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Abstract: A dynamic system identification problem is considered. It is an inverse modelling problem, where one 
needs to find the model in an analytical form and a dynamic system is represented with the observation data. 
In this study the identification problem was reduced to an optimization problem, and in such a way every 
solution of the extremum problem determines a linear differential equation and coordinates of the initial 
value. The proposed approaches do not require any assumptions of the system order and the initial value 
coordinates and estimates the model in the form of a linear differential equation. These variables are 
estimated automatically and simultaneously with differential equation coefficients. Problem-oriented 
evolution-based optimization techniques were designed and applied. Techniques are based on the 
evolutionary strategies algorithm and have been improved to achieve efficient solving of the reduced 
problem for every proposed determination scheme. Experimental results confirm the reliability of the given 
approach and the usefulness of the reduced problem solving tool. 

1 INTRODUCTION 

The dynamical system identification problem is not 
new but is still of current importance; it is being 
investigated and developed. There are many 
different problem definitions and many applications 
for the problem. Chemistry, biology, engineering 
and econometrics are the scientific fields in which 
dynamic system modelling is useful. Some problems 
are related to linear differential equations.  

This study is focused on the identification 
problem, in the case of making the model with only 
the output observations of the object and a control 
function known. A linear differential equation is 
used as a mathematical model of the dynamic 
process. It is important to point out that generally 
there is no information about the order of the 
equation and its initial value coordinates. The 
observations are the distorted measurements of the 
system output. Many other approaches to the 
identification receive the model in the form of an 
adequate approximation of the system trajectory. But 
for some objects it is necessary to have a model that 
determines dynamic system behaviour. For this 
reason the solution of the identification problem is 

required to be in a symbolic form. It permits the 
model to be useful in further research or work. The 
model in the form of the differential equation gives 
the opportunity to solve the optimal control problem, 
predict system behaviour and conduct stability 
analysis among other things. 

There are many studies on identification 
problems and the estimation of the differential 
equation parameters. So-called inverse problems 
occur for different models: linear differential 
equations, partial differential equations, nonlinear 
and delay differential equations.  

Our work is related to the identification of single 
input and single output systems. The proposed 
approach is also a useful tool for making a 
linearization of any dynamic process, despite its 
nature. 

The problem of parameter and initial value 
estimation in the case of a known structure is also a 
complex problem and many approaches are being 
developed. Some approaches are based on the pre-
processing of sample data (Fang et al., 2011), (Wu et 
al., 2012). Also there is a class of approaches which 
are based on the shooting or multiple shooting idea, 
(Peifer et al., 2007), or nonparametric estimation 
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(Brunel, 2008). In the paper (Schenkendorf et al., 
2014) flatness was used for parameter identification 
problem solving for ordinary differential equations 
(ODE) and ODE with a delay. There are many 
works on parameter estimation in the case when the 
equation structure is given, i.e. (Wöbbekind et al., 
2013). All that is mentioned here proves the 
importance of the dynamic system identification 
problem. A genetic algorithm is applied to the 
parameters identification problem for ODE (Sersic 
et al., 1999), but the structure of the system is given. 
A genetic algorithm was also used in the study 
(Parmar et al., 2007), in which an order reduction 
problem is considered and the model is a second 
order linear differential equation. But the 
discretization of real values results in a significant 
limitation in applicability, and algorithms of this 
nature do not satisfy the needs of the considered 
identification problem. Another powerful nature-
inspired optimization algorithm, partial swarm 
optimization, was applied to nonlinear dynamical 
system linearization, (Naiborhu et al., 2013). 

Our approach is based on the reduction of the 
identification problem to the extremum problem on 
the real-value vector space or on the space with real 
and integer vector coordinates. The problem 
reduction allows the simultaneous estimation of the 
coefficients, the initial value and the order of the 
differential equation. The objective functional 
requires a powerful optimization tool. The results of 
previous work allow us to conclude that improved 
evolution-based optimization techniques are 
workable and reliable tools and can be applied to 
this class of optimization problem. 

Optimization algorithms were improved; search 
operators were designed and implemented. Criteria 
for comparing algorithms and estimating efficiencies 
were proposed. The performance of algorithms was 
investigated and examined on a set of identification 
problems. 

