
Towards an ASM-based Characterization of the Deadlock-freedom
Property

Alessandro Bianchi, Sebastiano Pizzutilo and Gennaro Vessio
Department of Informatics, University of Bari, Bari, Italy

Keywords: Abstract State Machines, Deadlock, Properties Analysis.

Abstract: The present paper investigates the effectiveness of the Abstract State Machine (ASM) formalism into studying
the deadlock-freedom property in distributed systems. To this end, the well-known Dining Philosophers prob-
lem, prone to deadlock, is here modeled through ASMs and deadlock is studied. The experience suggests a
provisional reformulation of the classic necessary conditions for deadlock in terms of ASMs.

1 INTRODUCTION

The problem of detecting and preventing deadlock in
distributed systems has been faced by both academia
and practitioners since a long time; however, it is far
from a generally adopted solution. This is due to the
intrinsic feature of the deadlock analysis problem to
be semi-decidable. In order to deepen into the analy-
sis of this issue, the present paper is aimed at investi-
gating the adequateness of the Abstract State Machine
formalism (simply ASM in the following) (Gurevich,
2000) in treating this problem. Provisional results on
applying ASMs to starvation-freedom analysis are
provided in (Bianchi et al., 2016).

In comparison with other well-known approaches,
we focus on ASMs because of the advantages they
provide under several viewpoints. When expressivity
is considered, ASMs represent a general model of
computation which subsumes all other classic com-
putational models (Gurevich, 1995). Considering
methodological issues, the ASM formalism has been
successfully applied for the design and analysis of
critical and complex systems in several domains, and
a specific development method got prominence in the
last years (Börger and Stärk, 2003). Finally, consid-
ering the implementation point of view, the capability
of translating formal specifications into executable
code, in order to conduct simulations of the models,
is provided by tools like CoreASM (Farahbod et al.,
2007a).

For the purposes of the present work we assume
that a deadlock happens when processes require the
access to resources held by other processes, but they

themselves hold resources that the other processes
need. Until deadlock is not resolved, processes are
blocked indefinitely. We recall that (Coffman et al.,
1971) stated four general necessary conditions, that
must hold simultaneously, for a deadlock to occur:

• Mutual Exclusion: processes claim exclusive

control of the resources they require.
• Resource Holding: processes hold resources al-

ready allocated to them while waiting for the
other requested resources.

• No Preemption: resources cannot be removed
from the processes holding them until they are
used to completion.

• Circular Wait: a circular chain of processes ex-
ists so that each process holds (at least) one re-
source that is requested by the next process in the
chain. In other words, there is a set of processes
{P1, …, Pn} such that Pi is waiting for a resource
held by Pi + 1 mod n.

In this paper the well-known Dining Philosophers

problem (Dijkstra, 1971), prone to deadlock, is mod-
eled with ASMs and deadlock is studied. The analysis
of the model allows us to derive the characteristics of
the model driving the risk of deadlock, so providing a
provisional reformulation of the classic necessary
conditions for deadlock in terms of ASMs.

The rest of this paper is organized in the following
fashion. Section 2 is about related work. Section 3
provides background knowledge on the ASM frame-
work. Section 4 deals with the ASM-based Dining

Bianchi, A., Pizzutilo, S. and Vessio, G.
Towards an ASM-based Characterization of the Deadlock-freedom Property.
DOI: 10.5220/0006002901230130
In Proceedings of the 11th International Joint Conference on Software Technologies (ICSOFT 2016) - Volume 2: ICSOFT-PT, pages 123-130
ISBN: 978-989-758-194-6
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

123

Philosophers problem and its analysis. Section 5 dis-
cusess the experience. Finally, Section 6 concludes
the paper.

2 RELATED WORK

The capability of Abstract State Machines to subsume
all other classic computational models has been stated
in several works, e.g. (Gurevich, 1995), (Reisig,
2003), (Dershowitz, 2013). Thanks to this generality,
an ASM sequential thesis has been proved by
(Gurevich, 2000). It states that ASMs suffice to cap-
ture the behavior of wide classes of sequential sys-
tems at any desired level of abstraction. Research ef-
fort has then been devoted to extend this thesis to par-
allel machines (Blass and Gurevich, 2003) and con-
current computations (Glausch and Reisig, 2009),
(Börger and Schewe, 2015). The latter results seem to
comprise a large class of distributed algorithms. Alt-
hough no theoretical result proves that ASMs suffice
to capture the behavior of all classes of distributed al-
gorithms, they have shown to be sufficiently expres-
sive to model concurrency in many applications: net-
work consensus, master-slave agreement, leader elec-
tion, phase synchronization, load balance, mobile ad-
hoc networks, and so on. These observations justify
the suitability of the ASM framework in analyzing
systems properties in a wide range of domains, in-
cluded deadlock-freedom.

