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Abstract: This paper focuses on the robust recognition of nonlinearly distorted speech. We have reported (Seps et al.,
2014) that hybrid acoustic models based on a combination of Hidden Markov Models and Deep Neural Net-
works (HMM-DNNs) are better suited to this task than conventional HMMs utilizing Gaussian Mixture Mod-
els (HMM-GMMs). To further improve recognition accuracy, this paper investigates the possibility of com-
bining the modeling power of deep neural networks with the adaptation to given acoustic conditions. For this
purpose, the deep neural networks are utilized to produce bottleneck coefficients / features (BNC). The BNCs
are subsequently used for training of HMM-GMM based acoustic models and then adapted using Constrained
Maximum Likelihood Linear Regression (CMLLR). Our results obtained for three types of nonlinear distor-
tions and three types of input features show that the adapted BNC-based system (a) outperforms HMM-DNN
acoustic models in the case of strong compression and (b) yields comparable performance for speech affected
by nonlinear amplification in the analog domain.

1 INTRODUCTION

In recent years, it has been shown that hybrid
HMM-DNN acoustic models (we further abbrevi-
ate HMM-DNN to DNN) yield significant Word Er-
ror Rate (WER) reduction over conventional HMM-
GMM based systems for various speech recogni-
tion tasks, e.g., large-vocabulary recognition of clean
speech (Dahl et al., 2012; Dahl et al., 2013) or multi-
lingual acoustic modeling (Heigold et al., 2013).

This success motivates the utilization of DNNs for
recognition of speech distorted by environmental con-
ditions, such as additive noise or convolutive channel
distortion. The work (Seltzer et al., 2013) demon-
strates robustness of DNNs in a medium vocabulary
task from the Aurora 4 noise database (Parihar and
Picone, 2002). This paper shows that the feature-
extraction strategy employed in DNNs automatically
derives noise-robust features from input data when
multi-style training is available. However, the noise-
robustness technologies can still be of value to DNN
architecture (Delcroix et al., 2013), especially when
the network is trained on clean data and tested on
noisy data.

The utilization of many of the traditional robust
speech recognition techniques is complicated in con-

nection with DNNs. Some of the methods need an
underlying assumption that HMM-GMMs (we fur-
ther abbreviate HMM-GMM to GMM) are used for
the state likelihood evaluation. The potential solution
to this problem is proposed in (Li et al., 2014). It
consists of computing DNN-derived bottleneck coef-
ficients ( BNC, see for example (Deng et al., 2010))
and subsequently utilizing them in training of GMMs.
The GMM based model can then be endowed with
conventional robust speech recognition techniques,
such as CMLLR (Gales, 1998).

In this paper, we investigate the usefulness and
possibility of adaptation of BNC features to robust
recognition of speech affected by real-world nonlin-
ear distortions. Our goal is to take advantage of the
modeling power of neural networks in combination
with a channel adaptation method. As already men-
tioned, our work is motivated by findings in (Seps
et al., 2014). It was shown there that DNNs are
more robust with respect to nonlinear distortions than
GMMs. However, GMMs endowed with adaptation
to environmental conditions via CMLLR are able to
match the performance of the former and even yield
lower WER in some cases. We focus on:

1. Utterances distorted by nonlinear amplification
(and potential clipping) in the analog domain and
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coded via a lossy codec optimized for speech per-
ceptual quality.

2. Speech compressed via lossy compression to very
low bit-rate quality.

3. Recordings denoised via spectral subtraction al-
gorithms, which exhibit an unnaturally sparse
spectrum.

In all these cases, we investigate mismatched
training conditions, i.e., we train the models on clean
data and test them on distorted datasets. This stems
from the fact that the considered distorted data (with
exception of the low bit-rate compression) are dif-
ficult to simulate or collect for multi-style training.
Due to this fact, we do not consider any adaptation
techniques, which need training and training data,
such as i-vector computation proposed in (Saon et al.,
2013) or training of the DNN on features adapted
to considered distortions. We derive BNC features
from three different types of input features includ-
ing classical Mel Frequency Cepstral Coefficients
(MFCCs) (Davis and Mermelstein, 1980), Filter Bank
Coefficients (FBCs) (Deng et al., 2013) and Tempo-
RAl Patterns (TRAPs) (Grézl and Fousek, 2008).

The paper is structured as follows. In Section 2 we
describe the considered datasets of distorted speech.
Section 3 presents our implementation of the bottle-
neck features. Section 4 specifies the details of our
experimental setup. Section 5 summarizes the results
of our investigation and conclusions are drawn.

2 CONSIDERED DISTORTIONS

In our study, we consider the types of real-world non-
linear distortions mentioned below. More information
on the datasets and distortions can be found in (Seps
et al., 2014).

