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Abstract: Cryptographic algorithms in smart cards and other constrained environments increasingly rely on Elliptic
Curves and thus it is desirable to have fast algorithms for elliptic curve arithmetic. In this paper, we provide

(i) faster differential addition formulae for elliptic curve arithmetic on Generalized Edwards’ Curves
improving upon the currently known formulae in the literature, proposed by Justus and Loebenberger at
IWSEC 2010,

(ii) more efficient affine differential addition formulae for a new model of Binary Edwards Curves
proposed by Wu, Tang and Feng at INDOCRYPT 2012 and

(iii) an algorithm for point doubling on Twisted Edwards Curves with a smaller footprint when the
implementation is desired to work across Homogeneous Projective, Inverted and Extended Homogeneous
Projective Coordinates.

1 INTRODUCTION

Security in smart devices and mobile networks
require an efficient implementation of cryptographic
algorithms owing to the computational, bandwidth,
power and memory constraints experienced in these
environments. With its smaller key sizes, Elliptic
Curve Cryptography(ECC) is increasingly seen as an
alternative to traditional public key algorithms such as
RSA, especially in constrained environments such as
mobile devices. Thus while ECC is attractive for the
success of lightweight applications such as security
for mobile and/or embedded applications, RFID and
in the context of ”Internet for Things”, optimized
low-cost ECC implementations are crucial for this
success.

In recent years, amongst other things, research
in ECC has focused on efficient implementations.
As is well known, the set of points on an elliptic
curve defined over a finite field along with the
point at infinity form a group when appropriate
group operations are defined. Elliptic curve groups
have an additive notation and thus the operation of
exponentiation in a group with multiplicative notation
becomes a multiplication operation in Elliptic curve
groups over a finite field. Point multiplication is at
the core of most ECC applications and dominates

ECC. Thus efficient methods for point multiplication
are crucial for ECC. A very good source for point
multiplication formula is the EFD(Explicit Forms
Database) (Bernstein and Lange, 2007). The usual
convention in the literature is to denote the cost
of a field inversion by I, a field multiplication by
M and a field squaring by S. In this paper we
will denote the cost of a field multiplication with a
constant by Mc. Field Multiplications by 2,3 or 4 can
be achieved by field additions and are thus ignored
in cost comparisons in this paper. Lately, a new
form of an elliptic curve called ”Edwards Curve” has
received attention in the research community mainly
due to its low finite field operation count for point
multiplication. Differential addition, a concept used
earlier in the context of Montgomery curves has been
adapted to other forms of elliptic curves including
Edwards curves.

In this paper, we review some formulae presented
in the literature towards differential addition on
Edwards Curves and work towards speeding up the
same. Specifically, we look at formulae proposed
by Justus and Loebenberger at IWSEC 2010 and
at formulae proposed by Wu, Tang and Feng at
INDOCRYPT 2012. The rest of the paper is
organized as follows: In Section-2, we review
(i) differential addition and (ii) some formulae
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presented in the literature for differential addition
on Generalized Edwards Curves and Binary Edwards
Curves. In section 3, we provide faster algorithms
to evaluate some of the formulae reviewed in
Section 2. In Section 4, we review point doubling
in Twisted Edwards Curves for the Homogeneous
Projective, Inverted and Extended Homogeneous
Projective coordinate forms and provide an alternate
algorithm for point doubling. This alternate algorithm
does not improve on the operation counts of currently
known algorithms in the literature, but the similarity
of the algorithms across coorodinate forms means that
it may be possible to have a smaller footprint when
implementing algorithms that work with all of these
three coordinate systems simultaneously. We finally
conclude in Section-4.

2 DIFFERENTIAL ADDITION

The problem of reducing the number of
group operations required while computing an
exponentiation (multiplication whilst in a additive
group) is probably best seen in the context of addition
chains. A finite sequence of integers a0,a1, . . .ar is
called an addition chain (section 4.63 in (D.Knuth,
1998)) for ar if for each element ai, there exists a j
and ak in the sequence such that a0 = 1 and for all
i = 1,2, . . . ,r

ai = a j +ak, for some k ≤ j < i (1)

Addition chains are applicable both in the context
of multiplicative groups and additive groups such as
Elliptic curve groups over a finite field.

