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Abstract: In the effort to achieve high convergence rate, at the same time avoiding implementation difficulties and 
poor robustness of time-optimal controllers, the concept of soft Variable Structure Control (VSC) may be 
applied. The classical formulation of soft VSC in continuous time domain assumes smooth switching among 
an infinite number of controllers. Since nowadays control laws are implemented digitally, changing the 
control structure is limited to sampling instances, which leads to quasi-soft VSC. The paper investigates 
how the favourable characteristics of dynamic soft VSC can be extended to input-constrained systems with 
finite sampling. The design procedure and stability analysis are conducted directly in discrete time domain. 
The resulting nonlinear control law is synthesised into a form substantially different from its continuous-
time counterpart. However, smooth control action and fast convergence of continuous soft VSC is retained. 
The properties of the obtained control system are formally proved and confirmed experimentally. 

1 INTRODUCTION 

A combination of two or more control structures 
with switching logic results in new properties in thus 
formed variable structure control (VSC) system. As 
an example, one may consider two unstable systems 
which, when joint by an appropriate switching 
strategy, ensure asymptotic convergence to 
equilibrium (Utkin, 1977). Depending on the design 
requirements, the emphasis may be placed on 
different aspects and properties of the VSC system. 

When robustness is of primary importance (with 
the quality of generated control signal a secondary 
objective), a popular approach is to introduce a high-
gain switching element and create a sliding-mode 
control system. Once the system enters the sliding 
phase, any deviation from the prescribed manifold in 
the state space is compensated, yielding insensitivity 
to matched perturbations under ideal operating 
conditions. In practice, physical limitations do not 
permit achieving ideal sliding motion, yet high level 
of robustness can be achieved. Special 
considerations, however, need to be taken to 
mitigate the impact of chattering – unfavourable 
high-rate input oscillations that are destructive for 
mechanical components and inefficient from the 
point of energy budget (Lee and Utkin, 2007). 

When a smooth control action becomes a 
priority, a different class of VSC systems may be 
considered. In particular, if high regulation rates are 
desired, one can apply the concept of soft VSC 
(Adamy and Flemming, 2004). Unlike sliding-mode 
control that relies on infinitely fast switching 
between a finite number of control configurations, in 
soft VSC, an infinite number of cooperating 
controllers is used in the effort to attain fast 
convergence to equilibrium. The input signal 
evolves smoothly within the range permitted by 
constraints. 

The soft VSC was originally developed for 
continuous-time systems (Adamy and Flemming, 
2004), and later explored also in continuous time 
domain (Lens et al., 2011; Kefferpütz et al., 2013; 
Liu et al., 2015). In now commonly applied digital 
control realizations (Ignaciuk and Bartoszewicz, 
2011; Ignaciuk and Morawski, 2014), however, it is 
not possible to obtain switching at infinite rate. The 
smoothness of control structure transitions in 
discrete-time implementation of soft VSC is 
restricted by the sequence of sampling instants. In 
this paper, the design issues of soft variable structure 
controllers for sampled-data systems are considered. 
Although infinite switching rate among the control 
structures is not possible, the obtained quasi-soft 
VSC scheme ensures fast convergence to 
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equilibrium with smoothly varying input signal. The 
closed-loop stability and control signal constraints 
are addressed explicitly and properties of the quasi-
soft VSC system are formally demonstrated within 
discrete-time framework. The theoretical content is 
supported by experimental study – stabilization of an 
inverted pendulum-on-a-cart system. 

2 PROBLEM SETTING 

Let t = 0, 1, 2, ... denote subsequent time instants in 
a system sampled with period Ts. The system 
dynamics are given by 

[( 1) ] ( ) ( ),s s st T tT u tT+ = +x Ax b  (1)

where x ∈ ℝn is the state vector, u ∈ ℝ is the input 
vector, A ∈ ℝn×n and b ∈ ℝn for n ∈ ℕ+. The initial 
state x0 = x(0) belongs to a bounded set X0. For 
notational brevity, the independent variable tTs will 
be written shortly as t in a latter part of the text. 