In the state of the art, ASMs already support both
manual and automatic formal verification of systems.
Concerning manual analysis, ASMs are machines
equipped with a notion of run that lend themselves to
traditional mathematical reasoning or manual simula-
tion. Such proofs range from simple to complex and
are conceived for being used by human experts. An
interesting manual approach is provided in (Gabrisch
and Zimmermann, 2012), where a verification calcu-
lus based on the Hoare logic is proposed. However,
the calculus only considers partial correctness, i.e. the
result of the computation is what was expected, and
is only tailored for a specific class of ASMs. Moreo-
ver, it is worth noting that a logic for ASMs exists
(Stärk and Nanchen, 2001). However, it does not pro-
vide operational characterizations of properties, such
as deadlock-freedom. The ASM notion of run is very
helpful for supporting the practitioners’ work, inde-
pendently from the possibility of developing auto-
matic verification mechanisms. Nevertheless, since it
requires human effort, the manual approach does not
offer absolute guarantee and is error-prone.

Concerning automatic analysis, several examples
of model checking techniques applied to ASMs exist,

e.g. (Del Castillo and Winter, 2000), (Farahbod et al.,
2007b), (Arcaini et al., 2010), (Rafe and Doostali,
2012). However, the Turing-completeness of the for-
malism (Gurevich, 2000) causes an unavoidable
drawback: properties are, in general, undecidable, so
the formal verification of ASM specifications cannot
be fully automatized (Spielmann, 1999). For this rea-
son, the translation of the ASM under study into the
input required by the adopted model checker may
cause a loss of expressive power.

For what specifically concerns deadlock analysis,
deadlock was pointed out for the first time in (Dijks-
tra, 1968). Thereafter, many studies have been de-
voted to investigate this issue from different aspects,
for example in operating systems (Kameda, 1980),
distributed databases (Knapp, 1987) and communica-
tion networks (Brookes and Roscoe, 1991). More re-
cently, deadlock analysis has gained much attention
in the context of formal methods, for example in
model checking (Bingham et al., 2013) and π-calcu-
lus (Padovani, 2014). According to (Singhal, 1989),
all these issues can be classified in two types of dis-
tributed deadlock: resource deadlock and communi-
cation deadlock. The first one emerges in multi-pro-
cess systems with shared resources. It is worth noting
that the necessary conditions provided in (Coffman et
al., 1971) only capture this type of deadlock. Con-
versely, a communication deadlock emerges when re-
sources are replaced by messages the processes wait
for. A set of processes is then deadlocked if each pro-
cess is waiting for a message another process must
send, but no process ever sends a message. Moreover,
some authors, e.g. (Holt, 1972), also consider single
deadlocks: a single process may deadlock if it waits
for an external event executed by an external entity,
such as the operating system, but this event never oc-
cur. In this work we are only interested into studying
distributed resource deadlocks in the sense of (Coff-
man et al., 1971).

3 THE ASM FRAMEWORK

An Abstract State Machine is a tuple (Σ, S, R, PM)
(Börger and Stärk, 2003). Σ is a signature: a finite col-
lection of function names each characterized by an
arity, that is the number of arguments that function
takes. Partial functions are turned into total functions
by using the special value undef. Instead, relations are
expressed as particular functions that always evaluate
to true, false or undef. S is a finite set of abstract
states. The concept of abstract state extends the usual
notion of state occurring in finite state machines: it is
an algebra over the signature Σ, i.e. a non-empty set

ICSOFT-PT 2016 - 11th International Conference on Software Paradigm Trends

124

of objects of arbitrary complexity together with inter-
pretations of the functions in Σ. R is a finite set of so-
called rules of the form if condition then updates
which transform the states of the machine. The con-
cept of rule reflects the notion of transition occurring
in traditional transition systems: condition is a first-
order formula whose interpretation can be true or
false; whereas updates is a finite set of assignments
of the form f(t1, …, tn) := t, whose execution consists
in changing in parallel the value of the specified func-
tions to the indicated value. PM is a distinguished rule
of arity zero, called the main rule or program of the
machine, which represents the starting point of the
computation.