In 1987, Montgomery proposed a special type
of an elliptic curve, now known as Montgomery
form of an elliptic curve or simply Montgomery
curve (P.L.Montgomery, 1987). The arithmetic on
a Montgomery curve relies on ’x-coordinate’ only
arithmetic and also requires the ’difference’ of two
group elements (points) to be known prior to the
computation of addition of these two elements.
Thus ordinary addition chains and improvements
of these chains cannot be directly utilized for
scalar multiplication on Montgomery curves where
’x-coordinate’ only formale are used. A special form
of addition chain called Lucas chains is useful in
this context. A Lucas chain is a restricted variant
of an addition chain where the indices in equation
(1) above are such that either j = k or the difference
ak − a j is already part of the chain. A special case
of Lucas chains occur when either j = k or ak−a j =
a0 = 1 and these are called binary chains. A good
reference for Lucas chains is (Montgomery, 1992).

Lucas chains are also known as differential addition
chains in the literature (Bernstein, 2006b). Below we
review differential addition formulae for Montgomery
curves. A Montgomery curve defined over a finite
field Fp is given by

Em : By2 = x3 +Ax2 + x

If P = (x1,y1) is a point on the Em, P can be written
in projective coordinates as P = (X1,Y1,Z1). If
[n]P = (Xn : Yn : Zn), the sum [n+m]P = [n]P+[m]P
can be computed using the differential addition
formulae below:

Addition: (n 6= m)

Xm+n =

Zm−n((Xm−Zm)(Xn +Zn)+(Xm +Zm)(Xn−Zn))
2

Zm+n =

Xm−n((Xm−Zm)(Xn +Zn)− (Xm +Zm)(Xn−Zn))
2

Doubling: (n = m)

4XnZn = (Xn +Zn)
2− (Xn−Zn)

2

X2n = (Xn +Zn)
2(Xn−Zn)

2

Z2n = 4XnZn((Xn−Zn)
2 +((A+2)/4)(4XnZn))

In the above formulae, we can see that the
Y -coordinate is not required in the computation of
X-coordinate of [n+m]P, provided we are supplied
with the value of [n−m]P. This is employed by
the Montgomery ladder for scalar multiplication. A
good reference for Montgomery ladders is (M.Joye
and S.Yen, 2002).

The idea of differential addition has been extended
to other forms of elliptic curves. Lopez and Dahab
(J.Lopez and R.Dahab, 1999) generalized this idea
to Weierstrass form binary curves and Brier and
Joye (E.Brier and M.Joye, 2002) generalized it to
Weierstrass Curves defined over GF(p). Justus
and Loebenberger (R.Justus and Loebenberger, 2010)
extended differential addition to Generalized Edwards
Elliptic Curve form in a paper presented at IWSEC
2010. Wu, Tang and Feng (H.Wu et al., 2012)
proposed differential addition formulae for a new
model of Binary elliptic curves. In this paper, we
try to speed up some of the formulae proposed in
(R.Justus and Loebenberger, 2010) and the affine
w-Coordinate differential addition proposed in (H.Wu
et al., 2012). In the remainder of this section, we
review some of the Differential addition formulae
for Generalized Edwards’ Curves as provided in
(R.Justus and Loebenberger, 2010) and the affine
w-Coordinate differential addition formulae for a new
model of Binary elliptic curve as provided in (H.Wu
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et al., 2012).
Generalized Edwards Curves over a finite field Fp

are given by (curve parameters c,d ∈ Fp)

Ec,d : x2 + y2 = c2(1+dx2y2)

It turns out that the differential addition formulae for
generalized Edwards curves uses y-only coordinates
instead of x-only coordinates for Montgomery
curves. Let P = (x1,y1) be a point on Ec,d .
In projective coordinates, P can be written as
P = (X1,Y1,Z1) and let [n]P = (Xn : Yn : Zn). If
c,d 6= 0, dc4 6= 1 and d is not a square in GF(p), the
sum [n+m]P = [n]P+[m]P, as provided in (R.Justus
and Loebenberger, 2010) is reproduced below:

A. Differential Addition for Generalised Edwards
Coordinates: m > n
(Operation count given by authors in (R.Justus and
Loebenberger, 2010) is 6M+4S).

Ym+n = Zm−n(Y 2
m(Z

2
n − c2dY 2

n )+Z2
m(Y

2
n − c2Z2

n))

Zm+n = Ym−n(dY 2
m(Y

2
n − c2Z2

n)+Z2
m(Z

2
n − c2dY 2

n ))

B. Differential Doubling for Generalised Edwards
Coordinates: n = m
(Operation count given by authors in (R.Justus and
Loebenberger, 2010) is 1M+4S).