The control input needs to obey the constraint 

0| | ,u u≤  (2)

u0 > 0. It is assumed that the control system is 
feasible, i.e. there exists control satisfying (2) that 
can bring any x0 ∈ X0 to 0. Equivalently, one may 
consider only a (nonempty) set of points X0 for 
which control system (1)–(2) is stabilizable (Hu and 
Lin, 2001). 

3 SOFT VSC FOR 
SAMPLED-DATA SYSTEMS 

3.1 Soft VSC Concept 

When the linear control u(t) = kx(t) with a fixed gain 
k ∈ ℝ1×n is applied to system (1), the convergence 
rate decreases as ||x||, ||⋅|| denoting the Euclidean 
norm, approaches zero. In order to speed up the 
performance, a nonlinear strategy, e.g. time-optimal 
control, can be used. However, time-optimal 
controllers, besides difficulties in obtaining 
convenient form in sampled-data systems (Gao, 
2004), imply sudden changes of the control input at 
the extremity of allowed interval (2). 

The idea behind soft VSC is to adjust the control 
system dynamics by smoothly changing the control 
structure so that high regulatory rate is maintained 
throughout the whole movement from x0 to 
equilibrium. However, unlike continuous-time  

 
Figure 1: Dynamic soft VSC in sampled-data systems. 

systems, discrete-time implementation does not 
permit adapting the control structure infinitely fast. 
The inherent characteristics of discrete-time control 
call for special treatment to retain the desirable 
properties of soft VSC systems. 

3.2 Quasi-soft VSC 

The analysed dynamic VSC system is illustrated in 
Fig. 1. The control structure comprises two sub-
controllers and selection logic that governs the 
overall gain adjustment. The input is determined as 

1 2( ) [ ( ) ] ( ),u t s t t= − +k k x  (3)

where k1, k2 ∈ ℝ1×n are the control gains and 
s(t) ∈ ℝ is the selection variable used for gain 
adaptation. The controller design amounts to 
choosing suitable vectors k1 and k2, and function 
s(t). 

The closed-loop system under control (3) 
becomes 

1 2

1 2

( 1) [ ( ) ] ( )
[ ( ) ] ( )

t s t t
s t t

+ = − −
= −

x A bk bk x
A bk x

 (4)

with gain k1 to be selected so that A1 = A – bk1 is 
stable and good closed-loop performance is 
achieved. 

The system is required to have a single 
(asymptotically) stable equilibrium point 

.
0s

⎡ ⎤ ⎡ ⎤=⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

x 0
 (5)

3.3 Selection Strategy 

A possible choice of selection variable s(t) so that 
(5) is the unique stable equilibrium for system (4) is 
given in the following theorem. 
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Theorem 1. If there exist positive definite 
matrices P, Q, and R ∈ ℝn×n satisfying 

1 1 ( ),T − = − +A PA P Q R  (6)

for A1 = A – bk1, and the selection strategy is 
chosen as 

2
1 2

2
2 2

( 1) ( ),
1( ) ( ) ( )[ 2 ( )

( ) ] ( )

T T

T T

s t r t

r t ws t t s t
v

s t t

+ =

= + +

−

x R A Pbk

k b Pbk x

 (7)

with v > 0, 0 < w < 1, and R adjusted so that r(t) ≥ 0, 
then (5) is the stable equilibrium of system (4). 

