brookes and Roscoe, 1991). More re-
cently, deadlock analysis has gained much attention 
in the context of formal methods, for example in 
model checking (Bingham et al., 2013) and π-calcu-
lus (Padovani, 2014). According to (Singhal, 1989), 
all these issues can be classified in two types of dis-
tributed deadlock: resource deadlock and communi-
cation deadlock. The first one emerges in multi-pro-
cess systems with shared resources. It is worth noting 
that the necessary conditions provided in (Coffman et 
al., 1971) only capture this type of deadlock. Con-
versely, a communication deadlock emerges when re-
sources are replaced by messages the processes wait 
for. A set of processes is then deadlocked if each pro-
cess is waiting for a message another process must 
send, but no process ever sends a message. Moreover, 
some authors, e.g. (Holt, 1972), also consider single 
deadlocks: a single process may deadlock if it waits 
for an external event executed by an external entity, 
such as the operating system, but this event never oc-
cur. In this work we are only interested into studying 
distributed resource deadlocks in the sense of (Coff-
man et al., 1971). 

3 THE ASM FRAMEWORK 

An Abstract State Machine is a tuple (Σ, S, R, PM) 
(Börger and Stärk, 2003). Σ is a signature: a finite col-
lection of function names each characterized by an 
arity, that is the number of arguments that function 
takes. Partial functions are turned into total functions 
by using the special value undef. Instead, relations are 
expressed as particular functions that always evaluate 
to true, false or undef. S is a finite set of abstract 
states. The concept of abstract state extends the usual 
notion of state occurring in finite state machines: it is 
an algebra over the signature Σ, i.e. a non-empty set 
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of objects of arbitrary complexity together with inter-
pretations of the functions in Σ. R is a finite set of so-
called rules of the form if condition then updates 
which transform the states of the machine. The con-
cept of rule reflects the notion of transition occurring 
in traditional transition systems: condition is a first-
order formula whose interpretation can be true or 
false; whereas updates is a finite set of assignments 
of the form f(t1, …, tn) := t, whose execution consists 
in changing in parallel the value of the specified func-
tions to the indicated value. PM is a distinguished rule 
of arity zero, called the main rule or program of the 
machine, which represents the starting point of the 
computation. 

Pairs of function names together with values for 
their arguments are called locations: they abstract the 
notion of memory unit. Since a state can be viewed as 
a function that maps locations to their values, the cur-
rent configuration of locations together with their val-
ues determines the current state of the ASM. In order 
to better understand the semantics of the states with 
respect to the computational behavior of the modeled 
system, it is worth remarking that each ASM state can 
be characterized by one or more predicates over the 
states. More precisely, in (Bianchi et al., 2015) we de-
fined a predicate ϕ over an ASM state s as a first-order 
formula defined over the locations in s, such that s ⊨ 
ϕ. Each predicate allows us to focus on the subsets of 
locations that turn out to be interesting for verification 
purposes. 

The execution of an ASM consists in iterating 
computational steps. An ASM computational step in 
a given state consists in executing all rules whose 
condition is true in that state. Since different updates 
could affect the same location, it is necessary to im-
pose a consistency requirement: a set of updates is 
said to be consistent if it contains no pair of updates 
referring to the same location. Therefore, if the up-
dates are consistent, the result of a computational step 
is the transition of the machine from the current state 
to another. Otherwise, the computation does not yield 
a next state. An ASM run is so a (possibly infinite) 
sequence of steps: the computational step is iterated 
until no more rule is applicable. 

