
Toward IFVM Virtual Machine: A Model Driven IFML
Interpretation

Sara Gotti and Samir Mbarki
MISC Laboratory, Faculty of Sciences, Ibn Tofail University, BP 133, Kenitra, Morocco

Keywords: Interaction Flow Modelling Language IFML, Model Execution, Unified Modeling Language (UML), IFML
Execution, Model Driven Architecture MDA, Bytecode, Virtual Machine, Model Interpretation, Model
Compilation, Platform Independent Model PIM, User Interfaces, Front End.

Abstract: UML is the first international modeling language standardized since 1997. It aims at providing a standard
way to visualize the design of a system, but it can't model the complex design of user interfaces and
interactions. However, according to MDA approach, it is necessary to apply the concept of abstract models
to user interfaces too. IFML is the OMG adopted (in March 2013) standard Interaction Flow Modeling
Language designed for abstractly expressing the content, user interaction and control behaviour of the
software applications front-end. IFML is a platform independent language, it has been designed with an
executable semantic and it can be mapped easily into executable applications for various platforms and
devices. In this article we present an approach to execute the IFML. We introduce a IFVM virtual machine
which translate the IFML models into bytecode that will be interpreted by the java virtual machine.

1 INTRODUCTION

The software development has been affected by the
apparition of the MDA (OMG, 2015) approach. The
trend of the 21st century (BRAMBILLA et al.,
2014) which has allowed developers to build their
system starting with abstract models, as well, to
align with the imposed changes and respond to
industry requirements related to cost and time to
market. It is not expensive to update a system from
its high level representation which is the abstract
models than to update the source code after the
targeted system was built.

UML (OMG, 2005) is the most successful
software modeling language, standardized by Object
Management Group (OMG) since 1997. It permits
abstract concepts presentation that allows analysis
and program description from textual syntax to
graphical diagrams.

A new model driven approach was developed
which is the execution of UML models without code
generation. It is based on the compilation or
interpretation of UML models.

There are solutions that execute models as those
based on unified modeling languageUML. They
define a subset of behavioral models whose
semantics are executable. The OMG group proposed

a fundamental standard fUML (OMG, 2011), which
is a subset of UML that contains the most relevant
part of class diagrams for modeling the data
structure and activity diagrams to specify system
behavior; it contains all UML elements that are
helpful for the execution of the models.

UML (OMG, 2005) is the best language used to
easily and successfully model many things but it
may not be suited for all domains, for example when
it comes to design user interfaces and user
interactions, there has been no standard way to
model user interfaces.

Therefore, a solution was adopted by the OMG
group in March 2013 which is the interaction flow
modeling language IFML (OMG, 2015), a concept
of modeling language that allows the system
modeler to express the content, user interaction and
control behavior of application front-end.

IFML (OMG, 2015), permits a high level
abstract representation of the different front end
aspects such as content, interface organization,
interaction and navigation options, and connection
with the business logic and the presentation style
without considering the implementation-specific
issues.

IFML is a platform independent language that
has been elaborated with an executable mind. IFML
executability expresses the execution semantics and

220
Gotti, S. and Mbarki, S.
Toward IFVM Virtual Machine: A Model Driven IFML Interpretation.
DOI: 10.5220/0005986102200225
In Proceedings of the 11th International Joint Conference on Software Technologies (ICSOFT 2016) - Volume 1: ICSOFT-EA, pages 220-225
ISBN: 978-989-758-194-6
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

maps the PIM model of the executable IFML with
behavior in the selected specific user interface
platform. The executability is found through model
transformations and code generators that make
models easily mapped into executable applications
in various platforms and devices.

As depicted in fig. 1, two main approaches were
defined for executing models: Code generation and
Model implementation that has two different forms
of execution which are model interpretation and
model compilation.

Figure 1: Types of model implementation.

In this paper, we opted for model interpretation
approach that aims to execute IFML models to
produce the bytecode equivalent.