Y2n =−c2dY 4
n +2Y 2

n Z2
n − c2Z4

n

Z2n = dY 4
n −2c2dY 2

n Z2
n +Z4

n

In (R.Justus and Loebenberger, 2010), point tripling
formula are provided as well, which we reproduce
below:

C. Tripling for Generalised Edwards Coordinates:
(Operation count given by authors in (R.Justus and
Loebenberger, 2010) is 4M+7S).

Y3n = Yn(c2(3Z4
n −dY 4

n )
2−

Z4
n(8c2Z4

n +(Y 2
n (c

3d + c−1)−2cZ2
n)

2−
c−2(c4d +1)2Y 4

n ))

Z3n = Zn(c2(Z4
n −3dY 4

n )
2+

dY 4
n (4c2Z4

n − (Y 2
n (c

3d + c−1)−2cZ2
n)

2+

c−2((c4d +1)2−12c4d)2Y 4
n ))

In (R.Justus and Loebenberger, 2010), an alternate
parameterization is provided by the authors, where
only the squares of the points (Ym : Zm), (Yn : Zn)
and (Ym−n : Zm−n) are utilized. We call this ”Squares
Only” or SQO parametrization. The authors provide
addition, doubling and tripling formulae for this
parametrization. Here we reproduce the doubling

and the tripling formulae from (R.Justus and
Loebenberger, 2010) for SQO parametrization.

D. SQO Doubling for Generalised Edwards
Coordinates: n = m
(Operation count given in (R.Justus and
Loebenberger, 2010) is 5S).

Y 2
2n = ((1− c2d)Y 4

n +(1− c2)Z4
n − (Y 2

n −Z2
n)

2)2

Z2
2n = (dc2(Y 2

n −Z2
n)

2−d(c2−1)Y 4
n +(c2d−1)Z4

n)
2

E. SQO Tripling for Generalised Edwards
Coordinates: m = 2n
(Operation count in (R.Justus and Loebenberger,
2010) is 4M+7S).

Y 2
3n = Y 2

n (c
2(3Z4

n −dY 4
n )

2−
Z4

n(8c2Z4
n +(Y 2

n (c
3d + c−1)−2cZ2

n)
2−

c−2(c4d +1)2Y 4
n ))

2

Z2
3n = Z2

n(c
2(Z4

n −3dY 4
n )

2+

dY 4
n (4c2Z4

n − (Y 2
n (c

3d + c−1)−2cZ2
n)

2+

c−2((c4d +1)2−12c4d)Y 4
n ))

2

In (H.Wu et al., 2012), the authors propose a new
model of Binary Edwards Curve given by

St : x2y+ xy2 + txy+ x+ y = 0

where (x,y) ∈ K2 and K is a field of characteristic
2. Further, in section 6 of this paper, the authors
construct differential addition formula for St . We
reproduce the approach and the formulae here.

F. Affine w-coordinate Differential Addition and
Doubling for a new model of Binary Edwards
Curves proposed in (H.Wu et al., 2012):
(Operation count for addition and doubling as given
in (H.Wu et al., 2012) is 1I + 2M + 2S + 1Mc and
1I +1M+2S+1Mc respectively.)
Utilizing w-coordinate differential addition that was
initially proposed by Bernstein in (Bernstein et al.,
2008a), the authors in (H.Wu et al., 2012) propose
w-coordinate differential addition and doubling for St ,
i.e., they present formulae to compute w(P+Q) and
w(2P) from w(P), w(Q) and w(Q−P). If P= (x,y) is
a point on St , then the w-function is defined as w(P) =
xy. If P = (x2,y2), Q = (x3,y3), Q− P = (x1,y1),
2P = (x4,y4) and Q+P = (x5,y5), we write wi = xiyi
for i = 1,2,3,4,5. Then w2 = w(P), w4 = w(2P),
w5 = w(P + Q), w1 = w(Q− P) and w3 = w(Q).
The affine differential addition formulae on St , as
developed and presented in (H.Wu et al., 2012) are
as follows:

w4 =
1+w4

2

t2w2
2

and w5 = w1 +
t2w2w3

w2
2 +w2

3
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3 ALTERNATE ALGORITHMS
AND NEWER OPERATION
COUNTS

In this section we show that the operation counts in
formulae (B-F) of Section 2 can be improved. For
clarity in comparison, the subsections that describe
and compare our improvements to (B-F) of Section-2
are labeled as (BB-FF) respectively.

