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Abstract: This work is concerned with the existence of asymptotically stable 2-D (2-dimensional) systems by means of a
feedback control model represented by the system of partial difference equations and their Lagrange solutions.
Thus, the goal is to establish a controller that provides a feedback control system with state variables depending
solely on its Lagrange solution in the sense that the solution to the variable state is not a linear combination
of other Lagrange solutions. Roughly speaking, the results showed that, to achieve such a control system,
the controller has to diagonalize the block matrices of the matrices composing the system description model.
Finally, a numerical example is presented to show how the controller is designed in order to generate a stable
feedback control with given Lagrange solutions.

1 INTRODUCTION

Discrete 2-D control systems have been a subject
of research for over half a century now; and many
approaches have been proposed to study the stabil-
ity and design of feedback control systems. As far
as the mathematical model is concerned with, either
the Roesser system description (Givone and Roesser,
1972) or the FM model (Attasi, 1973; Fornasini and
Marchesini, 1978; Fornasini and Marchesini, 1980),
which are essentially equivalent to one another in the
sense that it is possible to transform the partial dif-
ference equations describing one model into the other
(Kaczorek, 1985), is taken as the system representa-
tion to handle this type of control systems. In addi-
tion, the formalism adopted has spread over a large
range of mathematical fields. Among those, thez−
transform showed to be a very effective strategy to in-
vestigate systems with single input and single output
corresponding to what is called the class of ‘delayless
systems’ in the ordinary 1-D system counterpart the-
ory; and a great deal of stability criteria and controller
design procedures were accomplished for 2-D con-
trol systems (Anderson and Jury, 1974; Bose, 1982;
Tzafestas, 1986; Lim, 1990).

During the time period around the turning of the
century, a remarkable shift in the paradigm from han-
dling those problems on the grounds of analytical
mathematics into the incorporation of computational
methods, which in control system theory is closely as-

sociated to the energy method framework, took place.
In fact, this approach relies basically on the Lyapunov
stability theory as well as the optimization algorithms,
and has undergone tremendous developments hand in
hand with the advances in computational techniques;
so that the formalization of the control system de-
sign based on the linear matrix inequalities gained
widespread popularity and established its status as a
standard procedure to handle not only the ordinary
1-D but also multi-input multi-output n-D systems
(Piekarski, 1977; Du and Xie, 2002; Pazke et al.,
2004; Izuta, 2007; Rogers et al., 2007). However,
this procedure has been pointed out to yield conserva-
tive controllers in the control theory sense. Also it is
worth noting that many other techniques have flour-
ished and contributed to the broadening of the field
(Jerri, 1996; Zerz, 2000; Cheng, 2003; Elaydi, 2005;
Izuta, 2012; Izuta, 2014a).

Unlike the theoretical accounts aforementioned,
this paper examines the existence conditions of
asymptotically stable 2-D feedback control systems
from the Lagrange method frame of reference, which
has shed light on the stability analysis problem (Izuta,
2010; Izuta, 2014b). In these reports, the Lagrange
method was used in conjunction with Jordan matrix
transformation in order to transform the original sys-
tem of partial difference equations into a system com-
posed by only diagonal matrices, which allow the
transformed system be solved analytically.

Motivated by these results, this paper aims to fig-

Izuta, G.
Existence Conditions of Asymptotically Stable 2-D Feedback Control Systems on the Basis of Block Matrix Diagonalization.
DOI: 10.5220/0005975604630470
In Proceedings of the 13th International Conference on Informatics in Control, Automation and Robotics (ICINCO 2016) - Volume 1, pages 463-470
ISBN: 978-989-758-198-4
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

463



ure out the conditions that the controller has to ful-
fill so as to form a feedback control system hav-
ing defined asymptotically stable Lagrange solutions.
Moreover, the kind of systems concerned with here
corresponds to the class of ‘systems with delays’ in
the 1-D case.

Finally, the paper is organized as follows: in sec-
tion 2, the 2-d control system and the concepts neces-
sary throughout the paper are presented; the asymp-
totic stability conditions are establish in section 3; a
numerical example is provided in 4; and some final
remarks are enunciated in section 5 .

