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Abstract: There are two major families in cryptanalytic attacks on symmetric ciphers: statistical attacks and algebraic
attacks. In this position paper we argue that algebraic cryptanalysis has not yet been developed properly due
to the weakness of the theory which has substantial difficulty to prove most basic results on the number of
linearly independent equations in algebraic attacks. Consequently most authors present a restricted range of
attacks which are shown experimentally to work with their computer but refrain from claiming results which
would work on a larger computer but have not yet been tested. For example in recent 2015 work of Raddum
we discover that (experimentally) ElimLin attack breaks up to 16 rounds of Simon block cipher however it
is hard to know what happens for 17 rounds. In this paper we argue that one CAN predict and model the
behavior of such attacks and evaluate complexity of the attacks which we cannot yet execute. To the best of
our knowledge this has never been done before.

1 INTRODUCTION - ElimLin

ElimLin has been invented in 2006/2007 (N. Courtois,
2007; Courtois, 2007b). It is typically viewed as a
super-simplified Gröbner basis calculation technique
which nevertheless is a stand-alone powerful crypt-
analytic attack: it can break ciphers and recover the
key just by running some software without any hu-
man intervention. The study of ElimLin is interesting
(N. Courtois, 2012; P. Susil, 2016) precisely because
it is simpler to understand than more complex polyno-
mial algebra techniques (N. Courtois, 2000; N. Cour-
tois, 2003; J.-M. Chen and Yang, 2004; M. Bardet,
2004; T.J. Hodges, 2015).

1.1 Fundamental Problems

It is very disappointing to study the current Gröbner
basis theory which only provides simple uncondi-
tional answers on the complexity of algebraic attacks
in some restricted cases and under assumptions which
systems of equations which we really are facing do
not satisfy (N. Courtois, 2003; J.-M. Chen and Yang,
2004; M. Bardet, 2004; T.J. Hodges, 2015). In gen-
eral it is important to note that extremely few things
are known in general about upper bounds on complex-

ity of algorithms. This is simply a major difficulty in
computer science in general: This applies in particu-
lar to most scientific statements which could guaran-
tee security of industrial cryptographic systems. Al-
most never researchers in cryptography attempt to
prove such statements. The nature of statements is
simply such that they cannot be proven, they can only
be disproved, cf. (Nash, 2012; Courtois, 2008). We
can derive this for example from Karl Popper philoso-
phy of science. More importantly this impossibility to
prove have been explicitly stated and affirmed specif-
ically for the hardness of problems in cryptanalysis of
ciphers by US mathematician John Nash inside his re-
cently declassified letter to the NSA written as early
as 1955 (Nash, 2012). We see that there are good fun-
damental reasons to work run extensive experimen-
tations and extrapolate rather than try to achieve an
arguably impossible task to prove that our attack will
work for larger parameters.

1.2 ElimLin Basics

ElimLin is a curious sort of attack, cf. slide 126 in
(Courtois, 2016a). It can be described informally as
an iteration of 2 simple steps:
1. Find linear equations in the linear span.
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2. Eliminate some variables, and try 1. again.

ElimLin is a software cryptanalytic attack which
allows one to recover the secret key of many block ci-
phers (Courtois, 2007b; Courtois and Debraize, 2008)
and more recently in (N. Courtois and Susil, 2014;
Raddum, 2015; P. Susil, 2016).

The main characteristic of ElimLin is that it qui-
etly dissolves and makes disappear non-linear equa-
tions and generates linear equations. This algorithm
basically makes progressively disappear the main and
only thing which makes cryptographic schemes not
broken by simple linear algebra: non-linearity. It is
not clear however why this works and how well the
ElimLin attack scales for larger systems of equations.

2 ElimLin ON LIGHTWEIGHT
CIPHERS

A major difficulty with ElimLin is that so far it has
been successful only for relatively simple lightweight
ciphers. For more complex ciphers it seems to do
things which are relatively trivial, e.g. equations gen-
erated do NOT penetrate deeply inside the cipher, or
very slowly, cf. slide 153 in (Courtois, 2016a).