2 IDENTIFIACTION PROBLEM: 
ORDER, COEFFICIENTS, 
INITIAL POINT 

Let a set  , , , 1,i i iy u t i s , be a sample, where 

iy R  is the dynamic system output measurement 

at the time point it , ( )i iu u t  is a control action and 

s  is the size of the sample. In the current 
investigation it is supposed that the control function 

( )u t  is known. It is also proposed that the object to 

be identified can be described with a linear 
differential equation of unknown order, and its 
system state is a solution of the Cauchy problem: 

( ) ( 1)
1 0 ( )k k

k ka x a x a x b u t
        , 

0(0)x x . (1)

As can be seen, solving the identification problem 
requires the initial value 0x  if it is necessary to find 

a solution in a symbolic form, in the form of a linear 
differential equation (LDE). In the case of distorted 
observations and/or a small sample size it is a 
difficult problem to estimate the coordinates of the 
initial value vector and some approaches can result 
in significant errors in estimated derivative values. 
Thus it is important to develop an approach to 
estimate simultaneous initial value coordinates and 
the LDE coefficients and order.  

It is assumed, that the output data 
___

, 1,iy i s  is 

distorted by additive noise : ( ) 0, ( )E D      : 

___

( ) , 1,i i iy x t i s    . (2)

where the ( )x t  function is a solution of the Cauchy 

problem (1). 
Without loss of generality, one may assume that 

the system is described with the following 
differential equation:  

( ) ( 1)1 0 ( )k kk

k k k

a a b
x x x u t

a a a
        (3)

or 
( ) ( 1)

1 0 ( )k k
kx a x a x a u t         . (4)

Let m  be the order of the LDE, which is assumed to 
be limited, ,m M  and ,M M N is the parameter 

that one can set to limit the maximum order. We 
seek the solution of the identification problem as the 
LDE, and it is determined with the following 
parameters: order ,m M  coefficients 

  1
1 0ˆ ˆ ˆ ˆ, , ,

T m
m ma a a a R    and initial value 

vector ˆ(0) mx R . It is proposed to estimate the 

adequacy of a model by comparing the sample data 
with the solution of the Cauchy problem: 

( ) ( 1)
1 0ˆ ˆ ˆ ˆ ˆ ˆ ( )m m

mx a x a x a u t       , 

0ˆ(0) mx x . 
(5)

The current problem is the extension of earlier work, 
which is focused on LDE order and coefficient 
estimation, (Ryzhikov et al., 2013). Our approach 
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meets three ways of LDE determination. The first is 
based on the following representation of a solution. 
Let a vector 

  1
1 0ˆ ˆ ˆ ˆ0 ... 0 , , ,

T M
ma a a a R    be a 

form of determination for both variables m  and ˆma . 

For the order m  vector â  will contain M m  zero 
coordinates from the origin. Now when m  is 

defined by the variable â , let 0ˆ Mx R  be a vector 

of initial value coordinates and 0ˆm mx R  - its first m  

coordinates. Now the identification problem solution 
is determined by the values that deliver an extremum 
to a functional 

10
0

0 ˆ ˆ ˆ, (0) ,1

ˆ( , ) ( ) minm
M M

s

i i a a x x a R x Ri

I a x y x t
   

   , (6)

where 
0ˆ ˆ, (0)

ˆ( ) ma a x x
x t

 
 is a solution of the Cauchy 

problem (5) with order m , coefficients ˆma  

determined by â a  and initial point 0ˆ ˆ(0) mx x  

determined by 0x . 

Thus, the simultaneous estimation of all the 
parameters leads to extremum problem solving on 

1M MR R  .  
Another method of determination is based on the 

assumption that coefficient b  of control function (3) 
is not equal to 0. Thus, the same differential 
equation can be represented in a different way 

( ) ( 1)1 0ˆ ˆ ˆ ( )k kk ka a a
x x x u t

b b b
       , 

(7)
( ) ( 1)

1 0ˆ ˆ ˆ ( )k k
k ka x a x a x u t

         . 

This representation leads to the same optimization 
problem (6). 

Both solution representations have their 
disadvantages, which are related to the impossibility 
of transforming the vector into some class of 
equations. For the determination based on equation 
(4) it is impossible to determine a differential 
equation of order k   with ˆ 0ka   . For the other 

method of determination it is impossible to 
determine a differential equation with a control 
coefficient that is equal to 0. 

One more method of determination is based on 
the representation of LDE with a vector 1ˆ Ma R   
and an integer m M . The integer variable value 
sets the order and determines the number of 
elements for both vectors 1ˆ Ma R   and 0ˆ Mx R . 