2 PRELIMINARIES

In this section, the concepts and definitions used
throughout this paper are presented. Firstly, the 2-d
control system to be investigated is presented here.

Definition 2.1. Let the 2-d control system be given by
the following system of partial difference equations.

[
xp(i +1, j)
xq(i, j +1)

]
=

[
A11 A12
A21 A22

][
xp(i, j)
xq(i, j)

]

+

[
B11 B12
B21 B22

][
xp(i − δp, j −σp)
xq(i − δq, j −σq)

]

+

[
C11 C12
C21 C22

][
up(i, j)
uq(i, j)

]

(1)

wherexp(i, j) andxq(i, j) are vectors representing the
states of the system and given by

xp(i +1, j) =def




x1(i +1, j)
...
xn(i +1, j)




xq(i, j +1) =def




x̂1(i, j +1)
...
x̂n(i, j +1)




(2)

with the indices i and j (i, j∈ Z) indicating that the
system is discrete and doubly indexed. In addition,
the inputs of the systemup(i, j) and uq(i, j) are and
are defined similarly to (2).

Assumption 2.2. Hereafter the matrices C11, C12,
C21, C22 are all real valued non-singular matrices.

In order to simplify the notations, the following
definitions are adopted.

⋆(i, j) =
[

⋆p(i, j)
⋆q(i, j)

]
=def




⋆1(i, j)
...

⋆n(i, j)
⋆̂1(i, j)

...
⋆̂n(i, j)



,

⋆= x
or
⋆= u

x(i +1, j +1) =def




x1(i +1, j)
...

xn(i +1, j)
x̂1(i, j +1)

...
x̂n(i, j +1)




x(i − δ, j −σ) =def




x1(i − δ1, j −σ1)
...
xn(i − δn, j −σn)

x̂1(i − δ̂1, j − σ̂1)
...
x̂n(i − δ̂n, j − σ̂n)




(3)

Thus, a compact notation for (1) is represented by

x(i +1, j +1) = Ax(i, j)+Bx(i − δ, j −σ)
+ Cu(i, j) (4)

Remark 2.3. Small bold faced letters stand for vec-
tors whereas their non-bold faced counterparts mean
the variables. Capital letters describe either matrices
or block matrix.

Definition 2.4. A 2-d feedback control system is a
system accomplished from (1) by setting the inputs
variables be the states of the system itself. That is
to say

x(i +1, j +1) = Āx(i, j)+ B̄x(i − δ, j −σ) (5)

in which

u(i, j) =−Fx(i, j)−Gx(i − δ, j −σ)
Ā = A −CF
B̄ = B−CG

(6)

Remark 2.5. Under the notations of (1), (6) yields

Ā11 = A11−C11F11−C12F21
Ā12 = A12−C11F12−C12F22
Ā21 = A21−C21F11−C22F21
Ā22 = A22−C21F12−C22F22
B̄11 = B11−C11G11−C12G21
B̄12 = B12−C11G12−C12G22
B̄21 = B21−C21G11−C22G21
B̄22 = B22−C21G12−C22G22

(7)

In this paper, the system is asymptotically stable
if all the state variables vanish as the indices increase.
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Definition 2.6. 2-D feedback control system (5) is
said to be asymptotically stable if all the solutions
x1(i, j), ..., x̂n(i, j) fulfill the conditions described by





lim
(i+ j)→∞

| x1(i, j) |→ 0

...
lim

(i+ j)→∞
| x̂n(i, j) |→ 0

(8)

Furthermore, an asymptotically stable Lagrange
solution is an analytic solution given by

Definition 2.7. A non-null asymptotically stable La-
grange solution to the state variable is the equation

x⋆(i, j) =
n
∑

k=1
Ikαi

kβ j
k+

n
∑

k=1
Îkα̂i

kβ̂ j
k (9)

where I⋆’s andÎ⋆’s are the initial values and non-null
real numbersα∗’s, α̂∗’s , β⋆’s and β̂⋆’s are such that
|α∗|, |α̂∗|, |β∗|, |β̂∗|< 1 .