The aforementioned notions refer to the so-called 
basic ASMs. A generalization of basic ASMs is rep-
resented by Distributed ASMs (DASMs), capable of 
capturing the formalization of multiple agents acting 
in a distributed environment. Essentially, a DASM is 
intended as an arbitrary but finite number of inde-
pendent agents, each executing its own underlying 
ASM. A distributed run of a DASM is a partially or-
dered set of the runs of its ASMs: the underlying syn-
chronization scheme reflects causal dependencies, 

determining which agent’s move comes before — a 
move is a single computational step of an individual 
agent —, and is only restricted by the consistency 
condition, which is indispensable (Gurevich and 
Rosenzweig, 2000). Unfortunately, the notion of par-
tially ordered run makes difficult to define univocally 
the global state of the computation of a DASM. 
Roughly speaking, a global state corresponds to the 
union of the signatures of each ASM together with 
interpretations of their functions. In a DASM the key-
word self is used for supporting the relation between 
local and global states and for denoting the specific 
agent which is executing a rule. 

Finally, note that there is a distinction among 
functions, depending on the different roles that loca-
tions can assume in a given ASM. A primary distinc-
tion concerns basic functions, intended as elemen-
tary, and derived functions, whose values are defined 
in terms of other (basic or derived) functions, but nei-
ther the ASM nor the environment (more generally, 
other ASMs in the case of DASMs) can update them: 
they are automatically updated as a side effect of the 
updates over the functions from which they derive. In 
addition, basic functions are classified into static, 
whose values never change during a run, and dy-
namic, for which values change as a consequence of 
the updates executed by the ASM or by its environ-
ment. Furthermore, dynamic functions can be: con-
trolled, if directly updated only by the ASM; moni-
tored, if directly updated only by the environment and 
only read by the ASM; shared, which are both con-
trolled and monitored; out, which are updated but 
never read by the ASM (they are monitored by the 
environment). 

4 DINING PHILOSOPHERS 

The Dining Philosophers problem, due to (Dijkstra, 
1971), is one of the most illustrative examples in the 
field of concurrency for explaining deadlock (and 
starvation). Five philosophers are sitting around a ta-
ble with a bowl of spaghetti in the middle. For the 
philosophers life consists only of two moments: 
thinking and eating, rigorously with two forks. More 
precisely, since each philosopher has a pair of a right 
fork and a left fork, (s)he behaves as follows: (s)he 
thinks till the right fork becomes available, grabs the 
right fork, waits till the left fork becomes available, 
grabs the left fork, eats for a certain amount of time, 
then stops eating (putting back both forks on the ta-
ble) and starts thinking again. The problem is that in 
between two neighboring philosophers there is only 
one fork: each philosopher shares his/her right and 
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left fork with his/her corresponding right and left 
neighbors, respectively. 

4.1 ASM-based Model 

The ASM-based model of the Dining Philosophers 
problem here described is elaborated with respect to 
both its general statement (Dijkstra, 1971) and its dis-
cussion in terms of ASMs (Börger and Stärk, 2003). 
Moreover, some aspects tailored to our purposes, 
such as the predicates over the states, are included. 
The problem can be simply modeled by a DASM Din-
ingPhilosophers composed by a homogeneous set of 
agents: each of them behaves according to the same 
underlying ASM. More precisely, we have a set of 
philosophers = {p1, …, p5}, representing the agents of 
the system, and a set of forks = {f1, …, f5}, represent-
ing their shared resources. 
 The functions in each ASM signature Σ are: 
 
• rightFork: philosophers → forks, static function 

indicating a philosopher’s right fork; 
• leftFork: philosophers → forks, static function 

indicating a philosopher’s left fork; 
• owner: forks → philosophers ∪ {undef}, dy-

namic shared function stating the current user of 
a fork; 

• hungry: philosophers → boolean, dynamic 
shared function stating if a philosopher is hungry 
or not. 

 
The main rule is: 

 
 DinPhilMainRule = { 
  rightFork(p1) := f1 
  leftFork(p1) := f5 
  rightFork(p2) := f2 
  leftFork(p2) := f1 
  rightFork(p3) := f3 
  leftFork(p3) := f2 
  rightFork(p4) := f4 
  leftFork(p4) := f3 

rightFork(p5) := f5 
  leftFork(p5) := p4 
 
  forall fi in forks do 
   owner(fi) := undef 
 
  forall pi in philosophers do { 
   Hungry(pi) 
   if hungry(pi) then  
    PhilosopherProgram(pi) 
  } 
 } 

Note that the forall construct is used for express-
ing the simultaneous execution of a set of updates and 
rules satisfying a given condition. 