BB. Differential Doubling for Generalised
Edwards Coordinates:
The operation count of formula (B) in Section 2 is
1M + 4S as the formula can be computed using the
following algorithm:

A← Y 2
n ( = Y 2

n ) S

B← Z2
n ( = Z2

n) S

D← A∗B ( = Y 2
n Z2

n) M

A← A2 ( = Y 4
n ) S

B← B2 ( = Z4
n) S

Y2n =−c2dA+ ( =−c2dY 4
n + 2Mc

2D− c2B 2Y 2
n Z2

n − c2Z4
n)

Z2n = dA−2c2dD+B ( = dY 4
n− 2Mc

2c2dY 2
n Z2

n +Z4
n)

Thus the total complexity, if one takes into
consideration the cost of multiplication by a constant
other than 1 or 2 or 3, is (1M + 4Mc + 4S). The
formulae (B) in Section 2 can be rewritten as

Y2n =−c2dY 4
n +2Y 2

n Z2
n − c2Z4

n = 2Y 2
n Z2

n − c2(Z4
n +dY 4

n )

Z2n = dY 4
n −2c2dY 2

n Z2
n +Z4

n =−c2d(2Y 2
n Z2

n)+(Z4
n +dY 4

n )

The rewritten formulae above can be computed
using the algorithm below:

A← Y 2
n ( = Y 2

n ) S

B← Z2
n ( = Z2

n) S

E← A2 ( = Y 4
n ) S

F ← B2 ( = Z4
n) S

G← (A+B)2 ( = 2Y 2
n Z2

n) S
−E−F

Y2n = G− ( = 2Y 2
n Z2

n− 2Mc

c2(F +dE) c2(Z4
n +dY 4

n ))

Z2n = (−c2d)G+ ( =−c2d(2Y 2
n Z2

n)+ 1Mc

(F +dE) (Z4
n +dY 4

n ))

Thus the new complexity is 5S + 3Mc. As
1S < 1M, the new complexity 5S+ 3Mc is less than

the older complexity (1M+4Mc +4S)

CC. Tripling for Generalised Edwards
Coordinates:
The operation count of formula (C) in Section 2
of this paper is 4M + 7S. In addition to this, by
inspection, one can count 8Mc operations as required
to compute the requisite formula. Thus the total
complexity of formula(C) is 4M+7S+8Mc
From section 3.1 in (R.Justus and Loebenberger,
2010), we have

y3 =
y(c2d2y8−6c2dy4 +4(c4d +1)y2−3c2)

−3c2d2y8 +4d(c4d +1)y6−6c2dy4 + c2

writing y = Y/Z in projective coordinates, the
above formula can be written as

Y3n

Z3n
=

Yn

Zn
.
(c2d2Y 8

n −6c2dY 4
n Z4

n +4(c4d +1)Y 2
n Z6

n −3c2Z8
n)

−3c2d2Y 8
n +4d(c4d +1)Y 6

n Z2
n −6c2dY 4

n Z4
n + c2Z8

n

Then

Y3n = Yn[c2d2Y 8
n −6c2dY 4

n Z4
n +4(c4d +1)Y 2

n Z6
n −3c2Z8

n ]

and

Z3n = Zn[−3c2d2Y 8
n +4d(c4d +1)Y 6

n Z2
n −6c2dY 4

n Z4
n + c2Z8

n ]

The above rewritten formulae can now be computed
using the algorithm below:

A← Y 2
n ( = Y 2

n ) S

B← Z2
n ( = Z2

n) S

E← A2 ( = Y 4
n ) S

F ← B2 ( = Z4
n) S

G← (A+B)2 (=(Y 2
n +Z2

n)
2 S

−E−F −Y 4
n −Z4

n = 2Y 2
n Z2

n)

H← G2 ( = 4Y 4
n Z4

n) S

J← E2 ( = Y 8
n ) S

K← F2 ( = Z8
n) S

M← (G+F)2 [ = (2Y 2
n Z2

n +Z4
n)

2−Z8
n S

−K−H −4Y 4
n Z4

n ] = 4Y 2
n Z6

n

N← (G+E)2 [ = (2Y 2
n Z2

n +Y 4
n )

2 S

− J−H −Y 8
n −4Y 4

n Z4
n ] = 4Y 6

n Z2
n

Finally,
Y3n←Yn[(c2d2)J− ( 3

2 c2d)H +(c2d+1)M− (3c2)K]
which costs 1M+3Mc and
Z3n← Zn

[(−3c2d2)J−d(c4d+1)N− ( 3
2 c2d)H +(c2)K]

which costs 1M + 2Mc. In the above, once (c2)K
is computed, the cost of computing (3c2)K is
ignored. The complexity of the new algorithm is
(10S+ 2M + 5Mc). If 3S < 2M + 3Mc, then the new
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complexity of (10S + 2M + 5Mc) is less than the
older complexity of (7S+4M+8Mc). In (Bernstein,
2006a), 2M = 3S and thus 3S < 2M+3Mc.