Pairs of function names together with values for
their arguments are called locations: they abstract the
notion of memory unit. Since a state can be viewed as
a function that maps locations to their values, the cur-
rent configuration of locations together with their val-
ues determines the current state of the ASM. In order
to better understand the semantics of the states with
respect to the computational behavior of the modeled
system, it is worth remarking that each ASM state can
be characterized by one or more predicates over the
states. More precisely, in (Bianchi et al., 2015) we de-
fined a predicate ϕ over an ASM state s as a first-order
formula defined over the locations in s, such that s ⊨
ϕ. Each predicate allows us to focus on the subsets of
locations that turn out to be interesting for verification
purposes.

The execution of an ASM consists in iterating
computational steps. An ASM computational step in
a given state consists in executing all rules whose
condition is true in that state. Since different updates
could affect the same location, it is necessary to im-
pose a consistency requirement: a set of updates is
said to be consistent if it contains no pair of updates
referring to the same location. Therefore, if the up-
dates are consistent, the result of a computational step
is the transition of the machine from the current state
to another. Otherwise, the computation does not yield
a next state. An ASM run is so a (possibly infinite)
sequence of steps: the computational step is iterated
until no more rule is applicable.

The aforementioned notions refer to the so-called
basic ASMs. A generalization of basic ASMs is rep-
resented by Distributed ASMs (DASMs), capable of
capturing the formalization of multiple agents acting
in a distributed environment. Essentially, a DASM is
intended as an arbitrary but finite number of inde-
pendent agents, each executing its own underlying
ASM. A distributed run of a DASM is a partially or-
dered set of the runs of its ASMs: the underlying syn-
chronization scheme reflects causal dependencies,

determining which agent’s move comes before — a
move is a single computational step of an individual
agent —, and is only restricted by the consistency
condition, which is indispensable (Gurevich and
Rosenzweig, 2000). Unfortunately, the notion of par-
tially ordered run makes difficult to define univocally
the global state of the computation of a DASM.
Roughly speaking, a global state corresponds to the
union of the signatures of each ASM together with
interpretations of their functions. In a DASM the key-
word self is used for supporting the relation between
local and global states and for denoting the specific
agent which is executing a rule.

Finally, note that there is a distinction among
functions, depending on the different roles that loca-
tions can assume in a given ASM. A primary distinc-
tion concerns basic functions, intended as elemen-
tary, and derived functions, whose values are defined
in terms of other (basic or derived) functions, but nei-
ther the ASM nor the environment (more generally,
other ASMs in the case of DASMs) can update them:
they are automatically updated as a side effect of the
updates over the functions from which they derive. In
addition, basic functions are classified into static,
whose values never change during a run, and dy-
namic, for which values change as a consequence of
the updates executed by the ASM or by its environ-
ment. Furthermore, dynamic functions can be: con-
trolled, if directly updated only by the ASM; moni-
tored, if directly updated only by the environment and
only read by the ASM; shared, which are both con-
trolled and monitored; out, which are updated but
never read by the ASM (they are monitored by the
environment).

4 DINING PHILOSOPHERS

The Dining Philosophers problem, due to (Dijkstra,
1971), is one of the most illustrative examples in the
field of concurrency for explaining deadlock (and
starvation). Five philosophers are sitting around a ta-
ble with a bowl of spaghetti in the middle. For the
philosophers life consists only of two moments:
thinking and eating, rigorously with two forks. More
precisely, since each philosopher has a pair of a right
fork and a left fork, (s)he behaves as follows: (s)he
thinks till the right fork becomes available, grabs the
right fork, waits till the left fork becomes available,
grabs the left fork, eats for a certain amount of time,
then stops eating (putting back both forks on the ta-
ble) and starts thinking again. The problem is that in
between two neighboring philosophers there is only
one fork: each philosopher shares his/her right and

Towards an ASM-based Characterization of the Deadlock-freedom Property

125

left fork with his/her corresponding right and left
neighbors, respectively.