Finally, this paper handles the following problem.

Problem 2.8. To establish conditions on the feedback
controller matrices for the feedback control system (5)
have asymptotically stable Lagrange solution given
by




x1(i, j)
...

xt(i, j)


=




I1αi
1β j

1
...

Inαi
nβ j

n

Î1α̂i
1β̂ j

1
...

Îmα̂i
mβ̂ j

m




(10)

such that the numbers|αr |< 1, |α̂r |< 1 , |βs|< 1 and
|β̂s|< 1 , ∀ r, s.

Remark 2.9. The initial condition for (10) yield

x(0,0) =

[
xp(0,0)

xq(0,0)

]

=

[
Kp 0
0 Kq

]



1
...
1




(11)

where

Kp =

[
I1 0

0 In

]
, Kq =

[
Î1 0

0 În

]
(12)

3 RESULTS

Henceforth the solution to the problem is presented
gathered in a theorem. However, before doing it, a
very basic result is given for the sake of the compu-
tational procedures that are to be followed in the nu-
merical example.

Proposition 3.1. Let the controller be as in (6) and
(7). Then, their defining matrices are computed as

F11 = C−1
11 (A11− Ā11)−

C−1
11 C12(C−1

11 C12−C−1
21 C22)

−1

×
[
C−1

11 (A11− Ā11)−C−1
21 (A21− Ā21)

]

F21 = (C−1
11 C12−C−1

21 C22)
−1

×
[
C−1

11 (A11− Ā11)−C−1
21 (A21− Ā21)

]

F12 = (C−1
22 C21−C−1

12 C11)
−1

×
[
C−1

22 (A22− Ā22)−C−1
12 (A12− Ā12)

]

F22 = C−1
22 (A22− Ā22)−

C−1
22 C21(C

−1
22 C21−C−1

12 C11)
−1

×
[
C−1

22 (A22− Ā22)−C−1
12 (A12− Ā12)

]

(13)

and

G11 = C−1
11 (B11− B̄11)−

C−1
11 C12(C

−1
11 C12−C−1

21 C22)
−1

×
[
C−1

11 (B11− B̄11)−C−1
21 (B21− B̄21)

]

G21 = (C−1
11 C12−C−1

21 C22)
−1

×
[
C−1

11 (B11− B̄11)−C−1
21 (B21− B̄21)

]

G12 = (C−1
22 C21−C−1

12 C11)
−1

×
[
C−1

22 (B22− B̄22)−C−1
12 (B12− B̄12)

]

G22 = C−1
22 (B22− B̄22)−

C−1
22 C21(C

−1
22 C21−C−1

12 C11)
−1

×
[
C−1

22 (B22− B̄22)−C−1
12 (B12− B̄12)

]

(14)

Proof. It follows straightforwardly from assumption
2.2.

Now, the main result reads.

Theorem 3.2. Let the 2-D feedback control system be
given by (5). If there exist diagonal matrices̄A11, Ā12,
Ā21, Ā22, B̄11, B̄12, B̄21 and B̄22 in the sense of the
feedback controller (14) and such that the following
conditions all are satisfied then the control system is
asymptotically stable and its Lagrange solutions can
be established.

1. the diagonal entries of the diagonal matrices
Ā11+ B̄11B̄

−1
21 Ā21, andĀ22+ B̄22B̄

−1
12 Ā12 have all

non-null absolute values less then unit.
2. the diagonal entries of diagonal matrices
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Ā−1
21 B̄21




α−δ1
1 0

. . .

0 α−δn
n


 (15)

and



β̂−σ̂1
1 0

. . .

0 β̂−σ̂n
n


 Ā−1

12 B̄12 (16)

have all positive values less then unit.