We are going right now to make some definite
progress in the direction of distinguishing between
trivial and non-trivial behavior for ElimLin. This is
NOT only about penetrating deeper inside the cipher.
Previous experience shows that ElimLin only starts
to work at a certain threshold. Before this threshold,
again nothing non-trivial can be observed even though
slow penetration occurs. This is not really apparent in
any of the current works or is lost in vast quantities
of data generated in computer simulations. It will be
more clearly visible in this paper. In this paper we
define a new criterion which shows that it is possible
to see that there exist two very different and easily
distinguishable patterns in ElimLin. Either the attack
follows one pattern, and does nothing trivial, or it fol-
lows another pattern and it is very clearly doing well.

2.1 Phase Transitions

It is known that many NP-hard problems are subject to
“phase transition”, with certain parameters that prob-
lem is hard, and then will rather abruptly transition
from “hard” to “easy to solve”. This what we ob-
serve with ElimLin. Let K be the number of Plain-
text/Ciphertext (P/C) pairs used in an ElimLin attack.
In this paper we are going to discover that at a cer-
tain threshold the number of NEW linear and linearly
independent equations generated at various stages of

the attack can follow one curve, and then switch to
another curve with a different asymptotic growth rate.

Conjecture 2.1 Consider a system of multivari-
ate equations derived from a block cipher written fol-
lowing one of the two basic strategies described in
(N. Courtois, 2007; Courtois, 2016a). Consider a sim-
ple known plaintext attack with K Plaintext/ciphertext
(P/C) pairs. Consider a case such that the cipher is
eventually broken by ElimLin, cf. (Courtois, 2007b;
Courtois, 2007a; Courtois and Debraize, 2008; Cour-
tois, 2016c; Raddum, 2015). The number of new
and linearly independent linear equations generated
by ElimLin algorithm goes through several distinct
stages St0-St3:

St0 Initially it grows linearly with K, and for certain
individual stages of the attack is simply equal to
0 and does NOT grow, cf. our later ri notation in
Section 3.

St1 Then it switches to another curve where it grows
faster than linearly in K.

St2 This until it reaches a saturation stage where the
cipher is completely broken by ElimLin. Here
we have a very rapid phase transition cf. Sec-
tion refBigPictureUpAndDown where the num-
ber of equations ri generated at one stage re-
becomes 0 simply because an earlier stage of the
attack reaches a certain threshold where combina-
torial explosion in additional equations generated
makes it complete the whole attack and not requite
the next stage to be executed].

One (old) example from 2007 which shows that the
number of equations grows faster than linear as a
function of the data complexity K in ElimLin can be
found at slide 153 in (Courtois, 2016a) and which
originally comes from (Courtois and Debraize, 2008).

3 OUR EXPERIMENTAL SETUP
AND NOTATION

More examples can be easily obtained using a ba-
sic software setup which we use at UCL to run a
hands-on student lab session on algebraic cryptanal-
ysis of block ciphers (Courtois, 2016c), which is part
of GA18 course on cryptanalysis taught at UCL. One
example could be easily obtained for the CTC2 ci-
pher, cf. (Courtois, 2007b; Courtois, 2007a; Courtois,
2016c). A more “modern” example can be generated
by using the equations generator for Simon block ci-
pher developed by Guangyan Song and UCL student
Ilyas Azeem in 2015-6, the complete source code of
which is available at github, cf. (Courtois, 2016c;
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Courtois, 2016b). The ElimLin is executed using us-
ing one of our implementations of ElimLin (Cour-
tois, 2016c; Courtois, 2016b) which has the nice par-
ticularity to display on screen the number of linear
equations generated at each stage/iteration of the al-
gorithm.

We recall the two main and only steps of ElimLin:

1 Find ri linear equations in the linear span, i =
0,1,2,3, . . ..

2a If ri > 0 eliminate some ri variables, increment i
and try again Step 1.

2b Algorithm terminates when ri = 0 for some i.