4.1 ASM-based Model

The ASM-based model of the Dining Philosophers
problem here described is elaborated with respect to
both its general statement (Dijkstra, 1971) and its dis-
cussion in terms of ASMs (Börger and Stärk, 2003).
Moreover, some aspects tailored to our purposes,
such as the predicates over the states, are included.
The problem can be simply modeled by a DASM Din-
ingPhilosophers composed by a homogeneous set of
agents: each of them behaves according to the same
underlying ASM. More precisely, we have a set of
philosophers = {p1, …, p5}, representing the agents of
the system, and a set of forks = {f1, …, f5}, represent-
ing their shared resources.
 The functions in each ASM signature Σ are:

• rightFork: philosophers → forks, static function

indicating a philosopher’s right fork;
• leftFork: philosophers → forks, static function

indicating a philosopher’s left fork;
• owner: forks → philosophers ∪ {undef}, dy-

namic shared function stating the current user of
a fork;

• hungry: philosophers → boolean, dynamic
shared function stating if a philosopher is hungry
or not.

The main rule is:

 DinPhilMainRule = {
 rightFork(p1) := f1
 leftFork(p1) := f5
 rightFork(p2) := f2
 leftFork(p2) := f1
 rightFork(p3) := f3
 leftFork(p3) := f2
 rightFork(p4) := f4
 leftFork(p4) := f3

rightFork(p5) := f5
 leftFork(p5) := p4

 forall fi in forks do
 owner(fi) := undef

 forall pi in philosophers do {
 Hungry(pi)
 if hungry(pi) then
 PhilosopherProgram(pi)
 }
 }

Note that the forall construct is used for express-
ing the simultaneous execution of a set of updates and
rules satisfying a given condition.

DinPhilMainRule assigns values to the static lo-
cations: each philosopher pi has fork fi on his/her right
and fork fi – 1 on his/her left, except for p1 that has fork
f5 on his/her left. Then, DinPhilMainRule assigns un-
def to each shared location representing the holding
of a fork. This means that, at the beginning of the
computation, DiningPhilosophers is in the initial
global state S0 in which ∀ fi ∈ forks, owner(fi) = undef,
i.e. each philosopher does not hold any fork. Finally,
DinPhilMainRule runs all the basic ASMs capturing
the behavior of each philosopher. Note that the ASM
related to the i-th philosopher, pi, is run only if hun-
gry(pi) evaluates to true, i.e. if the philosopher is hun-
gry. For the purposes of the present work, there is no
need to further detail the Hungry rule: it can be con-
ceived has an external entity that decides if pi is hun-
gry or not.

The basic ASM of the i-th philosopher, shown be-
low, is composed by rules (r.1), (r.2) and (r.3):

 PhilosopherProgram(pi) = {
 if owner(rightFork(self)) = undef then
 owner(rightFork(self)) := self

 if owner(rightFork(self)) = self ∧
 owner(leftFork(self)) = undef then
 owner(leftFork(self)) := self

 if owner(rightFork(self)) = self ∧
 owner(leftFork(self)) = self then {
 Eat (self)
 owner(rightFork(self)) := undef
 owner(leftFork(self)) := undef
 }
 }

The computation of each ASM, representing pi,
can evolve through seven states:

• s0: (owner(rightFork(self)) = undef) ∧

(owner(leftFork(self)) = undef);
• s1: (owner(rightFork(self)) = undef) ∧

(owner(leftFork(self)) = pi – 1 mod n);
• s2: (owner(rightFork(self)) = pi + 1 mod n) ∧

(owner(leftFork(self)) = undef);
• s3: (owner(rightFork(self)) = pi + 1 mod n) ∧

(owner(leftFork(self)) = pi – 1 mod n);
• s4: (owner(rightFork(self)) = self) ∧ (owner(left-

Fork(self)) = undef);
• s5: (owner(rightFork(self)) = self) ∧ (owner(left-

Fork(self)) = pi – 1 mod n);

(r.1)

(r.2)

(r.3)

ICSOFT-PT 2016 - 11th International Conference on Software Paradigm Trends

126

• s6: (owner(rightFork(self)) = self) ∧ (owner(left-
Fork(self)) = self).

As mentioned above, initially, each philosopher is

in state s0, i.e. for each philosopher both owner(right-
Fork(self)) and owner(leftFork(self)) evaluate to un-
def. The initial global state S0 is then characterized by
the composition of all the local states s0. Note that the
transition from one local state to another is not only
determined by the own computation of pi; it is also an
effect of the updates executed by the neighboring phi-
losophers over the shared locations.