The general plan of this article revolves around
the second part, which briefly presents the
interaction flow modeling language IFML, while the
third part is devoted to IFML executability, and
description of the kind of computation that an IFML
model specifies. The fourth part describes the
bytecode form that has been chosen as the target of
IFML execution. The IFML virtual machine process
will be shown in section five. The sixth section will
be devoted to the related works. It will be followed
by a conclusion in the seventh section indicating the
objectives status of the performed execution.

2 INTERACTION FLOW
MODELING LANGUAGE IFML

The user interface design became a more complex
task where many aspects intersect: graphic design
and aesthetics, enterprise visual identity, interaction
design, usability, multi-screen support, offline-
online usage, integration with backend business
logic and data, and coherence with the enterprise
organization models (BRAMBILLA et al., 2014).

Figure 2 shows the UI design problems.

Figure 2: UI design problems.

Furthermore, the execution of software systems
in multiple computing platforms is essentially
needed for today's technologies, and there is still no
support for multiple interfaces on multiple
computing platforms.

In order to prevent these problems to affect the
software system development, the interaction flow
modeling language was developed in 2012 and 2013
under the leadership of WebRatio. It was inspired by
the vast experience of 10 years of WebML
(WebRatio, 2008) that was dedicated to the
production of data-intensive Web applications.
IFML was adopted by the Object Management
Group (OMG) in March 2013.

Figure 3 describes the UI design solution, which
is the IFML.

Figure 3: UI design solution: IFML.

IFML supports the platform-independent
description of applications front end deployed on
systems such as desktop computers, laptops, PDAs,
mobile phones, and tablets regardless of the
technological details of their implementation, thing
that enables the communication of interface and
interaction design to nontechnical stakeholders,
enabling the early validation of requirements.

Each interface from UIs will be designed in
IFML as a ViewContainer; a ViewContainer
contains ViewComponents that enable content

Complexity of user
interfaces

Ineffective design
tools

Manual
specification of data

and visualization

No support for
human

interpretation of
data

Platform
independent

description of UIs

Focused on user
interactions and the
front-end behavior

No definition of
graphics and styles open to extensibility

Toward IFVM Virtual Machine: A Model Driven IFML Interpretation

221

display and data entry. A view component can have
input and output parameters.

The user interactivity is expressed by Events in
association with ViewContainers and View-
Components. The event triggers actions that can
affect the interface; the reaction is denoted by
InteractionFlows that connect the event to a View-
Container, aViewComponent, or an Action. An
input-output dependency between elements can be
specified through parameter bindings associated
with navigation flows or through data flows that
only describe data transfer.

3 IFML EXECUTABILITY

The Model Driven Approach has appeared due to
the constraints related to the productivity and time to
market. It prompted the developers to focus on
modeling in the hopes of improving productivity by
increasing the levels of abstraction, automation, and
analysis.

According to MDA (OMG, 2015), developers
start with modeling their systems, after that they
generate an executable code (C, C++, Ada, Java,
Forth, even VHDL) automatically from their models
or directly execute them in order to generate the
equivalent binary.

For executing models, we need to define a
complete model that outlines the structure and the
behavior required enough to be executed.

IFML executability defines the execution
semantics of IFML language. It is an informal
description of the kind of computation that an IFML
model specifies. It defines the computation of values
shown in the views.

With the execution semantics we can reach any
executable behaviors in a specific user interface
platform from the platform independent IFML.

A user interacts with an interactive application
within a view and produces events that affect the
software system which reacts by changing the status
of views and executing actions that signal another
event and that are what the execution semantics of
IFML. The action functioning is not described by the
semantics of IFML.

Triggering events is one of execution semantics
aspects. With IFML execution semantics the Event
computation is treated after an event came out, it can
update the state of the ViewContainers and the
ViewComponents.

In fact, there are two forms of triggering events
produced by a user: event in a ViewContainer that
affect another ViewContainer by a NavigationFlow

and an event that affect an element inside the same
ViewContainer.

Events have effects on the state of user
interfaces. A state of interface gather visible
Viewcontainers, active ViewComponents, and
events.

AViewContainer is visible when it respects its
visibility turn according to a composition model that
contains the entire ViewContainers of the system.

A ViewComponent is active if its ViewContainer
is visible and its input parameters values are
available.