In addition, in this paper, and by convention we
are going to define a step i = 0 which is differ-
ent than above, but the same which is implemented
in a common implementation of ElimLin (Courtois,
2016b). We will assume that r0 will be the number
of linear equations which already appear in the equa-
tions, without executing any linear algebra. This is
a convention which allows researchers to distinguish
more easily between a “misleading” starting number
of variables (which is sometimes artificially inflated
due to methods used for equation generation and for-
mal coding) and the “real” or intrinsic number of vari-
ables which is there prior to execution or ElimLin.

Definition 3[ElimLin progress indicators]
Let Vstart or simply V if there is no confusion be the

initial number of variables. We define by ri the num-
ber of linear/affine equations over GF(2) generated at
each stage of the algorithm where by convention r0 is
the number of linear/affine equations over GF(2) al-
ready present. We define

V i
broken =

i

∑
j=0

r j Vbroken =
∞

∑
i=0

ri (1)

where by convention ri = 0 if algorithm has
reached V i

broken =V at an earlier stage. We define also

V i
broken =V −

i

∑
j=0

r j (2)

and accordingly let Vunbroken = V −∑∞
i=0 ri. Over-

all we will say that the algorithm terminates if
Vbroken = V and Vunbroken = 0 and we deliberately ig-
nore the fact that some variables could be subject to
a brute force step, cf. FXL method in (N. Courtois,
2003). Overall our goal is to achieve for a certain i
that

V i
broken

Vstart
= 1 or

V i
unbroken
Vstart

= 0 (3)

4 HOW TO PREDICT THE
SUCCESS OF ElimLin

We start by a simple example which shows that accu-
rate prediction is feasible.

4.1 On Growth Rate in ElimLin

On the figure below we show the number of linear
equations generated at stage 4 [counting from 0] of
the ElimLin algorithm for 8 rounds of Simon block
cipher. We should note that nothing remarkable hap-
pens at earlier stages 0,1,2,3, the growth is linear and
therefore very easy to predict. We have then asked
Microsoft Excel to produce a polynomial interpola-
tion for this data series.

Figure 1: Number of linearly independent equations gener-
ated at stage 4 of the ElimLin algorithm for 8 rounds of
Simon 64/128 obtained with the exact software setup of
(Courtois, 2016c).

4.2 Analysis of Our Prediction

First property we need to note is that the polynomial
prediction seems to be the right tool here. This is
justified by the fact that the normalized squared error
value R2 is very high and close to the theoretical max-
imum of 1, and also that high degree coefficients are
substantially smaller (in absolute values) that lower
degree polynomial coefficients.

Secondly we observe that ElimLin eventually
breaks the cipher here because the number of newly
generated linear equations grows faster than the num-
ber of variables which grows linearly with K. Eventu-
ally we obtain a sufficient number of linear equations
which makes ElimLin compute all the variables and
obtain the 128-bit secret key together with all the in-
termediate variables. This was previously observed
in other cases where ElimLin was applied cf. (Cour-
tois, 2016a; Courtois and Debraize, 2008; Courtois,
2007a; N. Courtois, 2007).
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4.3 Limitations vs. Improvements

We do not know any counter-example which would
contradict our asymptotic super-linear growth rule.
For 8 rounds of Simon cipher we observed that the
growth remains strictly linear for equations computed
at stage 3, however some equations are only com-
puted at stage 4 and this occurs quite early starting
from K = 1. However Simon is a particularly simple
cipher. For more complex ciphers, the ElimLin algo-
rithm could have serious problems to enter this behav-
ior or start working and exhibit any sort of non-trivial
behavior. However when ElimLin starts to work for
some cipher and produces new equations which de-
pend on the plaintext or ciphertext data in a non-trivial
way, steady progress is observed. Except maybe if
there isn’t enough data available. A certain type of
counter-example could occur for some ciphers with
small blocks which would maybe not be able to allow
K to be large enough for ElimLin to terminate.