DD. SQO Doubling for Generalised Edwards
Coordinates:
By inspecting formula(D) in Section 2 and taking into
consideration that we are provided with X2

2n and Y 2
2n,

we can see that the total complexity of the formula(D)
is (5S+ 5Mc). We can improve upon this. Using the
doubling formula(BB) in this section, we can write

Y 2
2n =

[
2Y 2

n Z2
n − c2(Z4

n +dY 4
n )

]2

Z2
2n =

[
− c2d(2Y 2

n Z2
n)+(Z4

n +dY 4
n )

]2

Given that only squares of the coordinates are
stored, the above formula can be computed using the
following algorithm:

A← (Y 2
n )

2 ( = Y 4
n ) 1S

B← (Z2
n)

2 ( = Z4
n) 1S

E← (Y 2
n +Z2

n)
2−A−B ( = 2Y 2

n Z2
n) 1S

Y 2
2n←

[
E− ( =

[
2Y 2

n Z2
n 1S+2Mc

c2(B+dA)
]2 − c2(Z4

n +dY 4
n )

]2

Z2
2n←

[
− c2dE+ ( =

[
− c2d(2Y 2

n Z2
n) 1S+Mc

(B+dA)2]2
+(Z4

n +dY 4
n )

]2

The complexity of the new algorithm is
(5S + 3Mc) while the older complexity was
(5S+5Mc)

EE. SQO Tripling for Generalised Edwards
Coordinates:
By inspecting formula(E) in Section 2, we can see
that the total complexity of formula(E) is (4M+7S+
8Mc). The algorithm used to compute Y3n and Z3n
in formula(CC) of this section can be adapted to
compute the requisite formulae. The first two steps
can be omitted as squares are already available and
the last two steps can be replaced with

Y 2
3n← Y 2

n
[
(c2d2)J− (

3
2

c2d)H +(c2d +1)M− (3c2)K
]2

Z2
3n← Z2

n
[
(−3c2d2)J−d(c4d +1)N− (

3
2

c2d)H +(c2)K
]2

The complexity of this algorithm would
be the same as that of formula(CC) which is
(10S+2M+5Mc). We can take 2M = 3S (Bernstein,
2006a). Thus 3S < (2M + 3Mc) and the new
algorithm with complexity (10S + 2M + 5Mc)
is better than the older one with complexity
(7S+4M+8Mc).

FF. Affine w-coordinate Differential Addition and
Doubling for a new model of Binary Edwards
Curves proposed in (H.Wu et al., 2012):
The operation count of computing w4 in formula (F)
in Section 2 is 1I+1M+1Mc+2S as the formula can
be computed using the algorithm below:

A = w2
2 ( = w2

2) 1S

B = A2 ( = w4
2) 1S

C = t2A ( = t2w2
2) 1Mc

D =C−1
(
=

1
t2w2

2

)
1I

w4 = (1+B)D
(
=

1+w4
2

t2w2
2

)
1M

Now w4 can be rewritten as

w4 =

(
1
t2

)(
1

w2
2
+w2

2

)
and

w4 can be computed using the following algorithm:

A = w2
2 ( = w2

2) 1S

B =
1
A

(
=

1
w2

2

)
1I

w4 =

(
1
t2

)
(A+B)

(
=

(
1
t2

)(
1

w2
2
+w2

2

))
Mc

Thus the complexity of the new doubling
algorithm is 1I + 1S + 1Mc resulting in a saving
of 1M + 1S. The formulae(F) for differential
addition(w5) in the previous section costs 1I + 2M +
2S + 1Mc. Considering that w2

2 is computed both
in the differential addition and doubling steps, w2

2
can be computed just once. Thus the new total cost
of a differential addition and doubling is 2I + 2M +
2S+2Mc or 1I+5M+2S+2Mc with Montgomery’s
Inversion trick, as compared to the previous total cost
of 1I + 6M + 4S+ 2Mc resulting in an overall saving
of 1M+2S.