Proof. Firstly, note that (5) can be rewritten as

xp(i +1, j) = Ā11xp(i, j)+ Ā12xq(i, j)
+B̄11xp(i − δ, j −σ)+ B̄12xq(i − δ, j −σ)

xq(i, j +1) = Ā21xp(i, j)+ Ā22xq(i, j)
+B̄21xp(i − δ, j −σ)+ B̄22xq(i − δ, j −σ)

(17)

Now substituting (10) into the first equation in
(17) leads to the subsystem described by



I1αi+1
1 β j

1
...

Inαi+1
n β j

n


− Ā11




I1αi
1β j

1
...

Inαi
nβ j

n




−B̄11




I1αi−δ1
1 β j−σ1

1
...

Inαi−δn
n β j−σn

n




= Ā12




Î1α̂i
1β̂ j

1
...

Înα̂i
nβ̂ j

n


− B̄12




Î1α̂i−δ̂1
1 β̂ j−σ̂1

1
...

Înα̂i−δ̂n
n β̂ j−σ̂n

n




(18)

whereas the second equation in (17) provides the set
of equations gathered as




Î1ᾱi
1β̄ j+1

1
...

Înᾱi
nβ̄ j+1

n


− Ā22




Ī1ᾱi
1β̄ j

1
...

Īnᾱi
nβ̄ j

m




−B̄22




Î1ᾱi−δ̄1
1 β̄ j−σ̄1

1
...

Înᾱi−δ̄n
n β̄ j−σ̄n

n




= Ā21




I1αi
1β j

1

.

.

.

Inαi
nβ j

n


− B̄21




I1αi−δ1
1 β j−σ1

1

.

.

.

Inαi−δn
n β j−σn

n




(19)

Splitting the matrices further in order to single out
the terms related to the index, (18) yields

Kp




αi+1
1 β j

1
...

αi+1
n β j

n


− Ā11Kp




αi
1β j

1
...

αi
nβ j

n




−B̄11Kp




αi−δ1
1 β j−σ1

1
...

αi−δn
n β j−σn

n




= Ā12Kq




α̂i
1β̂ j

1

.

.

.

α̂i
nβ̂ j

n


− B̄12Kq




α̂i−δ̂1
1 β̂ j−σ̂1

1

.

.

.

α̂i−δ̂n
n β̂ j−σ̂n

n




(20)

on the other hand (19) produces

Kq




α̂i
1β̂ j+1

1
...

α̂i
nβ̂ j+1

n


− Ā22Kq




α̂i
1β̂ j

1
...

α̂i
nβ̂ j

n




−B̄22Kq




α̂i−δ̂1
1 β̂ j−σ̂1

1
...

α̂i−δ̂n
n β̂ j−σ̂n

n




= Ā21Kp




αi
1β j

1
...

αi
t β

j
t




−B̄21Kp




αi−δ1
1 β j−σ1

1
...

αi−δn
n β j−σn

n




(21)

Yet, equations (20) and (21) can be recasted as




Kp




α1 0

...

αn


− Ā11Kp− B̄11Kp




α−δ1
1 β−σ1

1 0
...

0 α−δn
n β−σn

n








×




αi
1β j

1
...

αi
nβ j

n




=
{

Ā12Kq− B̄12Kq

×




α̂−δ̂1
1 β̂−σ̂1

1 0
...

0 α̂−δ̂n
n β̂−σ̂n

n








×




α̂i
1β̂ j

1
...

α̂i
nβ̂ j

n




(22)

and
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



Kq




β̂1 0
...

β̂n


− Ā22Kq− B̄22Kq




α̂−δ̂1
1 β̂−σ̂1

1 0
...

0 α̂−δ̂n
n β̂−σ̂n

n








×




α̂i
1β̂ j

1
...

α̂i
nβ̂ j

n




=
{

Ā21Kp− B̄21Kp


α−δ1
1 β−σ1

1 0
...

0 α−δn
n β−σn

n








×




αi
1β j

1
...

αi
nβ j

n




(23)

respectively. Note that these equations have terms de-
pending only onα’s andβ’s on one side of the equal-
ity, and α̂’s and β̂’s on the other side. Furthermore
this equality has to hold for all values that the indices
assume. Since, in general, the pairs ofα’s andβ’s,
and the corresponding pairsα̂’s andβ̂’s are not equal,
these equalities are valid only if the following expres-
sions are valid.