DinPhilMainRule assigns values to the static lo-
cations: each philosopher pi has fork fi on his/her right 
and fork fi – 1 on his/her left, except for p1 that has fork 
f5 on his/her left. Then, DinPhilMainRule assigns un-
def to each shared location representing the holding 
of a fork. This means that, at the beginning of the 
computation, DiningPhilosophers is in the initial 
global state S0 in which ∀ fi ∈ forks, owner(fi) = undef, 
i.e. each philosopher does not hold any fork. Finally, 
DinPhilMainRule runs all the basic ASMs capturing 
the behavior of each philosopher. Note that the ASM 
related to the i-th philosopher, pi, is run only if hun-
gry(pi) evaluates to true, i.e. if the philosopher is hun-
gry. For the purposes of the present work, there is no 
need to further detail the Hungry rule: it can be con-
ceived has an external entity that decides if pi is hun-
gry or not. 

The basic ASM of the i-th philosopher, shown be-
low, is composed by rules (r.1), (r.2) and (r.3): 
 
 PhilosopherProgram(pi) = { 
  if owner(rightFork(self)) = undef then 
   owner(rightFork(self)) := self  
   
  if owner(rightFork(self)) = self ∧  
  owner(leftFork(self)) = undef then 
   owner(leftFork(self)) := self 
 
  if owner(rightFork(self)) = self ∧  
  owner(leftFork(self)) = self then { 
   Eat (self) 
   owner(rightFork(self)) := undef 
   owner(leftFork(self)) := undef 
  } 
 } 
 

The computation of each ASM, representing pi, 
can evolve through seven states: 
 
• s0: (owner(rightFork(self)) = undef) ∧ 

(owner(leftFork(self)) = undef);  
• s1: (owner(rightFork(self)) = undef) ∧ 

(owner(leftFork(self)) = pi – 1 mod n); 
• s2: (owner(rightFork(self)) = pi + 1 mod n) ∧ 

(owner(leftFork(self)) = undef); 
• s3: (owner(rightFork(self)) = pi + 1 mod n) ∧  

(owner(leftFork(self)) = pi – 1 mod n); 
• s4: (owner(rightFork(self)) = self) ∧ (owner(left-

Fork(self)) = undef); 
• s5: (owner(rightFork(self)) = self) ∧ (owner(left-

Fork(self)) = pi – 1 mod n); 

(r.1)

(r.2)

(r.3)
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• s6: (owner(rightFork(self)) = self) ∧ (owner(left-
Fork(self)) = self). 

 
As mentioned above, initially, each philosopher is 

in state s0, i.e. for each philosopher both owner(right-
Fork(self)) and owner(leftFork(self)) evaluate to un-
def. The initial global state S0 is then characterized by 
the composition of all the local states s0. Note that the 
transition from one local state to another is not only 
determined by the own computation of pi; it is also an 
effect of the updates executed by the neighboring phi-
losophers over the shared locations. 

These local states can be characterized by the fol-
lowing predicates over the states: 
 
• thinking: ¬(owner(rightFork(self)) = self ∨ 

owner(leftFork(self)) = self). The philosopher is 
thinking, so (s)he is waiting for the right fork to 
become available. This predicate holds in states 
from s0 to s3; 

• holdingRightFork: owner(rightFork(self)) 
= self ∧ ¬(owner(leftFork(self)) = self). The phi-
losopher is holding his/her right fork, so (s)he is 
waiting for the left fork to become available. This 
predicate holds in states s4 and s5; 

• eating: owner(rightFork(self)) = self ∧ 
owner(leftFork(self)) = self. The philosopher has 
obtained both forks, so (s)he is eating. This pred-
icate only holds in state s6. 