4 BYTECODE INTERMEDIATE
REPRESENTATION

Bytecode is a small and easy-to-understand set of
instructions designed for efficient execution by a
software interpreter.

It is a binary code that is usually processed by a
program, and then converted by a virtual machine
into a specific machine instructions understood by a
computer's processor. It includes instructions that are
executable by a virtual machine interpreter.

Bytecode is compiling source code result of a
language that comes with a virtual machine for each
platform thing that make the source language
statements compiled only once and then run on any
platform.

The most famous language today that uses the
bytecode and virtual machine approach is Java.

The Java compiler translates the java source code
into bytecode (class files), which can be executed
after by the Java Virtual Machine interpreter.

A bytecode, result from a source code
compilation, can be run in java virtual machine even
if the source code is not written in java.

One of the advantages of Java bytecode is that it
can be recompiled at each particular system platform
by a just-in-time compiler. Usually, this will enable
the Java program to run faster.

It is an output programming language
implementation used as an intermediate
representation which is hardware and operating
system independent, thing that makes interpretation
easy and fast.

After a Java file is compiled, all references to
variables and methods are stored in the constant pool
table as a symbolic reference in the java class file.

The constant pool table contains many structures
of various string constants, class and interface
names, field names, and other constants.

ICSOFT-EA 2016 - 11th International Conference on Software Engineering and Applications

222

Figure 4: example of java class file (bytecode) from java source code.

Figure 5: IFVM virtual machine architecture.

All computation in the JVM centers on the stack.
Everything must be pushed onto the stack.

As depicted in figure 4, after compiling our java
example code, we obtain a java class file which
contains the constant pool table with bytecode
instruction equivalent.

The constant pool has 15 entries in total. Entry
#1 is Method public static void main, while #2 is for
integer value 0xFEEDED (decimal 16707053). Also
we have two entries #3 and #4 which corresponds to
this class and super class. Rest is the symbol table
storing string literals.

In the example’s bytecode sequences (see figure
4), the integer 16707053 is pushed onto the stack
with ldc instruction, then it is popped off the top of
the stack and stored back to the local variable by the
istore_1 instruction. After that, local variable is
multiplied by two by first pushing the local variable
onto the stack with the iload_1 instruction, and then
pushing two onto the stack with iconst_2.

After both integers have been pushed onto the
stack, the imul instruction effectively pops the two
integers off the stack, multiplies them, and pushes
the result back onto the stack. The result is popped

Toward IFVM Virtual Machine: A Model Driven IFML Interpretation

223

off the top of the stack and stored back to the local
variable by the istore_1 instruction.

5 IFML VIRTUAL MACHINE

Our contribution is to produce an IFML virtual
machine called IFVM for executing user interfaces
designed with IFML models.

In order to make possible an execution of such
models we opted for an approach that uses a model
driven transformation to equivalent executable
binary models.

A IFML model is translated to executable IFVM
virtual machine bytecode.

The IFVM virtual machine consists of two major
units: the compilation unit and the interpretation unit
(see Figure 5). The IFVM benefits from the
advantages of the famous java virtual machine.

The compilation unit compiles the IFML models
in order to generate the bytecode. While the second
unit which is the interpretation unit, it is dedicated to
the java virtual machine that will interpret the
bytecode generated in the previous unit in order to
produce the binary code in a specific platform.

The Java Virtual Machine represents an interface
between the bytecode and computer. Its
implementations for different platforms are called
Java runtime systems. The Java Virtual Machine
allows running the same bytecode on any platform.

So, "write once, run anywhere" java makes it
become a reality.

As introduced before, the bytecode produced
from the first unit (compilation) is equivalent to
IFML elements. It is the java bytecode which is
based on the instruction set of the java virtual
machine.

 However, since IFML can be mapped to
executable programs and structures, such as a
relational database and a set of JSP templates and
components of the MVC architecture according to
(BRAMBILLA et al., 2014), it is easy to map IFML
models to the instruction set of IFVM.

Bytecode instructions are passed to and from
interactions through a stack without using registers,
like it is given in other compiled high-level
languages.

The IFVM bytecode has instructions similar to
those of java bytecode. IFVM instruction set
includes all java virtual machine instruction set.

