A Compliant Actuation Dynamics Gazebo-ROS Plugin for Effective Simulation of Soft Robotics Systems: Application to CENTAURO Robot

Małgorzata Kameduła, Navvab Kashiri, Darwin G. Caldwell, Nikos G. Tsagarakis

2016

Abstract

Despite the important role of simulation in the development and control of robotics systems, the majority of open source simulation tools has however paid no attention to the progress and paradigm change on the robot design in the past 15 years with the consideration of soft actuation technologies as a mean to power new robotic systems. More specifically, the integration of series elastic actuators (SEAs) into robots modifies significantly the dynamics characteristics of the system while the incorporation of the passive compliance into the actuators is not applied in conventional simulators. This paper introduces a scheme for the implementation of the SEA dynamics on a Gazebo-ROS framework exploited for the simulation of a new centaur-like robot. This approach is based on designing a custom control plugin embodying the passive compliance dynamics so that the controller associated with each joint receives both collocated and non-collocated feedback. A simulation comparison with Matlab validating the performance of the designed control plugin is demonstrated. In the end, a whole-body simulation of the centaur robot driven/controlled by the proposed plugin is presented.

References

  1. Allgeuer, P., Schwarz, M., Pastrana, J., Schueller, S., Missura, M., and Behnke, S. (2013). A ROS-based software framework for the NimbRo-OP humanoid open platform. In IEEE-RAS Int. Conf. Humanoid Robot Work. Humanoid Soccer Robot.
  2. Alunni, N., Phillips-Grafflin, C., Suay, H. B., Lofaro, D., Berenson, D., Chernova, S., Lindeman, R. W., and Oh, P. (2013). Toward a user-guided manipulation framework for high-DOF robots with limited communication. IEEE Conf. Technol. Pract. Robot Appl. TePRA, 7(3):121-131.
  3. Asfour, T., Regenstein, K., Azad, P., Schröder, J., Bierbaum, A., Vahrenkamp, N., and Dillmann, R. (2006). ARMAR-III: An integrated humanoid platform for sensory-motor control. In IEEE-RAS Int. Conf. Humanoid Robot., pages 169-175.
  4. Bruyninckx, H. (2001). Open robot control software: the OROCOS project. In IEEE Int. Conf. Autom. Robot., volume 3, pages 2523-2528.
  5. Carpin, S., Lewis, M., Wang, J., Balakirsky, S., and Scrapper, C. (2007). USARSim: A robot simulator for research and education. In IEEE Int. Conf. Robot. Autom., pages 1400-1405.
  6. Einhorn, E., Langner, T., Stricker, R., Martin, C., and Gross, H. M. (2012). MIRA - Middleware for robotic applications. In IEEE Int. Conf. Intell. Robot. Syst., pages 2591-2598.
  7. Elkady, A. and Sobh, T. (2012). Robotics Middleware: A Comprehensive Literature Survey and Attribute-Based Bibliography. J. Robot., 2012.
  8. Erez, T., Tassa, Y., and Todorov, E. (2015). Simulation tools for model-based robotics: Comparison of Bullet, Havok, MuJoCo, ODE and PhysX. In IEEE Int. Conf. Robot. Autom., pages 4397-4404.
  9. Forero, L. L., Yánez, J. M., and Ruiz-del Solar, J. (2013). Integration of the ros framework in soccer robotics: the nao case. In Rob. 2013 Robot World Cup XVII, pages 664-671.
  10. Guan, X., Zheng, H., and Zhang, X. (2004). Biologically inspired quadruped robot biosbot: modeling, simulation and experiment. In IEEE Int. Conf. Auton. Robot., pages 261-266.
  11. Ha, I., Tamura, Y., Asama, H., Han, J., and Hong, D. W. (2011). Development of open humanoid platform DARwIn-OP. In SICE Annu. Conf. 2011, pages 2178-2181.
  12. Habra, T., Dallali, H., Cardellino, A., Natale, L., and Tsagarakis, N. (2015). Robotran-Yarp interface : a framework for real-time controller development based on multibody dynamics simulation. In ECCOMAS Themat. Conf. Multibody Dyn., pages 2-3.
  13. Hirano, T., Sueyoshi, T., and Kawamura, A. (2000). Development of ROCOS (Robot Control Simulator)-Jump of human-type biped robot by the adaptive impedance control. In Proc. 6th Int. Work. Adv. Motion Control, pages 606-611.
  14. Ivaldi, S., Peters, J., Padois, V., and Nori, F. (2015). Tools for simulating humanoid robot dynamics: A survey based on user feedback. In IEEE-RAS Int. Conf. Humanoid Robot., pages 842-849.
  15. Jochmann, G., Blümel, F., Stern, O., and Roßmann, J. (2014). The Virtual Space Robotics Testbed: Comprehensive Means for the Development and Evaluation of Components for Robotic Exploration Missions. KI - Künstliche Intelligenz, 28(2):85-92.
  16. Kashiri, N., Ajoudani, A., Tsagarakis, N. G., and Caldwell, D. G. (2016). Evaluation of Hip Kinematics Influence on the Performance of a Quadrupedal Robot Leg. In Int. Conf. Informatics Control. Autom. Robot.
  17. Kashiri, N., Tsagarakis, N. G., Van Damme, M., Vanderborght, B., and Caldwell, D. G. (2014). Enhanced Physical Interaction Performance for Compliant Joint Manipulators using Proxy-based Sliding Mode Control. In Int. Conf. Informatics Control. Autom. Robot., pages 175-183.
  18. Kranz, M., Rusu, R., Maldonado, A., and Beetz, M. (2006). A player/stage system for context-aware intelligent environments. Proc., 6:17-21.
  19. Metta, G., Fitzpatrick, P., and Natale, L. (2006). YARP: Yet another robot platform. Int. J. Adv. Robot. Syst., 3(1):043-048.
  20. Negrello, F., Garabini, M., Catalano, M., Kryczka, P., Choi, W., Caldwell, D., Bicchi, A., and Tsagarakis, N. (2016). Walk-man humanoid lower body design optimization for enhanced physical performance. In IEEE Int. Conf. Robot. Autom., pages 1817-1824.
  21. Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., and Ng, A. Y. (2009). ROS: an open-source Robot Operating System. In ICRA Work. open source Softw., volume 3, page 5.
  22. Tikhanoff, V., Cangelosi, A., Fitzpatrick, P., Metta, G., Natale, L., and Nori, F. (2008). An Open-Source Simulator for Cognitive Robotics Research : The Prototype of the iCub Humanoid Robot Simulator. In Work. Perform. Metrics Intell. Syst., pages 57-61.
  23. Tomei, P. (1991). A Simple PD Controller for Robots with Elastic Joints. IEEE Trans. Automat. Contr., 36(10):1208-1213.
  24. Tsagarakis, N. G., Morfey, S., Cerda, G. M., Zhibin, L., and Caldwell, D. G. (2013). Compliant humanoid coman: Optimal joint stiffness tuning for modal frequency control. In IEEE Int. Conf. Robot. Autom., pages 673-678.
  25. Ugurlu, B. and Kawamura, A. (2010). Bipedal walking trajectory generation based on ZMP and Euler's equations of motion. In IEEE-RAS Int. Conf. Humanoid Robot., pages 468-473.
  26. Woolley, B. (1993). Virtual Worlds. In Virtual Worlds, volume 1434, pages 254-263. Springer.
Download