Improvements. We stress that this powerful phe-
nomenon of combinatorial explosion which eventu-
ally leads to ElimLin breaking the cipher occurs al-
ready for a basic straightforward application of Elim-
Lin in a known-plaintext attack (KPA) scenario. Sev-
eral methods to make ElimLin work better by us-
ing well-chosen P/C pairs. One method which has
been used ever since ElimLin was invented (Courtois,
2007b; Courtois, 2007a; N. Courtois, 2007) is to ex-
ploit a CPA (chosen-plaintext attacks) with plaintext
which differ by extremely few bits, for example in
a counter mode. More recently new methods have
been proposed which allow to generate additional lin-
ear equations not automatically discovered by Elim-
Lin (N. Courtois and Susil, 2014) and (P. Susil, 2016).

In this paper we again focus on very simple vari-
ants of ElimLin in order to show that high accuracy
predictions (e.g. with R2 ≈ 1) are possible to achieve.
This success should encourage and set up standards
for further research on more realistic and more pow-
erful but also more complex applications of ElimLin,
cf. (N. Courtois and Susil, 2014; P. Susil, 2016; Rad-
dum, 2015).

5 THE BIG PICTURE - LONG
TERM PREDICTIONS

As already explained in Conjecture 2.1 page 2, we ex-
pect that there are at least 3 distinct stages in ElimLin
algorithm. With these notations until now we have
been only looking at stage St1 of the attack. In this

section we look at the big picture and the main phase
transition ST1-2 which is the most fundamental one
because we have really here a transition from “hard”
to “easy” and some sort of combinatorial explosion in
the number of generated equations at one stage which
for even higher K makes this stage i of the attack un-
necessary because the attack will terminate at an ear-
lier stage i− 1. This is best seen by looking at how
the value of Vunbroken evolves with growing K.

Figure 2: Number of variables when ElimLin terminates
Vunbroken for 8 rounds of Simon 64/128 obtained with the
exact software setup of (Courtois, 2016c).

This curve seems a lot harder to predict than until
now. For example we have obtained the following
polynomial predictor

Vunbroken(K) =

− 1.35
104 K4+

2.07
102 K3−1.12 ·K2+22.4 ·K+308.25

(4)

for which we have R2 = 0.9863. Substantially bet-
ter accuracy can be achieved by focusing on another
quantity and looking at a wider range or prediction
methods. We have tried many different predictors ob-
tained with Microsoft Excel and WolframAlpha cloud
online service www.wolframcloud.com which offers
higher precision and more advanced functionalities.
In general focusing on the ratio Vunbroken/Vstart gives
substantially better results, as Vstart grows linearly
with K and our primary interest in this paper is a de-
viation from that linear growth which is the default
(trivial) behavior. The curves become then more reg-
ular and more intelligible, cf. later Figure 4. For ex-
ample we obtained R2 = 0.9941 with

Vunbroken(K)

Vstart
= 1.07 · x−0.485−0.127 (5)

Then we obtained R2 = 0.9989 with a polynomial of
degree 6:

Vunbroken(K)

Vstart
=− 2

1010 K6− 5
108 K5 +

5
106 K4

− 3
104 K3 +

7.5
103 K2−0.112K +0.8083 (6)
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Finally we have obtained an even better result R2 =
0.9998 with

Vunbroken(K)

Vstart
=−9.57

103 (lnK)4 +
1.00
10

(lnK)3

− 3.19
10

(lnK)2− 1.35
10

lnK +0.65. (7)

Goals. Overall in security of block ciphers the main
goal for further development of prediction techniques
will be first to predict the moment when the curve on
Figure 2 starts falling. This is the main phase transi-
tion from “hard” to “easy” in any ElimLin attack.

5.1 Are Reliable Extrapolations
Possible?

So far we have only worked with data from simula-
tions and all our predictions are highly accurate just
because we had quite a few data points and have de-
ployed sufficient effort to compute predictors with
standard techniques. The fact that several methods
give remarkably good results should however be a
warning sign. This together with insufficient amount
of data will be a major difficulty when researchers in
the future are going to try to build predictive models
to extrapolate and compute the complexity of simula-
tions which they have not done. In an extrapolation
scenario it is easy to see that even though different
methods used will give excessively good results on
the actual data in a certain interval, they could diverge
and could fail to predict the curve on a larger inter-
val. Even in this case these predictions can be used
to determine the possible or plausible range of results
which one can expect to achieve.