Proof. Consider the Lyapunov function candidate 
2( ) ( ) ( ) ( ).TV t t t vs t= +x Px  (8)

Since P is positive definite and v positive, 
V(t) > 0 for t > 0 and V = 0 at equilibrium (5). 
Therefore, in order for (8) to be a Lyapunov function 
for system (4), the forward difference 

( ) ( 1) ( )V t V t V tΔ = + −  (9)

needs to be negative along the state trajectory. 
Using (4) and (8), ΔV becomes 

2

2

1 2 1 2
2 2

2 2
1 1

1 2 2 1
2

2 2

( ) ( 1) ( 1) ( 1)
( ) ( ) ( )
( )[ ( ) ] [ ( ) ] ( )

( 1) ( ) ( ) ( )
( )[ ] ( ) ( 1) ( )

( )[ ( ) ( )( )

( )( ) ] ( )

T

T

T T

T

T T

T T T

T

V t t t vs t
t t vs t
t s t s t t

vs t t t vs t
t t vs t vs t

t s t s t

s t t

Δ = + + + +
− −
= − −

+ + − −
= − + + −

+ − −

+

x Px
x Px
x A bk P A bk x

x Px
x A PA P x

x A Pbk bk PA

bk Pbk x
2 2

1 1
2

1 2 2 2

( )[ ] ( ) ( 1) ( )

( )[ 2 ( ) ( ) ] ( ).

T T

T T T T

t t vs t vs t

t s t s t t

= − + + −

+ − +

x A PA P x

x A Pbk k b Pbk x
(10) 

Substituting (7) for s2(t + 1) in (10), yields 

1 1
2

( ) ( )[ ] ( ) ( ) ( )

(1 ) ( ).

T T TV t t t t t

w vs t

Δ = − +

− −

x A PA P x x Rx
 (11)

Since v > 0 and 0 < w < 1, using assumption (6) 
leads to 

2( ) ( ) ( ) (1 ) ( ) 0.TV t t t w vs tΔ = − − − <x Qx  (12)

Consequently, since ΔV(t) < 0, V(t) given by (8) is a 
Lyapunov function for system (4), and the system is 
stable. � 

Note that for a stable matrix A1 (whose 
eigenvalues can be moved into the open unit disc by 
proper selection of vector k1), (6) represents a 
Lyapunov equation with positive definite solution P 
obtained for arbitrary positive definite matrix Q + R. 
Thus, since the sum of positive definite matrices is 
positive definite, one can always find positive 
definite matrices P, Q, and R satisfying relation (6). 
On the other hand, for sufficiently large R and v one 
can guarantee that the expression under the square 
root in (7) will be nonnegative, which results in a 
feasible function s(t). Q can be arbitrary, e.g. an 
identity matrix. 

3.4 Actuator Saturation 

The selection variable needs to be chosen in such a 
way that the closed-loop system is stable, and input 
constraint (2) is satisfied at all times. Directly from 
(3), it follows that condition (2) is met whenever 

0 1 2 0[ ( ) ] ,u s t u− ≤ − + ≤k k x  (13)

which is equivalent to the pair of inequalities 

0 1 0 1
2

2 2

0 1 0 1
2

2 2

( )    for   0,

( )    for   0.

u u
s t

u u
s t

− − −
≤ ≤ >

− − −
≤ ≤ <

k x k x
k x

k x k x
k x k x

k x
k x k x

 (14)

When x approaches the equilibrium thus formed 
bounds extend to infinity. Therefore s should be 
further limited as 

0| ( ) |s t s≤  (15)

with s0 being a positive constant. Combining (14) 
and (15) one arrives at 

( ) ( ) ( )L Us s t s≤ ≤x x  (16)

where 

0 1 0 1
2

2 0

0 1 0 1
0 2

0 0

0 1 0 1
2

2 0

, ,

( ) , ,

, ,

L

u u
s

u u
s s

s s
u u

s

⎧ − − +
≤⎪

⎪
⎪ − + +⎪= − < <⎨
⎪
⎪− − +

≥⎪
⎪⎩

k x k x
k x

k x
k x k x

x k x

k x k x
k x

k x

 

(17) 

and 
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0 1 0 1
2

2 0

0 1 0 1
0 2

0 0

0 1 0 1
2

2 0

, ,

( ) , ,

, .