Kp




α1 0
...

αn


− Ā11Kp

−B̄11Kp




α−δ1
1 β−σ1

1 0

...

0 α−δn
n β−σn

n


= 0

(24)

Ā12Kq− B̄12Kq

×




α̂−δ̂1
1 β̂−σ̂1

1 0

...

0 α̂−δ̂n
n β̂−σ̂n

n


= 0

(25)

Kq




β̂1 0

...

β̂n


− Ā22Kq− B̄22Kq




α̂−δ̂1
1 β̂−σ̂1

1 0

...

0 α̂−δ̂n
n β̂−σ̂n

n


= 0

(26)

Ā21Kp

−B̄21Kp




α−δ1
1 β−σ1

1 0

...

0 α−δn
n β−σn

n


= 0

(27)

Hence, (24) and (27) yield

Kp




α1 0
...

αn




−Ā11Kp− B̄11Kp(B̄21Kp)
−1Ā21Kp = 0

(28)

taking into account the hypothesis of the theorem (28)
translates into




α1 0
...

0 αn


= Ā11+ B̄11B̄

−1
21 Ā21 (29)

As for β⋆ (⋆ = 1, · · · ,n), they are computed from
(27) , which with the hypothesis of the theorem lead
to




βσ1
1 0

...

0 βσn
n


=

Ā−1
21 B̄21




α−δ1
1 0

...
0 α−δn

n




(30)

Similarly, from (26) and (25)

Kq




β̂1 0
...

0 β̂n




−Ā22Kq− B̄22Kq(B̄12Kq)
−1Ā12Kq = 0

(31)

and it turns out that the hypothesis of the theorem
brings up




β̂1 0
...

β̂n


= Ā22+ B̄22B̄−1

12 Ā12 (32)

In the same way,̂α⋆, ⋆ = 1, · · · ,n are computed
from (25) according to




α̂δ̂1
1 0

...

0 α̂σ̂n
n


=




β̂−σ̂1
1 0

...

0 β̂−σ̂n
n


 Ā−1

12 B̄12

(33)

Finally, (29), (30), (32), and (33) establish the
claim of the theorem.
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In practical terms, the key to solving the problem
comes down to the determination of the diagonal ma-
trices. The following remark provides a directive to
roughly evaluate the diagonal matrices.

Remark 3.3. It is clear from (15) and (16) that the
diagonal entries of̄A−1

21 B̄21 as well asĀ−1
12 B̄12 must

have absolute values smaller than unit in order to be
able to establish Lagrange solutions. Thus, in prac-
tice, begin focusing on these diagonal matrices trying
to set the product at relatively small values; then set
each of the matrices individually. Once these matri-
ces are defined, handle (29) and (32) to define the re-
maining diagonal matrices. The controller matrices
are computed only after an estimate of these diagonal
matrices are obtained.

In the next section, a numerical example is pre-
sented to show how to make the calculations.

4 NUMERICAL EXAMPLE

Let the 2-D control system be given by



x1(i+1, j)

x2(i+1, j)

x̂1(i, j +1)

x̂2(i, j +1)


=




0.66 0.19 0.29 0.13

0.15 0.27 0.53 0.35

0.83 0.43 0.31 0.55

0.44 0.17 0.29 0.57







x1(i, j)

x2(i, j)

x̂1(i, j)

x̂2(i, j)




+




0.10 0.23 0.47 0.15
0.20 0.37 0.17 0.25
0.51 0.67 0.71 0.15
0.35 0.11 0.31 0.13




×




x1(i−δ1, j −σ1)
x2(i−δ2, j −σ2)

x̂1(i− δ̂1, j − σ̂1)

x̂2(i− δ̂2, j − σ̂2)




+




0.70 0.13 0.17 0.11
0.05 0.80 0.07 0.15
0.11 0.23 0.75 0.17
0.15 0.13 0.37 0.90







u1(i, j)
u2(i, j)
û1(i, j)
û2(i, j)