Paper Citation


in Harvard Style

Kameduła M., Kashiri N., Caldwell D. and Tsagarakis N. (2016). A Compliant Actuation Dynamics Gazebo-ROS Plugin for Effective Simulation of Soft Robotics Systems: Application to CENTAURO Robot . In Proceedings of the 13th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO, ISBN 978-989-758-198-4, pages 485-491. DOI: 10.5220/0006001404850491


in Bibtex Style

@conference{icinco16,
author={Małgorzata Kameduła and Navvab Kashiri and Darwin G. Caldwell and Nikos G. Tsagarakis},
title={A Compliant Actuation Dynamics Gazebo-ROS Plugin for Effective Simulation of Soft Robotics Systems: Application to CENTAURO Robot},
booktitle={Proceedings of the 13th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,},
year={2016},
pages={485-491},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006001404850491},
isbn={978-989-758-198-4},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 13th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,
TI - A Compliant Actuation Dynamics Gazebo-ROS Plugin for Effective Simulation of Soft Robotics Systems: Application to CENTAURO Robot
SN - 978-989-758-198-4
AU - Kameduła M.
AU - Kashiri N.
AU - Caldwell D.
AU - Tsagarakis N.
PY - 2016
SP - 485
EP - 491
DO - 10.5220/0006001404850491