U

u u
s

u u
s s

s s
u u

s

⎧− − − −
≤⎪

⎪
⎪ − − −⎪= < <⎨
⎪
⎪ − −

≥⎪
⎪⎩

k x k x
k x

k x
k x k x

x k x

k x k x
k x

k x

 

(18) 

Theorem 2. If there exist positive definite 
matrices P, Q, and R satisfying (6) with R and v 
adjusted so that r(t) given by (7) is nonnegative, then 
the selection strategy 

( 1) ( , ) ( ),s t r r tμ+ = x  (19)

with 

( )
, sgn[ ( )] ( ),

( , ) sgn[ ( )], ( ) sgn[ ( )] ( ),
( )

, sgn[ ( )] ( ),

L
L

L U

U
U

s
s t r s

r
r s t s s t r s

s
s t r s

r

μ

⎧ ≤⎪
⎪⎪= < <⎨
⎪
⎪ ≥
⎪⎩

x
x

x x x
x

x

 

(20) 

sL(x) and sU(x) given by (17) and (18), and 

1, 0,
sgn( )

1, 0.
s

s
s

− ≤⎧= ⎨ >⎩
 (21)

stabilises system (4) at equilibrium (5) while 
upholding input constraint (2). 

Proof. First, note that (20) makes s given by (19) 
confined to interval (16), which is equivalent to the 
constraint |u| ≤ u0. 

Consider the Lyapunov function candidate 

2
2( ) ( ) ( ) ( ),T vV t t t s t

μ
= +x Px  (22)

Since P is positive definite and v positive, 
V(t) > 0 for t > 0 and V = 0 at equilibrium (5). Using 
(4) and (19), the forward difference 

2
1 1 2

2
1 2 2 2

2 2
1 1 2

( )

( )[ ] ( ) ( ) ( )

( )[ 2 ( ) ( ) ] ( )

( )[ ] ( ) ( ) ( ),

T T

T T T T

T T

V t
vt t vr t s t

t s t s t t
vt t vws t s t

μ

μ

Δ

= − + −

+ − +

= − + + −

x A PA P x

x A Pbk k b Pbk x

x A PA P R x

(23)

which after applying (6) becomes 

2 2( ) ( ) ( ) (1/ ) ( ).TV t t t w vs tμΔ = − − −x Qx  (24)

Since v > 0, for sufficiently small w > 0, ΔV(t) < 0, 
and closed-loop system (4) with input constraint (2) 
is Lyapunov stable. � 

3.5 Convergence 

It remains to be determined whether the control 
system governed by the soft VSC strategy indeed 
results in faster convergence than a linear scheme 
with one controller. Note that 

1 2 2 22

| ( 1) | | ( ) |

1 2( )[ ] ( ).
( )( )

T T T T

s t s t

w t t
v s ts t

μ+ = ×

+ + −Rx A Pbk k b Pbk x
 

(25) 

Assume |s| to be initially small (and disregard the 
saturation effect). Then, the first term dominates the 
quadratic form under the square root and |s| grows as 

2

1| ( 1) | | ( ) | ( ) ( )
( )

Ts t s t w t t
vs t

+ ≅ + x Rx  (26)

providing increasingly faster decrease of V 
according to (12). In consequence, the trajectory 
approaches the origin at a faster rate than in the case 
of static-gain linear control. 

On the other hand, at the conclusion of the 
regulation process, as x approaches zero, 

| ( 1) | | ( ) | .s t s t w+ ≅  (27)

Since w < 1, |s| reduces to zero as well, effectively 
leaving the system regulated by k1 (which ensures 
stable performance by definition). 

4 EXPERIMENTAL STUDY 

The controlled plant, illustrated in Fig. 1, reflects a 
structurally unstable 4th-order inverted pendulum-
on-a-cart system. The plant parameters are as 
follows: mass of the cart 0.768 [kg], mass of the 
pendulum 0.064 [kg], moment of inertia (around the 
centre of gravity) 0.00231 [kg⋅m2], and distance 
between the pendulum gravity centre and the shaft 
0.205 [m]. For the purpose of controller design a 
linearized plant model is considered – the neglected 
friction, nonlinearities, and actuator dynamics 
constitute the plant uncertainty. Thus obtained 
nominal plant dynamics are given by 
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0 1 0 0 0
0 0 0.291 0 1.166