4 DOUBLING IN TWISTED
EDWARDS CURVES

In this section, we look at the doubling formula
for Twisted Edwards Curves with a particular
parameterization and then propose alternate
formulae for the same. Building on the work of
Edwards(Edwards, 2007), the authors in (Bernstein
et al., 2008b) introduced Twisted Edwards Curves,
whose equation is given by

ax2 + y2 = 1+dx2y2 (2)
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where K is a field of odd characteristic a,d ∈ K with
ad(a−d) 6= 0. Here, we closely follow the treatment
in (Hisil, 2010), where, amongst others, the formulae
for Homogeneous Projective, Inverted and Extended
Homogeneous Projective coordinates are presented.
The triplet (X : Y : Z) satisfies the homogeneous
projective equation aX2Z2 +Y 2Z2 = Z4 +dX2Y 2.

Homogenous Projective Coordinates:
Here the triplet (X : Y : Z) corresponds to the affine
point (X/Z,Y/Z) with Z 6= 0. If P = (X1 : Y1 : Z1)
then the doubling formula for [2]P = (X2 : Y2 : Z2) is
as below: (assuming Z2 6= 0).

X2 = 2X1Y1(2Z2
1 −Y 2

1 −aX2
1 )

Y2 = (Y 2
1 −aX2

1 )(Y
2
1 +aX2

1 )

Z2 = (Y 2
1 +aX2

1 )(2Z2
1 −Y 2

1 −aX2
1 )

Evaluating the above doubling formulae as in
(Bernstein et al., 2008b) costs 3M + 4S+ 1Mc and is
computed using the following algorithm:

B← (X1 +Y1)
2 ( = X2

1 +Y 2
1 +2X1Y1) S

C← X2
1 ( = X2

1 ) S

D← Y 2
1 ( = Y 2

1 ) S

E← aC ( = aX2
1 ) Mc

F ← E +D ( = Y 2
1 +aX2

1 )

H← Z2
1 ( = Z2

1) S

J← F−2H ( =−(2Z2
1 −Y 2

1 −aX2
1 ))

X2← (B−C−D)J ( =−(2X1Y1) M

(2Z2
1 −Y 2

1 −aX2
1 ))

Y2← F(E−D) ( =−(Y 2
1 −aX2

1 ) M

(Y 2
1 +aX2

1 ))

Z2←−FJ ( = (Y 2
1 +aX2

1 ) M

(2Z2
1 −Y 2

1 −aX2
1 ))

If a = 1, then the doubling costs 3M + 4S by
replacing the instruction X2 ← (B−C−D)J in the
above algorithm with X2← (B−F)J, as in (Bernstein
and T.Lange, 2007a).
If a = −1, then the doubling again costs 3M + 4S
and can be computed using the following algorithm
as provided in (Hisil, 2010):

A← 2Z2
1 ( = 2Z2

1) S

B← Y 2
1 ( = Y 2

1 ) S

C← X2
1 ( = X2

1 ) S

D← B+C ( = X2
1 +Y 2

1 )

E← B−C ( = Y 2
1 −X2

1 )

F ← A−E ( = 2Z2
1 +X2

1 −Y 2
1 )

X2← ((X1 +Y1)
2−D)F ( = (2X1Y1) S+M

(2Z2
1 +X2

1 −Y 2
1 ))

Y2← DE ( = (X2
1 +Y 2

1 ) M

(Y 2
1 −X2

1 ))

Z2← EF ( = (Y 2
1 −X2

1 ) M

(2Z2
1 +X2

1 −Y 2
1 ))

Inverted Coordinates:
Here the triplet (X : Y : Z) corresponds to the affine
point (Z/X ,Z/Y ) with Z 6= 0. If the triplet (X1 :
Y1 : Z1) satisfies the homogeneous projective equation
aX2Z2 +Y 2Z2 = Z4 + dX2Y 2 and X1Y1Z1 6= 0, then
the doubling formulae for [2]P = (X2 : Y2 : Z2) is as
below: (assuming X2Y2Z2 6= 0):

X2 = (X2
1 −aY 2

1 )(X
2
1 +aY 2

1 )

Y2 = 2X1Y1(X2
1 +aY 2

1 −2dZ2
1)

Z2 = 2X1Y1(X2
1 −aY 2

1 )