 
In the model above, rule (r.3) states that each phi-

losopher, after obtaining both forks, executes the Eat 
rule, then releases them. Since the eating process is 
outside the resource allocation problem driving the 
risk of deadlock, the Eat rule does not need to be fur-
ther specified. 

4.2 Analysis of the Model 

In order to verify that DiningPhilosophers DASM is 
affected by the risk of deadlock, let’s analyze the four 
necessary conditions upon the model. 

Mutual Exclusion. The claiming of exclusive control 
of the resources is expressed by the grabbing of each 
fork. In DiningPhilosophers this is accomplished by 
the execution of rules (r.1) and (r.2) for the right and 
the left fork, respectively. Each rule can be executed 
only if the respective fork is available, i.e. if 
owner(right/leftFork(self) = undef). Note that when 
the i-th philosopher pi grabs a fork, that fork cannot 
be accessed by the respective neighboring philoso-
pher. In fact, if two neighboring philosophers pi and 
pi + 1 simultaneously try to access the same fork f, a 

consistency violation occurs. More precisely, if f is 
the right fork for pi and the left fork for pi + 1, if pi 
executes its own rule (r.1) and pi + 1 executes its own 
rule (r.2) at the same time, then the two rules would 
access the same location dealing with the ownership 
of the fork, so producing an inconsistency upon it. 
Therefore, the mutual exclusion condition holds in 
DiningPhilosophers.  

Resource Holding. When pi has grabbed a fork, (s)he 
waits until (s)he can grab the second one; then the 
forks are released only after the completion of the eat-
ing process. In DiningPhilosophers this is expressed 
by the update of rule (r.3), which can be executed only 
when both forks have been grabbed by pi, i.e. when 
owner(right/leftFork(self)) = self. Therefore, the re-
source holding condition holds in DiningPhiloso-
phers.  

No Preemption. No one (or nothing) can forcibly re-
move a fork from a philosopher that is holding it. In 
DiningPhilosophers this is expressed by the lack of 
any rule allowing a philosopher to become the owner 
of a fork which is held by another philosopher. In fact, 
all updates expressing the grabbing of the forks 
(owner(right/leftFork(self)) := self) only appear in 
rules guarded by conditions stating the availability of 
the forks (if owner(right/leftFork(self)) = undef). 
Therefore, the no preemption condition holds in Din-
ingPhilosophers.  

Circular Wait. Due to the configuration of the static 
locations in the initial global state represented by the 
main rule DinPhilMainRule, the circular chain is set 
when all agents are executing rule (r.2). In this way, 
each pi waits for the fork held by pi – 1 mod n. There-
fore, the circular wait condition holds in DiningPhi-
losophers. 

In conclusion, all the four conditions could hold 
separately: if they occur simultaneously a risk of 
deadlock exists. Note that in DiningPhilosophers 
DASM, in every run in which the PhilosopherPro-
gram(pi) is invoked for the i-th philosopher, the mu-
tual exclusion condition always holds. Both the re-
source holding and no preemption conditions hold 
when pi grabs a fork. The circular wait condition 
holds when each pi grabs its right fork. Therefore, in 
the latter case all conditions are simultaneously satis-
fied. This is formally stated by the following: 

Theorem. There exists (at least) an admissible run M 
of DiningPhilosophers such that DiningPhilosophers 
is deadlocked. 
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Proof. In the case that for all philosophers hungry(pi) 
evaluates to true, then each pi executes its own Phi-
losopherProgram(pi), so each pi executes its own rule 
(r.1). Therefore, the four necessary conditions for 
deadlock hold simultaneously. Let M be a run of Din-
ingPhilosophers such that all pi simultaneously exe-
cute their own rule (r.1). Then, DiningPhilosophers 
reaches a global state Sk, in which all the conditions 
guarding every rule evaluate to false for each Philos-
opherProgram(pi), so no further rule can be executed. 
Therefore, DiningPhilosophers is deadlocked.    □ 

In Sk all philosophers indefinitely wait for each 
other to release the possessed fork, i.e. the local state 
of each (ASM, pi) satisfies the holdingRight-
Fork predicate over the states, so ∀ pi ∈ philoso-
phers, owner(rightFork(pi)) = pi.   