The compilation unit represents a model to
model transformation aiming to produce IFVM
bytecode from the IFML model according to IFML
and bytecode metamodels.

The second unit starts by a step which is a model
to text transformation in order to produce the
bytecode text that will be used as input to the java
virtual machine.

6 RELATED WORKS

As depicted in figure 1, there are two basic types of
model implementations: the compilation and the
interpretation. While compilers admit compilation
approach and virtual machines admit interpretation
approach.

After the apparition of the MDA approach, many
researches developed approaches for executing
UML models applied on such a subset of UML
which semantics are executable. Among these
approaches, we cite (J. Chanda et al., 2010), (Knapp
et al, 2002), (Fredriksen et al., 2005).

(Knapp et al., 2002) Implements the code
generation approach, it develops a solution called
HUGO based on a set of tools for model checking
and generating Java code from UML model.

(J. Chanda et al., 2010) Implements the model
compilation approach; it takes context free
grammars for the two UML diagrams: Class diagram
(depicting the static design) and sequence diagram
(depicting behavioural design) and verifies the
syntactic correctness of the individual diagrams and
semantic correctness in terms of consistency
verification with other diagrams.

(Fredriksen et al., 2005) implements the model
interpretation approach. It develops a UML virtual
machine that executes UML models. It proposes a
subset of UML models and operational semantics for
directly executing those models.

It has been shown, in this section, that there are
many solutions proposed for allowing UML
execution. But no defined solution has been
presented for executing the user interface front end
that can be designed with IFML models. This work
is the first approach proposed for executing IFML
models.

7 CONCLUSIONS

IFVM is our virtual machine proposed for executing
IFML models after a big study of executability of
IFML platforms which depends on the events and
the status of IFML elements.

Our approach is based on an executable IFML
that represents the front end of a system. We have

ICSOFT-EA 2016 - 11th International Conference on Software Engineering and Applications

224

defined an IFVM Virtual Machine for the efficient
execution of IFML models, which can be
implemented in many platforms due to java virtual
machine advantages.

Our approach eliminates erroneous intermediate
step which is the code generation before the
execution and increases the portability that came
from the advantages of virtual machine concept.

The domain modeling (back end) is one of the
most consolidated disciplines of information
technology. Many languages have been proposed
such as UML.

With IFML and the UML executable standards
fUML (OMG, 2011) (executable subset of UML)
and the Alf (OMG, 2013) the action language that
follows the fUML subset, we can propose as a future
work a framework that produces a complete model
driven executable system with both the front end
which can be presented by IFML and the back end
that can be designed by UML executable subset.

REFERENCES

OMG, “OMG Unified Modeling Language (OMG
UML)”, Superstructure, Version 2.0, http://www.
omg.org/spec/UML/2.0, 2005.

OMG, “Semantics of a Foundational Subset for
Executable UML Models (fUML)”, v1.0, 2011.

OMG, “Action Language for Foundational UML (Alf)”.
http://www.omg.org/spec/ALF/, 2013.

Knapp, A., and Merz, S., “Model checking and code
generation for UML state machines and
collaborations”, Proc. 5th Wsh. Tools for System
Design and Verification, 2002, p. 59-64.

Fredriksen, K.,”UMLexe–UML virtual machine: a
framework for model execution”, 2005.

BRAMBILLA, Marco et FRATERNALI,
Piero. Interaction Flow Modeling Language: Model-
Driven UI Engineering of Web and Mobile Apps with
IFML. Morgan Kaufmann, 2014.

OMG, MDA. “MDA Guide Version 2.0.” ,2015.
OMG, Interaction Flow Modeling Language. Version 1.0.

IFML (2015), available at http://www.omg.org/
spec/IFML/1.0/

WebRatio: http://www.webml.org (2008).
J. Chanda, A. Kanjilal, and S. Sengupta, “UML-compiler:

a framework for syntactic and semantic verification
ofUML diagrams”. Distributed Computing and
Internet Technology. Springer Berlin Heidelberg,
2010, p. 194-205.

Toward IFVM Virtual Machine: A Model Driven IFML Interpretation

225