The criterion for this method of determination is 
suggested to be the following: 

0
0 ˆ ˆ ˆ( , 1), (0) ( , )

1

ˆ( , , ) ( ) m
z z

s

i i a f a m x f x m
i

I a x m y x t
  



  , 

1
0

0
, ,

( , , ) min
M Ma R x R m M

I a x m
  

 , 
(8)

where dim( ) dim( ) 0,
( , ) : , ( , )

,
x x

z z i
i

i n
f x n R R f x n

x i n


   

 

is a function, that transforms the vectors so its 
coordinates that do not fit the order are equal to 0. 
The current determination leads to the optimization 
problem in  1 :M MR R x N x M     . 

3 MODIFIED HYBRID 
EVOLUTIONARY STRATEGY 
ALGORITHM FOR LDE 
IDENTIFICATION 

Evolution-based extremum seeking techniques are a 
useful tool for solving multimodal and complex 
black-box optimization problems. This is the reason 
the evolution strategy approach was suggested as the 
basic one. The evolution strategy optimization 
algorithm is widely applied and its efficiency has 
been proved. Its principles are described in 
(Schwefel, 1995).  

Some classes of optimization problems have 
specific features, so it is possible to analyse 
properties and reveal the way of improving the 
techniques that one can use to solve these problems. 
Since the proposed functional (6) is complex, 
because of the way the LDE order is determined and 
parameters and initial values are determined with 
one vector, some necessary implementations and 
modifications were made to improve the approach 
performance. Every alternative is an individual and 
is characterized by the value of its fitness. The 
fitness function of individual x X  is a mapping  

1
( )

1 ( arg( ))
f x

I x I


 
, (9)

arg( )x I  is a transformation of the individual’s 

vector coordinates to the arguments of the functional 
(6) or (8).  

In the current investigation the evolutionary 
strategy optimization algorithm was implemented 
with the following features: 3 selection schemes: 
tournament, proportional and rank; 6 crossover 
schemes; 2 mutation schemes. 

The crossover operator is determined by one of 
the expressions: 
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, (10)

     _____

1

, 1,
p

qq
c s pnj j

j
j

w
P i i j n

w


  


, 

(11)

where ci  is an offspring, si  is one of the parents, 

pn is the a quantity of parents, w  is the weight 

coefficients.  
Crossover schemes differ in their way of forming 

offspring: as a weighted average of its parents (10) 
or when every offspring’s gene has the probability to 
be equal to one of the parents’ genes.   

Here we describe some standard and suggested 
methods of weight determination. For the case (10): 

1
j

p

w
n

 ,  j
j sw f i , (min ,1)j cw U , 

(min , ( ))j
j c sw U f i ; and for the case (11): 

1
j

p

w
n

 , (min , ( ))j
j c sw U f i . In the given 

expressions ( , )U a b  is a uniform distribution on 

 ,a b , minc  is a crossover parameter that prevents 

dividing by 0. 
The first essential improvement is the 

implementation of a stochastic extremum seeking 
algorithm as a searching operator that acts after 
standard operators in every generation. The designed 
stochastic local optimization algorithm is similar to 
the coordinate-wise extremum seeking technique. 
The aim of its implementation is to improve 
alternatives after the random search. The suggested 
local optimization algorithm is controlled by 4 
parameters: 1

LN  - the number of individuals to be 

optimized, 2
LN  - the number of genes to be 

improved, 3
LN  - the number of steps for every gene, 

and Lh  - optimization step value. 

The second modification is related to the 
suppressing of the mutation influence. It is an 
important point, because the way of transforming the 
objective vector into a differential equation makes 
the problem very sensitive to even small changes of 
the alternative variables. Thus, it was suggested, to 
add the probability for every gene to be mutated, so 
that one can decrease the mutation by lessening the 
value of this setting mp . Let the optimization 

problem dimension be dim( )N x , variable 

 1 ... Nr r r  is randomly distributed for every 

individual and    0 1 , 1j m j mP r p P r p     . 

Now the mutation operator can be described as 

follows, for counter 
____

1,j N  
 

      0, ,m c j cj j j N
i i r N i


    (12)

          0,11 N
m j c j cj N j N j N

i r i r i e

  
       (13)

or 

     0,1 ,m c jj N j N
i i r N

 
      (14)

where  
____

, 1,m j
i j N  are objective parameters, 

 
____

, 1,m j N
i j N


  are strategic parameters,   is a 

learning coefficient,  2,N E   is a normally 

distributed random value with an expected value E  
and a variance 2 . 