These local states can be characterized by the fol-
lowing predicates over the states:

• thinking: ¬(owner(rightFork(self)) = self ∨

owner(leftFork(self)) = self). The philosopher is
thinking, so (s)he is waiting for the right fork to
become available. This predicate holds in states
from s0 to s3;

• holdingRightFork: owner(rightFork(self))
= self ∧ ¬(owner(leftFork(self)) = self). The phi-
losopher is holding his/her right fork, so (s)he is
waiting for the left fork to become available. This
predicate holds in states s4 and s5;

• eating: owner(rightFork(self)) = self ∧
owner(leftFork(self)) = self. The philosopher has
obtained both forks, so (s)he is eating. This pred-
icate only holds in state s6.

In the model above, rule (r.3) states that each phi-

losopher, after obtaining both forks, executes the Eat
rule, then releases them. Since the eating process is
outside the resource allocation problem driving the
risk of deadlock, the Eat rule does not need to be fur-
ther specified.

4.2 Analysis of the Model

In order to verify that DiningPhilosophers DASM is
affected by the risk of deadlock, let’s analyze the four
necessary conditions upon the model.

Mutual Exclusion. The claiming of exclusive control
of the resources is expressed by the grabbing of each
fork. In DiningPhilosophers this is accomplished by
the execution of rules (r.1) and (r.2) for the right and
the left fork, respectively. Each rule can be executed
only if the respective fork is available, i.e. if
owner(right/leftFork(self) = undef). Note that when
the i-th philosopher pi grabs a fork, that fork cannot
be accessed by the respective neighboring philoso-
pher. In fact, if two neighboring philosophers pi and
pi + 1 simultaneously try to access the same fork f, a

consistency violation occurs. More precisely, if f is
the right fork for pi and the left fork for pi + 1, if pi
executes its own rule (r.1) and pi + 1 executes its own
rule (r.2) at the same time, then the two rules would
access the same location dealing with the ownership
of the fork, so producing an inconsistency upon it.
Therefore, the mutual exclusion condition holds in
DiningPhilosophers.

Resource Holding. When pi has grabbed a fork, (s)he
waits until (s)he can grab the second one; then the
forks are released only after the completion of the eat-
ing process. In DiningPhilosophers this is expressed
by the update of rule (r.3), which can be executed only
when both forks have been grabbed by pi, i.e. when
owner(right/leftFork(self)) = self. Therefore, the re-
source holding condition holds in DiningPhiloso-
phers.

No Preemption. No one (or nothing) can forcibly re-
move a fork from a philosopher that is holding it. In
DiningPhilosophers this is expressed by the lack of
any rule allowing a philosopher to become the owner
of a fork which is held by another philosopher. In fact,
all updates expressing the grabbing of the forks
(owner(right/leftFork(self)) := self) only appear in
rules guarded by conditions stating the availability of
the forks (if owner(right/leftFork(self)) = undef).
Therefore, the no preemption condition holds in Din-
ingPhilosophers.

Circular Wait. Due to the configuration of the static
locations in the initial global state represented by the
main rule DinPhilMainRule, the circular chain is set
when all agents are executing rule (r.2). In this way,
each pi waits for the fork held by pi – 1 mod n. There-
fore, the circular wait condition holds in DiningPhi-
losophers.

In conclusion, all the four conditions could hold
separately: if they occur simultaneously a risk of
deadlock exists. Note that in DiningPhilosophers
DASM, in every run in which the PhilosopherPro-
gram(pi) is invoked for the i-th philosopher, the mu-
tual exclusion condition always holds. Both the re-
source holding and no preemption conditions hold
when pi grabs a fork. The circular wait condition
holds when each pi grabs its right fork. Therefore, in
the latter case all conditions are simultaneously satis-
fied. This is formally stated by the following:

Theorem. There exists (at least) an admissible run M
of DiningPhilosophers such that DiningPhilosophers
is deadlocked.

Towards an ASM-based Characterization of the Deadlock-freedom Property

127

Proof. In the case that for all philosophers hungry(pi)
evaluates to true, then each pi executes its own Phi-
losopherProgram(pi), so each pi executes its own rule
(r.1). Therefore, the four necessary conditions for
deadlock hold simultaneously. Let M be a run of Din-
ingPhilosophers such that all pi simultaneously exe-
cute their own rule (r.1). Then, DiningPhilosophers
reaches a global state Sk, in which all the conditions
guarding every rule evaluate to false for each Philos-
opherProgram(pi), so no further rule can be executed.
Therefore, DiningPhilosophers is deadlocked. □

In Sk all philosophers indefinitely wait for each
other to release the possessed fork, i.e. the local state
of each (ASM, pi) satisfies the holdingRight-
Fork predicate over the states, so ∀ pi ∈ philoso-
phers, owner(rightFork(pi)) = pi.