5 DISCUSSION 

The analysis of the model allows us to derive some 
considerations to address deadlock issues with 
ASMs. Preliminarily, it is worth noting that the clas-
sic necessary conditions for deadlock implicitly apply 
to multi-process systems with shared resources. In 
other words, a deadlock emerges from the interaction 
among multiple processes when resources are shared 
among them. As consequence, we must first restrict 
our focus only on DASMs. In fact, as stated in 
(Gurevich, 1995), only DASMs allow for the repre-
sentation of multi-agent systems: each agent models 
the behavior of a single process of the system under 
study. 

Secondly, for what concerns resources, they can 
be modeled by the concept of function. Let’s recall 
that the ASM functions belong to particular classes. 
In accordance with this classification, static functions 
surely do not impact deadlock, because their values 
never change during a run. Controlled functions can 
also be excluded in that their values can be managed 
by an ASM because set inside it. Although monitored 
functions indicate that the behavior of an ASM is af-
fected by the other agents, they are not updatable by 
the ASM they belong to, so they cannot represent a 
resource that the ASM shares with its environment. 
Shared functions, as the name suggest, surely can 
model a shared resource: indeed, they are directly up-
datable by the rules of the ASM they belong to and by 
the environment, and can be read by both. Out func-
tions are not involved in a deadlock, because their 
values are produced by the ASM, but never used. Fi-
nally, more detailed analysis should be executed 
when derived functions appear. In fact, since they 

cannot be managed inside the ASM, because their 
values depend on other functions, the latter must be 
investigated. More precisely, a derived function must 
be taken into account if it is defined on a shared func-
tion or (recursively) on a derived function defined on 
a shared function. For the sake of simplicity, in the 
following we only consider shared functions.  

The previous observations suggest a provisional 
generalization of the necessary conditions for dead-
lock in terms of ASMs.  

The Mutual Exclusion Lemma (Börger and 
Schewe, 2015) expresses that, thanks to the partial or-
der of moves guaranteed by the concept of distributed 
run, the possible updates of two agents over a same 
shared location at the same time is never allowed. In 
other words, in general in a DASM, the access to 
shared resources is exclusive, so no further schedul-
ing policy is needed. 

Therefore, we can suspect that a deadlock can oc-
cur in a DASM model when only the following three 
necessary conditions hold simultaneously: 

Resource Holding. There is (at least) one rule r 
whose update concerns the updating of a shared loca-
tion loc to self. It is in the form if condition then loc 
:= self. This rule represents the action of holding a 
shared resource by a process: we say that the agent 
which executes r holds the shared location loc. More-
over, there is (at least) one rule r’: (i) whose condition 
evaluates to true only if r has been previously exe-
cuted; and (ii) whose update concerns the updating of 
a new shared location loc’ to self. It is in the form if 
condition ∧ (loc = self) then loc’ := self. This rule 
represents the waiting for a requested resource while 
another resource has already been allocated to the 
process: we say that the agent which is unable to ex-
ecute r’ waits for the shared location loc’. Note that 
both in r and r’ condition is to be intended as a first-
order formula of arbitrary complexity. Moreover, 
note that the waiting can be semantically represented 
by a predicate over the states ϕ in the general form loc 
= self ∧ ¬(loc’ = self). 

No Preemption. The conditions guarding the above 
mentioned rules r and r’ evaluate to true only if loc 
and loc’ evaluate to undef. Therefore, they are in the 
form if condition ∧ (loc = undef) then loc := self and 
if condition ∧ (loc = self) ∧ (loc’ = undef) then loc’ 
:= self, respectively. More generally, no rule in the 
model updates to self a shared location loc if loc does 
not evaluate to undef. This condition captures the im-
possibility to allocate a resource, already allocated to 
a process, to another process. 
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Circular Wait. A circular chain of agents {a1, …, an} 
exists such that ai is waiting for a shared location held 
by ai + 1 mod n. Semantically, a circular chain arises 
when (at least) a global state Sk, resulting by the com-
position of the local states s1, …, sn, each satisfying 
the above mentioned predicate over the states ϕ, is 
reachable from the initial global state S0. 