Another improvement also focused on supressing 
the random search influence on the order estimation. 
The vector determines LDE order and some of its 
coordinates equal zeroes if m M . However 
efficient stochastic optimization algorithms for real 
variables are based on adding some random values 
to them. This leads to a contradiction. To solve it, a 
rounding operator was suggested. One more 
parameter sets the threshold level 1 0lt   , so the 

rounding operator works as follows 

      _____,
, 1,

0,

m m lj j
m сj

i if i t
i j N

otherwise

  


, (15)

where cN  the number of objective parameters that 

transform into ODE coefficients. 
For the functional (8) and related transformation, 

the modified algorithm was extended to solving 
optimization problems with both real and integer 
variables. To save the concept of the evolution 
strategy algorithm, the integer variable is also 
related to its strategic parameter. 

Since the single input and single output 
identification problem is considered, every 
alternative consists of 2 1M   real value variables 
and one integer. The schemes of the crossover 
operator are similar to (11). 

Let c
mp  be the probability for one integer gene to 

mutate. Let 1 2 3, ,m m mr r r  be a random variables: 
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 1 0 1 ,c
m mP r p    1 1 c

m mP r p   

    2

2
0 1 min 1, c

m mP r i  

    2

2
1 min 1, c

m mP r i  , 

and  
____

3 1
, 1,mP r j j N

N
   . The mutation operator 

works similarly to (12) and (13): 

   1 2 3 1 2

1 1
(1 )c c

m m m m m m mi r r r r r i       , (16)

    1

2 2
(0,1)c c

m m m ci i r N     . (17)

The main benefit of implementing all the 
modifications is to achieve a sufficient improvement 
of the algorithm efficiency. For the same 
computational resources all of these algorithms are 
more reliable and more efficient than the standard 
differential evolution algorithm, particle swarm 
optimization algorithm and evolutionary strategies 
with covariance matrix adaptation. The 
modifications were designed to lessen the 
complexity that arises from the vector-to-model 
transformation and the requirements of simultaneous 
parameter estimation. 

4 PERFORMANCE 
INVESTIGATION 

To make an investigation of the algorithms and 
estimate their performances we need to put forward 
criteria. The first criterion is basic and related to the 
value (6) for models in forms (7) and (5) and with 
value (8) for the approach that includes integers and 
real values. To simplify the representation of results, 
let 1C  be the criterion (6) or (8), depending on what 

algorithm was used. 
Another criterion calculates the distance between 

the model output and the real output; we denote it 

2C . It is also important to calculate the error in LDE 

parameter estimation 3С , in the case of the real 

order being estimated. 

1

2 ˆ( ) ( )
st

t

C x t x t dt  , (18)

3 0 0ˆ ˆС a a x x    . (19)
 

Since criterion (19) is useful only for some class of 
solutions, let us put forward one more criterion that 
estimates the probability to find the real order 

4
co

r

n
С

n
 , (20)

where con  is the number of solutions with the same 

order as the real object and rn  is the number of 

algorithm runs. 
The dynamic system output is the Cauchy 

problem solution on  0, T  for the LDE with given 

coefficients and the initial value. The solution needs 
to be discretised and represented as a set with sN  

elements. Let sI  be a set of randomly chosen 
different integers, so accordingly to (2), 

 20,
s
i

i
s

I T
y x N

N

 
   

 
 and 

s
i

i
s

I T
t

N


 , where a 

counter 1,i s .  
The list of differential equations that was used to 

simulate the dynamic process is given in table 1. On 
the basis of the given differential equations we form 
initial problems and generate the observations. The 
samples count 100 observations. The list of 
problems is given in Table 1. 

One faces a difficulty in the examination of 
algorithms, caused by a large number of setting 
combinations and a wide problem field. The latter 
means that optimization problems have many 
characteristics themselves and depend on differential 
equations that determine the system output, sample 
size, noise level and the way random numbers are 
generated. Every setting and even every realisation 
is a different problem, because the generating of a 
sample is a random event.  

Due to results of previous works it was decided 
to use the following settings in the current 
investigation: 100 individuals for 100 populations, 
tournament selection, 3 parents for random 
crossover, mutation scheme (12) and (14), the 

mutation probability 
2

mp
N

 , 1 40LN   individuals 

for the local stochastic improvement, 2 50LN   

genes and 3 1, 0.1L
LN h  , the threshold for 

rounding 0.4lt  . For integer variables the mutation 

setting took 
1c

mp
M

 .  