,
0 0 0 1 0
0 0 27.984 0 3.429

u

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= +
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

x x  (28)

where x = [x1 ... x4]T with x1 – cart position, x2 – cart 
velocity, x3 – pendulum angular position, and x4 – 
pendulum angular velocity. Input u is the motor 
driving force adjusted through a PWM wave 
generated from a microcontroller unit. The position 
of the cart and pendulum is obtained from 
incremental encoders with 1024 impulses per 
rotation. The remaining state variables – the cart and 
pendulum velocities – are determined from (noisy) 
position measurements using a differentiating filter 
with coefficients [1, –1]. Sampling time is set to 
Ts = 10 ms. The input constraint |u| ≤ 6.  

Performance of three control strategies is 
compared: 
a) linear controller u(t) = – kx(t) with the gain 

adjusted as k = [1.83, 2.58, 22.25, 4.12]. This 
setting corresponds to the closed-loop 
eigenvalues λ∗ = 0.98 that yield the shortest 
transient time without violating the input 
constraint so that the system stabilizes in spite of 
uncertainties; 

b) fast controller with saturation limiting the input 
to interval [–6, 6] [N] with the gain, set as 
k = [38.52,  25.10,  81.76, 15.27], that 
corresponds to the closed-loop eigenvalues 
λ∗ = 0.94 in the linear region. The gain is selected 
so that the fastest convergence permitted by 
modelling inaccuracy and saturation nonlinearity 
is achieved; 

c) dynamic quasi-soft VSC (3) with selection 
strategy (19): the control gains k1 = [0.15, 0.40, 
12.11, 1.91] (closed-loop eigenvalues λ∗ = 0.985) 
and k2 = [12.19, 10.65, 46.69, 8.74] (closed-loop 
eigenvalues λ∗ = 0.955), s0 = 100, v = 100, 
w = 0.9, R = diag{0.2, 1, 0.2, 1}. 
The cart is initially at rest with the pendulum 

diverted from the upper unstable equilibrium by 30° 
(which further strains the test owing to larger 
inaccuracy in plant model linearization). The 
objective is to drive the state to zero. 

The system output (pendulum position) is plotted 
in Fig. 3 and the corresponding input signal in 
Fig. 4. All three controllers bring the output to the 
vicinity of zero. As expected, the slowest 
convergence is attained by the linear controller, 
which also results in the largest limit cycle induced 
by the nonlinearities of the physical plant. The 
saturating and quasi-soft VSC strategies achieve 
 

 
Figure 2: Experimental setup: A – inverted pendulum 
mounted on cart E; B – motor; C – signal manipulation 
device; D – microcontroller unit with the control logic. 

similar convergence time with smaller overshoot 
exhibited by the latter. The quasi-soft VSC shows 
much improvement over the linear scheme in terms 
of convergence, at the same time avoiding 
oscillatory input generated by the saturating 
controller. The smoothness of input signal quantified 
through Js(t) = 1

0
( 1) ( )t

i
u i u i−

=
+ −∑ , is illustrated in 

Fig. 5. 

5 CONCLUSIONS 

The paper investigates application of soft VSC 
concept in sampled-data control systems with 
saturating input. Unlike the classical continuous-
time formulation, the control action is adjusted at 
finite intervals permitted by the sampling period, 
which results in quasi-soft behaviour. The presented 
design procedure, specific to discrete-time systems, 
allows one to preserve the favourable properties of 
continuous-time VSC. In particular, the quasi-soft 
VSC combines the benefits of fast convergence and 
smooth control signals, leading to an attractive 
solution to be implemented in digital control systems 
with magnitude-constrained inputs. 
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Figure 3: Pendulum angular position: a) linear, b) 
saturating, c) soft VSC strategy. 

 
Figure 4: Control input: a) linear, b) saturating, c) soft 
VSC strategy. 

 
Figure 5: Input smoothness: a) linear, b) saturating, c) 
soft VSC strategy. 
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