A DASM is then deadlock-free if any of the three 
necessary conditions for deadlock is denied. Resource 
holding can be denied by imposing each process to 
request all the resources it needs at once. In ASM 
terms, rules r and r’ above must be unified in a single 
rule whose update concerns the updating of all the 
shared locations each ASM waits for at once. More 
generally, all the shared locations an agent waits for 
must be updated during the execution of a unique 
rule. This rule can be conceived to be in the general 
form if condition then loc1 := self, …, locn := self, 
where loc1, …, locn represent all the resources the 
agent needs. Note that, in this way, the predicate ϕ, 
representing the waiting for the remaining resources, 
can no longer be satisfied.  

Instead, the following strategy can be adopted in 
order to enable preemption: if a process holding a re-
source is denied a further request, that process must 
release the already acquired resource. If necessary, 
the process can request the resources it needs at a later 
time. A way to achieve this can be adding the follow-
ing rule: if condition ∧ (loc = self) ∧ ¬(loc’ = undef) 
then loc := undef. This rule allows an agent to release 
the already acquired loc if loc’ is not set to undef.  

Finally, circular wait can be denied by imposing a 
linear order of requests so that processes are forced to 
require the resources they need in that order. Accord-
ing to Lamport’s Bakery algorithm (Lamport, 1974), 
a possible solution is adding to the model a scheduler 
agent that decides the order in which the disputed 
shared location can be updated by the other agents. 
For example, the scheduler agent can assign a ticket 
to each process, compare tickets and let the process 
with the smallest one to access the resources. In this 
way, all processes access the resources alternately, so 
the resource allocation graph can never have a cycle. 

6 CONCLUSIONS 

In order to investigate the deadlock-freedom prop-
erty, the study here presented has focused on model-
ling and analyzing the Dining Philosophers problem 
using Abstract State Machines. It is worth remarking 
that, albeit simple, the Dining Philosophers problem 

is adequately general in that it enables an abstract de-
scription of deadlock that can be further refined to any 
specific domain. 

The analysis of the model has allowed us to pro-
vide a preliminary reformulation of the classic neces-
sary conditions for deadlock in terms of ASMs. The 
results obtained are encouraging for the purposes of 
our research because an entirely operational ASM-
based characterization of deadlock could allow mod-
elers to treat the analysis of deadlock inside the ASM 
framework before adopting it in conjunction with hy-
brid model checking approaches. In fact, thanks to 
such a characterization, developers can recognize the 
risk of deadlock in an ASM model of a system, so 
they can re-model it in advance, before its develop-
ment, with evident effort savings.  

Nevertheless, our approach presents drawbacks. 
As other manual techniques, it is human-based, so is 
error-prone and requires expertise in order to find an 
appropriate abstraction of the system to be verified. 
In other words, any analysis is as good as the model 
is. Furthermore, because of decidability issues, it can-
not be completely automatized, even if automatic 
tools can support it. 

Future developments of our research should gen-
eralize the findings of this paper with the aim to for-
mally prove the necessary conditions that enable 
deadlock inside ASMs. 

Moreover, it is worth noting that, in this paper, we 
have only focused on distributed resource deadlocks. 
Therefore, future developments should also consider 
both distributed communication deadlocks and single 
deadlocks. To this end, it is worth remarking that 
monitored functions can represent the receipt of a 
message and the occurrence of an external event, so 
they must be taken into account in deadlock analysis. 
Moreover, the focus can no longer be restricted only 
on DASMs, but also basic ASMs interacting with the 
environment must be studied. 
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