The strategic parameter of the initial population 
were uniformly generated,  0,1U , every objective 

parameter is equal to 0, the integer variable with 
equal probability takes a value from 1 to M . The 
order limitation value took 10. Every algorithm was 
launched 25 times for every identification problem. 
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The algorithm that is based on the model (5) is 
denoted as 1, the algorithm that is based on the 
model (7) is denoted as 2 and the algorithm that 
estimates the order with an integer variable is 
denoted as 3. At first we examine algorithms on the 
set of problems in Table 1. Results of the 
examination are given in Table 2.  

Table 1: Identification problems. 

Identification problems 

1 2 ( )x x x u t     ,  0 2 0 , 12.5
T

x T   

2 2 ( )x x x u t     ,  0 2 2 , 12.5
T

x T    

3 2 ( )x x x x u t       ,  0 01 0 , 12.5
T

x T   

4 
2 ( )x x x x u t       , 

 0 311 , 12.5
T

x T   

5 
2 ( )x x x x u t       , 

 0 2 0 0 , 12.5
T

x T   

6 2 ( )x x x u t     ,  0 01 , 12.5
T

x T   

7 3 7 ( )x x x u t      ,  0 3 3 , 12.5
T

x T    

8 
2 3 ( )x x x x u t        , 

 0 1 1 1 , 12.5
T

x T      

9 

(4) 2.2 3.5 ( )x x x x x u t         , 

 0 2 0 0 0 , 12.5
T

x T   

10 

(4) 2 4 5 2 ( )x x x x x u t           , 

 0 0 0 0 0 , 12.5
T

x T   

11 

(4) 4 3 ( )x x x x x u t         , 

 0 1 0 0 0 , 12.5
T

x T   

12 

(4) 4 3 ( )x x x x x u t         , 

 0 2 0 0 0 , 12.5
T

x T   

13 

(5) (4)0.6 3.4 1.1 2.4x x x x x          

0.4 ( )x u t   ,  0 0 0 0 0 0 , 25
T

x T   

14 

(5) (4) 4 2 3x x x x x           

0.5 ( )x u t   ,  0 0 0 0 0 0 , 25
T

x T   

15 
(6) (5) (4)1.5 2 2 0.5x x x x x x           

0.1 ( )x u t   ,  0 0 0 0 0 0 0 , 25
T

x T   

 
Average values of criteria show that for the given 

problems and samples, algorithm 1 is the most 
efficient. 

Table 2: Experimental results for different algorithms and 
problems from the list in Table 1. 

Algorithm 
number 

Criteria average values 

1C  2C  4C  3C  

1 0,045 0,996 0,399 0,441 
2 0,059 1,287 3,349 0,453 
3 0,057 1,180 0,389 0,252 

Algorithm 
number 

Criteria value variance 

1C  2C  4C  

1 0,017 0,335 1,246 
2 0,007 1,520 3,040 
3 0,003 0,566 0,508 

 

Since observations of the system trajectory are 
distorted, two more criteria were added. One is 
needed to estimate the probability of finding a model 
that is better than the system trajectory in fitting the 
sample data 

5
b

r

n
С

n
 , (21)

where bn  is the number of launches in which such 

solutions were received. And the last criterion gives 
us a difference in 1C  criterion values for the model 

and the object: 

6 1 1model object
С C C  , (22)

where 1 1model object
C C  and 1 1,

model object
C C  are the 

criterion values for the model output and the system 
output, respectively. 

The next examination is related to an estimation 
of noise level influence on the performance of the 
algorithms. Results for problems 1, 5 and 12 from 
Table 1 for different noise levels are demonstrated in 
Table 3. 

Table 3: Experimental results for different noise levels. 
Averaged criteria values. Problems 1, 5 and 12, Table 1. 

Alg. 
Criteria average values 

1C  2C  4C  3C  5C  6C  

1 0,195 0,864 0,342 0,364 0,666 0,301 

2 0,182 1,018 0,888 0,453 0,866 0,038 

3 0,187 1,112 0,308 0,466 0,649 0,014 

Alg. 
Criteria variance 

1C  2C  4C  6C  

1 0,139 0,343 0,818 0,0004 

2 0,008 0,251 2,118 0,006 

3 0,007 0,209 0,468 0,004 
 

As one can see algorithm 3 is the best for 
criterion 2C  values. But Table 3 shows that 

algorithm 1 is still the most reliable: it has the 
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biggest average value of criterion 6C . The estimation 

of its probability to find a solution that would fit the 
observations more than the real system state equals 
1. This can be interpreted as this algorithm finding a 
solution that fits the sample data even better than the 
real system output trajectory. 