5 DISCUSSION

The analysis of the model allows us to derive some
considerations to address deadlock issues with
ASMs. Preliminarily, it is worth noting that the clas-
sic necessary conditions for deadlock implicitly apply
to multi-process systems with shared resources. In
other words, a deadlock emerges from the interaction
among multiple processes when resources are shared
among them. As consequence, we must first restrict
our focus only on DASMs. In fact, as stated in
(Gurevich, 1995), only DASMs allow for the repre-
sentation of multi-agent systems: each agent models
the behavior of a single process of the system under
study.

Secondly, for what concerns resources, they can
be modeled by the concept of function. Let’s recall
that the ASM functions belong to particular classes.
In accordance with this classification, static functions
surely do not impact deadlock, because their values
never change during a run. Controlled functions can
also be excluded in that their values can be managed
by an ASM because set inside it. Although monitored
functions indicate that the behavior of an ASM is af-
fected by the other agents, they are not updatable by
the ASM they belong to, so they cannot represent a
resource that the ASM shares with its environment.
Shared functions, as the name suggest, surely can
model a shared resource: indeed, they are directly up-
datable by the rules of the ASM they belong to and by
the environment, and can be read by both. Out func-
tions are not involved in a deadlock, because their
values are produced by the ASM, but never used. Fi-
nally, more detailed analysis should be executed
when derived functions appear. In fact, since they

cannot be managed inside the ASM, because their
values depend on other functions, the latter must be
investigated. More precisely, a derived function must
be taken into account if it is defined on a shared func-
tion or (recursively) on a derived function defined on
a shared function. For the sake of simplicity, in the
following we only consider shared functions.

The previous observations suggest a provisional
generalization of the necessary conditions for dead-
lock in terms of ASMs.

The Mutual Exclusion Lemma (Börger and
Schewe, 2015) expresses that, thanks to the partial or-
der of moves guaranteed by the concept of distributed
run, the possible updates of two agents over a same
shared location at the same time is never allowed. In
other words, in general in a DASM, the access to
shared resources is exclusive, so no further schedul-
ing policy is needed.

Therefore, we can suspect that a deadlock can oc-
cur in a DASM model when only the following three
necessary conditions hold simultaneously:

Resource Holding. There is (at least) one rule r
whose update concerns the updating of a shared loca-
tion loc to self. It is in the form if condition then loc
:= self. This rule represents the action of holding a
shared resource by a process: we say that the agent
which executes r holds the shared location loc. More-
over, there is (at least) one rule r’: (i) whose condition
evaluates to true only if r has been previously exe-
cuted; and (ii) whose update concerns the updating of
a new shared location loc’ to self. It is in the form if
condition ∧ (loc = self) then loc’ := self. This rule
represents the waiting for a requested resource while
another resource has already been allocated to the
process: we say that the agent which is unable to ex-
ecute r’ waits for the shared location loc’. Note that
both in r and r’ condition is to be intended as a first-
order formula of arbitrary complexity. Moreover,
note that the waiting can be semantically represented
by a predicate over the states ϕ in the general form loc
= self ∧ ¬(loc’ = self).

No Preemption. The conditions guarding the above
mentioned rules r and r’ evaluate to true only if loc
and loc’ evaluate to undef. Therefore, they are in the
form if condition ∧ (loc = undef) then loc := self and
if condition ∧ (loc = self) ∧ (loc’ = undef) then loc’
:= self, respectively. More generally, no rule in the
model updates to self a shared location loc if loc does
not evaluate to undef. This condition captures the im-
possibility to allocate a resource, already allocated to
a process, to another process.

ICSOFT-PT 2016 - 11th International Conference on Software Paradigm Trends

128

Circular Wait. A circular chain of agents {a1, …, an}
exists such that ai is waiting for a shared location held
by ai + 1 mod n. Semantically, a circular chain arises
when (at least) a global state Sk, resulting by the com-
position of the local states s1, …, sn, each satisfying
the above mentioned predicate over the states ϕ, is
reachable from the initial global state S0.