(34)

from which the composing matrices read

A11 =

[
0.66 0.19
0.15 0.27

]

A12 =

[
0.29 0.13
0.53 0.35

]

A21 =

[
0.83 0.43
0.44 0.17

]

A22 =

[
0.31 0.55
0.29 0.57

]

B11 =

[
0.10 0.23
0.20 0.37

]

B12 =

[
0.47 0.15
0.17 0.25

]

B21 =

[
0.51 0.67
0.35 0.11

]

B22 =

[
0.71 0.15
0.31 0.13

]

C11 =

[
0.70 0.13
0.05 0.80

]

C12 =

[
0.17 0.11
0.07 0.15

]

C21 =

[
0.11 0.23
0.15 0.13

]

C22 =

[
0.75 0.17
0.37 0.90

]

(35)

Here Ā−1
21 B̄21 as well asĀ−1

12 B̄12 are required to
satisfy

Ā−1
21 B̄21 =

[
0.0667 0.000

0.0000 0.1667

]
(36)

as well as

Ā−1
12 B̄12 =

[
0.0723 0.000

0.0000 0.2704

]
(37)

From these and keeping in mind the equations (29)
and (32), the diagonal matrices are set as

Ā11 =

[
0.11 0.00
0.00 0.67

]

Ā12 =

[
6.50 0.00
0.00 2.70

]

Ā21 =

[
1.50 0.00
0.00 3.00

]

Ā22 =

[
0.51 0.00
0.00 0.47

]

B̄11 =

[
0.05 0.00
0.00 0.01

]

B̄12 =

[
0.47 0.00
0.00 0.73

]

B̄21 =

[
0.10 0.00
0.00 0.50

]

B̄22 =

[
0.03 0.00
0.00 0.07

]

(38)
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Thus (7) gives the controller matrices

F11 =

[
0.9422 0.5315
0.0816 0.0607

]

F21 =

[
−1.2451 1.3361

0.8320 −3.7911

]

F22 =

[
0.4778 1.6626
1.5606 −0.1926

]

F12 =

[
−9.4028 0.3825

0.9157 −3.0708

]

(39)

along with

G11 =

[
−0.1045 0.1509

0.1804 0.5314

]

G21 =

[
0.4637 0.9148
0.1896 −0.9113

]

G22 =

[
0.8978 0.3677

−0.0055 −0.0334

]

G12 =

[
−0.2451 0.2494

0.1503 −0.6415

]

(40)

Now taking into account expressions in (29) and
(30)

[
α1 0

0 α2

]
=

[
0.76 0.00

0.00 0.73

]
(41)

and
[

βσ1
1 0

0 βσ2
2

]
=

[
0.0667 0.0000

0.0000 0.1667

]

×
[

(0.76)−δ1 0.00
0.00 (0.73)−δ2

] (42)

are computed. Note that as far as the diagonal values
of the resulting matrix on the right hand side of (42)
have absolute values less than unit,β’s compose La-
grange solutions to the control system. On the other
hand (32) and (33) reduce to

[
β̂1 0

β̂2

]
=

[
0.9249 0.0000

0.0000 0.7289

]
(43)

and
[

α̂−δ̂1
1 0

0 α̂−σ̂2
2

]
=

[
0.0723 0.0000

0.0000 0.2704

]

×
[

(0.9249)σ̂1 0.0000
0.0000 (0.7289)σ̂2

] (44)

Analogous comments to (42) hold here for the exis-
tence of Lagrange solutions.

If (41), (42), (43) and (44) are not Lagrange, (36)
and (37) are set to different values; in general to
smaller values, and the computations are carried out
all over again.

5 FINAL REMARKS

This paper was concerned with the design of a feed-
back controller such that the overall system is asymp-
totically stable. The key point was the imposition of
a very specific Lagrange solution to then find out the
condition for the existence of such a system.

The results showed that a solution can be found if
the controller can diagonalize the matrix blocks of the
matrices composing the model, which is represented
by the set of partial difference equations. A numerical
example was presented to show how the mechanics of
the calculations work..
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