Evaluating the above doubling formulae as in
(Bernstein et al., 2008b) costs 3M + 4S+ 2Mc and is
computed using the following algorithm:

A← X2
1 ( = X2

1 ) S

B← Y 2
1 ( = Y 2

1 ) S

U ← aB ( = aY 2
1 ) Mc

C← A+U ( = (X2
1 +aY 2

1 ))

D← A−U ( = (X2
1 −aY 2

1 ))

E← (X1 +Y1)
2 ( = 2X1Y1) S

−A−B

X2←CD ( = (X2
1 +aY 2

1 )(X
2
1 −aY 2

1 )) M

Y2← E(C− (2d)Z2
1) ( = 2X1Y1 M+Mc +S

(X2
1 +aY 2

1 −2dZ2
1))

Z2← DE ( = 2X1Y1(X2
1 −aY 2

1 )) M

If a = 1 then the doubling takes 3M + 4S+ 1Mc
by computing E as (X1 +Y1)

2−C see (Bernstein and
T.Lange, 2007b).
If a = −1 then the doubling again takes
3M + 4S + 1Mc by computing E as (X1 +Y1)

2 −D
and replacing U ← aB, C← A+U , D← A−U with
C← A−B, D← A+B as given in (Hisil, 2010).

Extended Homogenous Projective Coordinates:
In this system, each point (x,y) on ax2 + y2 = 1 +
dx2y2 is represented by the quadruplet (X : Y : T :
Z) which in turn corresponds to the affine point
(X/Z,Y/Z) with the auxiliary coordinate T = XY/Z
and Z 6= 0. If (X1 : Y1 : T1 : Z1) with Z1 6= 0 and

Differential Addition in Edwards Coordinates Revisited and a Short Note on Doubling in Twisted Edwards Form

341



T1 = X1Y1/Z1 satisfy aX2Z2 +Y 2Z2 = Z4 + dX2Y 2,
then the doubling formulae for [2](X1,Y1,T1,Z1) =
(X2 : Y2 : T2 : Z2) is as follows (assuming Z2 6= 0):

X2 = 2X1Y1(2Z2
1 −Y 2

1 −aX2
1 )

Y2 = (Y 2
1 −aX2

1 )(Y
2
1 +aX2

1 )

T2 = 2X1Y1(Y 2
1 −aX2

1 )

Z2 = (Y 2
1 +aX2

1 )(2Z2
1 −Y 2

1 −aX2
1 )

Evaluating the above doubling formulae as in
(Hisil, 2010) costs 4M + 4S+ 1Mc and is computed
using the following algorithm:

A← X2
1 ( = X2

1 ) S

B← Y 2
1 ( = Y 2

1 ) S

C← 2Z2
1 ( = 2Z2

1) S

D← aA ( = aX2
1 ) Mc

E← B+D ( = Y 2
1 +aX2

1 )

F ← B−D ( = Y 2
1 −aX2

1 )

G←C−E ( = 2Z2
1 − (Y 2

1 +aX2
1 ))

H← (X1 +Y1)
2 ( = 2X1Y1) S

−A−B
X2← GH ( = (2X1Y1) M

(2Z2
1 −Y 2

1 −aX2
1 ))

Y2← EF ( = (Y 2
1 −aX2

1 ) M

(Y 2
1 +aX2

1 ))

T2← FH ( = 2X1Y1(Y 2
1 −aX2

1 )) M

Z2← EG ( = (Y 2
1 +aX2

1 ) M

(2Z2
1 −Y 2

1 −aX2
1 ))

If a = 1 then the doubling costs 4M + 4S
and can be computed by first removing D ← aA
and then replacing E ← B + D, F ← B − D,
H← (X1 +Y1)

2−A−B with E← B+A, F← B−A,
H← (X1 +Y1)

2−E, respectively.
If a = −1 then the doubling costs 4M + 4S and
can be computed by first removing D ← aA
and then replacing E ← B + D, F ← B − D,
H← (X1 +Y1)

2−A−B with E← B−A, F← B+A,
H← (X1 +Y1)

2−F , respectively.

New Alternate Algorithm to Compute Doubling
Formulae for Homogeneous Projective, Inverted
and Extended Homogeneous Projective
Coordinates (a = 1 or a =−1):
Here we provide an alternate algorithm to compute
a doubling on Twisted Edwards Curves. It is
possible to collect instructions that are common to
all the 3 computations, compute them separately
and then perform computations that are specific to

the coordinate system being used. Below, we first
present instructions that are common to all the 3
coordinate systems considered here and then present
instructions that are specific to the coordinate system
being used. We note here that for all nonzero c ∈ K,
(X : Y : Z) = (cX : cY : cZ).