A DASM is then deadlock-free if any of the three
necessary conditions for deadlock is denied. Resource
holding can be denied by imposing each process to
request all the resources it needs at once. In ASM
terms, rules r and r’ above must be unified in a single
rule whose update concerns the updating of all the
shared locations each ASM waits for at once. More
generally, all the shared locations an agent waits for
must be updated during the execution of a unique
rule. This rule can be conceived to be in the general
form if condition then loc1 := self, …, locn := self,
where loc1, …, locn represent all the resources the
agent needs. Note that, in this way, the predicate ϕ,
representing the waiting for the remaining resources,
can no longer be satisfied.

Instead, the following strategy can be adopted in
order to enable preemption: if a process holding a re-
source is denied a further request, that process must
release the already acquired resource. If necessary,
the process can request the resources it needs at a later
time. A way to achieve this can be adding the follow-
ing rule: if condition ∧ (loc = self) ∧ ¬(loc’ = undef)
then loc := undef. This rule allows an agent to release
the already acquired loc if loc’ is not set to undef.

Finally, circular wait can be denied by imposing a
linear order of requests so that processes are forced to
require the resources they need in that order. Accord-
ing to Lamport’s Bakery algorithm (Lamport, 1974),
a possible solution is adding to the model a scheduler
agent that decides the order in which the disputed
shared location can be updated by the other agents.
For example, the scheduler agent can assign a ticket
to each process, compare tickets and let the process
with the smallest one to access the resources. In this
way, all processes access the resources alternately, so
the resource allocation graph can never have a cycle.

6 CONCLUSIONS

In order to investigate the deadlock-freedom prop-
erty, the study here presented has focused on model-
ling and analyzing the Dining Philosophers problem
using Abstract State Machines. It is worth remarking
that, albeit simple, the Dining Philosophers problem

is adequately general in that it enables an abstract de-
scription of deadlock that can be further refined to any
specific domain.

The analysis of the model has allowed us to pro-
vide a preliminary reformulation of the classic neces-
sary conditions for deadlock in terms of ASMs. The
results obtained are encouraging for the purposes of
our research because an entirely operational ASM-
based characterization of deadlock could allow mod-
elers to treat the analysis of deadlock inside the ASM
framework before adopting it in conjunction with hy-
brid model checking approaches. In fact, thanks to
such a characterization, developers can recognize the
risk of deadlock in an ASM model of a system, so
they can re-model it in advance, before its develop-
ment, with evident effort savings.

Nevertheless, our approach presents drawbacks.
As other manual techniques, it is human-based, so is
error-prone and requires expertise in order to find an
appropriate abstraction of the system to be verified.
In other words, any analysis is as good as the model
is. Furthermore, because of decidability issues, it can-
not be completely automatized, even if automatic
tools can support it.

Future developments of our research should gen-
eralize the findings of this paper with the aim to for-
mally prove the necessary conditions that enable
deadlock inside ASMs.

Moreover, it is worth noting that, in this paper, we
have only focused on distributed resource deadlocks.
Therefore, future developments should also consider
both distributed communication deadlocks and single
deadlocks. To this end, it is worth remarking that
monitored functions can represent the receipt of a
message and the occurrence of an external event, so
they must be taken into account in deadlock analysis.
Moreover, the focus can no longer be restricted only
on DASMs, but also basic ASMs interacting with the
environment must be studied.

REFERENCES

Arcaini, P., Gargantini, A., Riccobene, E., 2010. Asmeta-
SMV: A Way to Link High-Level ASM Models to
Low-Level NuSMV Specifications, Proc. of the 2nd In-
ternational Conference on Abstract State Machines, Al-
loy, B and Z, pp. 61–74.

Bianchi, A., Pizzutilo, S., Vessio, G., 2015. Applying Pred-
icate Abstraction to Abstract State Machines, Enter-
prise, Business-Process and Information Systems Mod-
eling, LNBIP 214, Springer, pp. 283–292.

Bianchi, A., Pizzutilo, S., Vessio, G., 2016. Reasoning on
Starvation in AODV using Abstract State Machines,

Towards an ASM-based Characterization of the Deadlock-freedom Property

129

Journal of Theoretical and Applied Information Tech-
nology, 84(1), pp. 140–149.

Bingham, B., Bingham, J., Erickson, J., Greenstreet, M.,
2013. Distributed Explicit State Model Checking of
Deadlock Freedom, Proc. of the 25th International
Conference on Computer Aided Verification, pp. 235–
241.