A real solution for this difficulty would be to have
an “à priori” idea about the nature of the curve and
its growth. We had that in Section 4.1 and the poly-
nomial approximation has larger degree coefficients
which have decreased rapidly confirming our “à pri-
ori” idea on super-linear growth approximated by a
polynomial. Here for predicting Vunbroken(K) which
is essentially proportionnal ot sum of the ri we also
expect a polynomial prediction and we obtained R2 =
0.9989. This is also a somewhat consistent predictor
with rapidly decreasing coefficients of higher degree.
If so, shouldn’t we use a lower degree predictor?

5.2 Are Low Degree Polynomial
Extrapolations Possible?

If we look at our later Figure 4 or again how
quickly lower degree coefficients decrease in predic-
tors above, we could be tempted to use a linear or low

degree predictor. Our experience shows that cutting
small higher degree terms in these predictors is dis-
astrous and does not lead to quality predictions, not
even on smaller intervals. For example we can cut
the beginning of current series and restrict to poly-
nomials of degree 2 for Vunbroken(K)

Vstart
and we obtain a

predictor of Vunbroken(K)
Vstart

≈ 6
105 K2− 7.7

103 K +0.26 which
is neither very consistent with more accurate predic-
tors computed above nor with the data trend at most
places.

Figure 3: Good vs. bad predictors: decreasing the degree
of a polynomial prediction for the same Simon 64/128 8
rounds.

The latter graph is definitely not a predictor we
would recommend!

6 ON COMPARATIVE
STRENGTH OF CIPHERS

Another major application of ElimLin techniques and
possible extrapolations is to make comparison be-
tween different ciphers. For example current research
indicates that Simon is broken for up to 16 rounds
(Raddum, 2015) and CTC2 for up to 7 rounds, both
using ElimLin algorithm. Is it possible to claim that
one round of Simon is substantially weaker than one
round of CT2? We would agree with this claim. On
the figure below we show how the quantity Vunbroken(K)

Vstart
decreases for 7 rounds for each cipher. We conclude
that both ciphers are broken for some K value but
with ElimLin we still have a long way to go before
the attack terminates resulting in much higher data
complexity and running times. This shows that there
exist ciphers fundamentally weaker than CTC2 even
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though CTC2 was designed to be quite vulnerable to
algebraic attacks (Courtois, 2007b; Courtois, 2007a).

Figure 4: The value of Vunbroken(K)
Vstart

for 7 rounds of Simon
64/128 (blue) compared to toy cipher CTC2 with 7 rounds
and 8 S-boxes per round and 10/24 key bits known (red).

This per-round weakness of Simon is expected to
be compensated by a larger number of rounds.

7 CONCLUSION

In this position paper we propose to predict the suc-
cess of the number of equations generated in algebraic
attacks on the recently very popular NSA block cipher
Simon. We argue that such predictions are necessary.
This is due the fundamental weakness of Gröbner ba-
sis theory (T.J. Hodges, 2015) and in complexity the-
ory in general (Nash, 2012). This is very important
for ciphers such as Simon which is currently a can-
didate for ISO standardisation. In absence of more
powerful computers we have no other choice than to
extrapolate in order to simply evaluate the security of
ciphers against already known attacks.

In this paper we show that very highly accurate
predictions are possible. However in absence of an
“à priori” model of how the curve should behave they
do not remove some major incertitudes. The fact that
highly accurate predictions can be obtained by sev-
eral very different methods indicates that such pre-
dictions are not exact science and must be manipu-
lated with precaution. Simple low degree predictions
will not work cf. Figure 3 Higher degree polynomial
approximations seem to work very well. In future
works we are going to analyse more complex appli-
cation scenarios of ElimLin (N. Courtois and Susil,
2014; N. Courtois and Susil, 2014; Raddum, 2015;
P. Susil, 2016) and produce quality extrapolations.
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