Instructions Common to all 3 Coordinate Systems:
A← (X1 +Y1)

2 ( = X2
1 +Y 2

1 +2X1Y1) S

B← (X1−Y1)
2 ( = X2

1 +Y 2
1 −2X1Y1) S

C← A+B ( = 2(X2
1 +Y 2

1 ))

D← A−B ( = 4X1Y1)

E← (Z1 +Z1)
2 ( = 4Z2

1) S

F ← (X1 +X1)
2 ( = 4X2

1 ) S

G←C−F ( = 2(Y 2
1 −X2

1 ))

Instructions Specific to Homogenous Projective
Coordinates:

Y2←CG ( = 4(Y 2
1 +X2

1 )(Y
2
1 −X2

1 )) M
if a =+1

X2← D(E−C) ( = (4X1Y1)(4Z2
1 −2(X2

1 +Y 2
1 ))) M

Z2←C(E−C) ( = 2(X2
1 +Y 2

1 ) M

(4Z2
1 −2(X2

1 +Y 2
1 )))

if a =−1

X2← D(E−G) ( = (4X1Y1)(4Z2
1 −2(Y 2

1 −X2
1 ))) M

Z2← G(E−G) ( = (2(Y 2
1 −X2

1 ))) M

(4Z2
1 −2(Y 2

1 −X2
1 ))

Instructions Specific to Inverted Coordinates:
X2←CG ( = 4(Y 2

1 +X2
1 )(Y

2
1 −X2

1 )) M
if a =+1

Y2← D(dE−C) ( = (4X1Y1)(4dZ2
1 −2(X2

1 +Y 2
1 )) M

Z2← DG ( = (4X1Y1)(2(Y 2
1 −X2

1 ))) M
if a =−1

Y2← D(dE +G) ( = (4X1Y1)(4dZ2
1 +2(Y 2

1 −X2
1 ))) M

Z2←−DC ( = (−4X1Y1)(2(X2
1 +Y 2

1 ))) M

Instructions Specific to Extended Homogenous
Projective Coordinates:

Y2←CG ( = 4(X2
1 +Y 2

1 )(Y
2
1 −X2

1 )) M
if a =+1

X2← D(E−C) ( = (4X1Y1)(4Z2
1 −2(X2

1 +Y 2
1 ))) M

T2← DG ( = (4X1Y1)(2(Y 2
1 −X2

1 ))) M

Z2←C(E−C) ( = (2(X2
1 +Y 2

1 )) M

(4Z2
1 −2(X2

1 +Y 2
1 )))

if a =−1
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X2← D(E−G) ( = (4X1Y1)(4Z2
1 −2(Y 2

1 −X2
1 )))M

T2← DC ( = (4X1Y1)(2(X2
1 +Y 2

1 ))) M

Z2← G(E−G) ( = (2(Y 2
1 −X2

1 )) M

(4Z2
1 −2(Y 2

1 −X2
1 )))

The cost of the new algorithm presented here
is the same as that of the currently known best
algorithms in the literature due to Bernstein and
Hisil depicted above (i.e., 3M + 4S operations each
for Homogeneous Projective and Inverted coordinates
and 4S+ 4M operations for Extended Homogeneous
Projective coordinates when the curve parameter a =
1 or −1). However, in the new algorithm, the
non-coordinate specific instructions can be separated
from the coordinate specific instructions as shown
above(variables A . . .G are common to all coordinate
forms) and further within each coordinate system,
one instruction is independent of whether a = 1 or
−1. Thus the new algorithm’s footprint may be
lower than the sum of the footprints of currently
known algorithms for the three coordinate systems
under consideration. Thus the new algorithm may
be an attractive alternative when the implementation
is intended to work across the three coordinate
systems, namely Homogeneous Projective, Inverted
and Extended Homogeneous Projective Coordinates.

5 CONCLUSION

In this paper, we improved the arithmetic for
differential addition on Generalized Edwards curves.
We also improved the w-coordinate formulae for a
new model of elliptic curve proposed by Wu, Tang
and Feng. We also provided a new algorithm for point
doubling on Twisted Edwards Curves with a lower
foot print for implementation.
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