Blass, A., Gurevich, Y., 2003. Abstract State Machines
Capture Parallel Algorithms, ACM Transactions on
Computational Logic, 4(4), pp. 578–651.

Börger, E., Schewe, K.D., 2015. Concurrent abstract state
machines, Acta Informatica, pp. 1–24.

Börger, E., Stärk, R., 2003. Abstract State Machines: A
Method for High-Level System Design and Analysis,
Springer-Verlag.

Brookes, S.D., Roscoe, A.W., 1991. Deadlock analysis in
networks of communicating processes, Distributed
Computing, 4(4), pp. 209–230.

Coffman, E.G., Elphick, M.J., Shoshani, A., 1971. System
Deadlocks, Computing Surveys, 3(2), pp. 67–78.

Del Castillo, G., Winter, K., 2000. Model Checking Sup-
port for the ASM High-Level Language, Proc. of the
6th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems, pp. 331–
346.

Dershowitz, N., 2013. The Generic Model of Computation,
Electronic Proceedings in Theoretical Computer Sci-
ence.

Dijkstra, E.W., 1968. Cooperating sequential processes,
Genuys, F., ed., Programming Languages, Academic
Press, pp. 43–112.

Dijkstra, E.W., 1971. Hierarchical Ordering of Sequential
Processes, Acta Informatica, 1(2), pp. 115–138.

Farahbod, R., Gervasi, V., Glässer, U., 2007. CoreASM: An
Extensible ASM Execution Engine, Fundamenta Infor-
maticae, 77(1-2), pp. 71–103.

Farahbod, R., Glässer, U., Ma, G., 2007. Model Checking
CoreASM Specifications, Prinz, A., ed., 14th Interna-
tional ASM Workshop.

Gabrisch, W., Zimmermann, W., 2012. A Hoare-Style Ver-
ification Calculus for Control State ASMs, Proc. of the
5th Balkan Conference on Informatics, pp. 205–210.

Glausch, A., Reisig, W., 2009. An ASM-Characterization
of a Class of Distributed Algorithms, Abrial, J.R.,
Glässer, U., eds., Rigorous Methods for Software Con-
struction and Analysis, pp. 50–64.

Gurevich, Y., 1995. Evolving Algebras 1993: Lipari Guide,
Börger, E., ed., Specification and Validation Methods,
Oxford University Press, pp. 9–36.

Gurevich, Y., 2000. Sequential Abstract State Machines
Capture Sequential Algorithms, ACM Transactions on
Computational Logic, 1(1), pp. 77–111.

Gurevich, Y., Rosenzweig, D., 2000. Partially ordered runs:
A case study. In: Abstract State Machines - Theory and
Applications, pp. 131–150.

Holt, R.C., 1972. Some Deadlock Properties of Computer
Systems, ACM Computing Surveys, 4(3), pp. 179–196.

Kameda, T., 1980. Testing Deadlock-Freedom of Computer
Systems, Journal of the ACM, 27(2), pp. 270–280.

Knapp, E., 1987. Deadlock detection in distributed data-
bases, ACM Computing Surveys, 19(4), pp. 303–328.

Lamport, L., 1974. A New Solution of Dijkstra’s Concur-
rent Programming Problem, Communications of the
ACM, 17(8), pp. 453–455.

Padovani, L., 2014. Deadlock and lock freedom in the lin-
ear π-calculus, Proc. of CSL-LICS ’14, article no. 72.

Rafe, V., Doostali, S., 2012. ASM2Bogor: An approach for
verification of models specified through Asmeta lan-
guage, Journal of Visual Languages and Computing,
23(5), pp. 287–298.

Reisig, W., 2003. The Expressive Power of Abstract State
Machines, Computing and Informatics, 22, pp. 209–
219.

Singhal, M., 1989. Deadlock Detection in Distributed Sys-
tems, Computer, 22(11), pp. 37–48.

Spielmann, M., 1999. Automatic Verification of Abstract
State Machines, Proc. of the 11th International Confer-
ence on Computer Aided Verification, pp. 431–442.

Stärk, R.F., Nanchen, S., 2001. A Logic for Abstract State
Machines, Journal of Universal Computer Science,
7(11), pp. 981–1006.

ICSOFT-PT 2016 - 11th International Conference on Software Paradigm Trends

130