The value that the criterion (18) takes is also 
important and is given in Figure 1 – its average 
value for problems 1, 5 and 12. In these pictures, the 
horizontal axis is the noise level and the vertical axis 
is the average value of the criterion (18) for 25 
launches. 

 

 

Figure 1: Problems 1, 5 and 12, criterion (18) average 
value for different noise levels.  

The next examination aim is to investigate the 
effect of the sample size on the algorithm 
performance. The sample size was varied from 90 to 
5: 90, 80, …, 20, 15, 10, 5. All the average criteria 
values are given in Table 4 for problems 1, 5 and 12 
and 25 launches of the algorithms.  

Table 4: Experimental results for different sample size 
values. Problems 1, 5 and 12, table 1. 

Algorithm 
number 

Criteria average values 

1C  2C  4C  3C  

1 0,013 0,398 0,596 0,288 
2   0,013 0,464 0,502 0,613 
3 0,021 0,549 0,286 0,482 

Algorithm 
number 

Criteria variance 

1C  2C  4C  

1 0,009 0,210 0,408 
2     0,014 0,530 0,995 
3 0,010 0,440 0,464 

 

A criterion (18) average value for different 
sample size is presented in Figure 2. 
 

 

Figure 2: Problems 1, 5 and 12, criterion (18) average 
value for different sample size.  

To estimate the influence of both factors: sample 
size and noise level, another examination was 
performed. The noise level took values 0.01, 0.05, 
0.1, 0.2, 0.3 and the sample size was varied: 200, 
150, 80, 40. There we consider all three algorithms 
for problems 1, 5 and 12. Figures 3, 4 and 5 
represent the average values of criterion 2C  for the 

algorithm 1, 2 and 3, respectively. To make a better 
presentation of the results, statistics for every sample 
size are given in a distinct area in the figures. The 
bars represent average values for some sample size 
and noise level, differ in colour; the darker colour 
matches the higher noise level.  
 

 

Figure 3: Criterion (18) average value for different noise 
levels and sample sizes. Algorithm 1. 

 

Figure 4: Criterion (18) average value for different noise 
levels and sample sizes. Algorithm 2. 

200 150 80 40

200 150 80 40
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Figure 5: Criterion (18) average value for different noise 
levels and sample sizes. Algorithm 3. 

Increasing the noise level and decreasing the 
sample size leads to a loss in efficiency. However 
the estimation of probabilities 3C  and 5C  shows us 

the algorithms find a good solution. The samples are 
not representative, so it is impossible to identify the 
real dynamical system. Only the dynamical system 
whose trajectory fits the data can be identified. 

In this study the criterion (18) was suggested as 
being the most important, because it is the 
estimation of the output distance of the model from 
the real system output. It is used since it is more 
useful than criterion 1C  for samples with noised 

data. Yet it is impossible to use this criterion in 
solving inverse mathematical modelling problems. 
We also suggest that the criterion 4C  could be used 

instead of 2C , but it is more difficult to interpret the 

results. 

5 CONCLUSIONS  

The approaches and algorithms described in this 
work are proven to be useful for linear dynamic 
system identification. The improved optimization 
algorithms are powerful and reliable tools for 
solving the reduced extremum problem. The 
approach allows the inverse mathematical modelling 
problem to be solved in a symbolic form knowing 
only the control function. Since the approach and 
algorithms solve the problem automatically and 
simultaneously for all variables, the approach is 
flexible. The designed algorithms can be easily 
modified to seek solutions in cases where there is no 
control input or where the initial value is given. 

The developing of the dynamic system 
identification problem solving approach requires 
some specific criteria for estimating the optimization 
algorithms. They are related to the complexity of the 
problem and its features. In the current study we 

suggested 6 criteria. Criteria allow algorithm 
performance to be investigated and more 
information about the features of a reduced problem 
to be given. The data we received from the 
experiments is useful for the further development of 
evolutionary algorithms and dynamic identification 
problem solving approaches. 

New features of the reduced problem were 
explored. In the case of no data distortion, the 
sample size does not affect the efficiency. The 
examination results show that the improved 
optimization algorithms find a solution that fits the 
sample better than the system output trajectory. 
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