2.1 Nonlinear Amplification in the
Analog Domain

This distortion is caused by an erroneous excessive
setting of the analog preamplifier. Then the preampli-
fier becomes saturated and amplifies the input signal
in a nonlinear way. In extreme, the signal becomes
clipped prior to sampling. Subsequently, the signal
is sampled and coded by a lossy codec. After cod-
ing, the potential clipping becomes difficult to detect,
as the characteristic flat amplitude level disappears in
the signal domain. Both the nonlinear amplification
and the potential clipping may affect perceptual qual-
ity of the speech (Licklider and Pollack, 1948).

Our distorted dataset consists of eight lectures
given in Czech (11 hours and 45 minutes of speech,
85396 words), recorded for streaming purposes at our
university. The signal is captured by a close-talk mi-
crophone. The common background noise of a lecture
hall is present in the recording. The recordings were
originally sampled at 44.1 kHz and then compressed
by wma2 lossy codec (bit-rate 266 kbps), optimized
for perceptual quality suitable for human listeners.
Prior to recognition, the signals were downsampled
to 16 kHz. The dataset is denoted as ”Lectures” in the
experiments.

2.2 Lossy mp3 Compression to Low
Bit-rate

Low-bit-rate mp3 compression neglects frequency
components which are considered inaudible based on
a psychoacoustic model. The decompressed signal
exhibits many zeros in the time-frequency domain.
The compression to low bit-rates (<24 kbit/s) causes
suppression of phonemes at word boundaries, which
deteriorates the ASR accuracy (Pollak and Behunek,
2011; Seps et al., 2014).

Our dataset of compressed utterances consists of
22 recordings (1 hour and 12 minutes of speech, 8096
words) of radio broadcasts. Spontaneous speech by
various speakers was recorded at a sample rate of
16kHz. Subsequently, an mp3 compression was ap-
plied at a bit-rate of 16 kbit/s in order to present the
recordings on the web page of a radio station. The
dataset is denoted as ”MP3” in the experiments.

2.3 Spectral Subtraction Denoising

The denoising based on spectral subtraction estimates
the magnitude/power spectrum of the noise. This es-
timate is subsequently subtracted from the spectrum
of speech. Excessive denoising may lead to unnatu-
rally sparse speech spectrum and/or various artifacts,
such as musical noise. These artifacts deteriorate the
performance of ASR (Vaseghi, 2008).

The dataset affected by excessive denoising con-
sists of 1161 short Czech utterances read by various
speakers, recorded with a close-talk microphone. The
total duration of the dataset is 1 hour and 45 minutes,
and it contains 12780 words. The original sampling
frequency of 44.1 kHz was downsampled to 16 kHz.
During the recording, a denoising method provided
by software drivers of the sound device was turned on.
No additional compression was applied to the data.
The dataset is denoted as ”Denoised” in the experi-
ments.
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Figure 1: The process of generation of bottleneck coeffi-
cients.

3 EXTRACTION OF
BOTTLENECK COEFFICIENTS

Bottleneck coefficients are generated via a deep neu-
ral network containing one hidden layer with a small
number of neurons compared to other layers. This
small layer forces the network to concentrate the
crucial information for the classification into a low-
dimensional representation. The output of the small
layer forms the BNC features. The original method
of extraction is based on auto-encoders, i.e., the net-
work is trained to predict the input features (Deng
et al., 2010). Other implementations include pre-
diction of (a) states of context-independent mono-
phones (Grézl et al., 2007) or (b) physical states (so-
called ”senones”) of context-dependent tied-state tri-
phones (Yu and Seltzer, 2011). The input features
can be classical MFCCs or short/long-term energy of
speech in critical bands (Grézl and Fousek, 2008).

In this paper, we adopted the process of generating
BNCs and their utilization in a GMM acoustic model
as depicted in Fig. 1. It can be described as follows:

1. A type of input features is computed. We con-
sider three different types as described in the next
Section 4.1.

2. A deep neural network is trained using state
alignments generated by the baseline tied-state
context-dependent GMM system which utilizes
conventional MFCC features. The network has
five hidden layers, all but one having 1024 units.
The middle (third) layer forms the bottleneck with
only 128 units and its output gives the raw bottle-
neck features. Details on the training configura-
tion can be found in Section 4.2.

3. An optional third step consists in a concatenation

of the raw bottleneck feature vector with the con-
ventional MFCC features. This stems from the
fact that MFCCs are considered to be highly ef-
fective features. When alternative long-term fea-
tures are used as the input for the neural network,
the resulting bottleneck coefficients have the po-
tential to capture information complementary to
MFCCs (derived from the short-time spectra).

4. The raw/concatenated BNCs are analyzed using
the Principal Component Analysis (PCA, (Jol-
liffe, 2002)), in order to decorrelate the features
and lower the dimension of the resulting feature
vectors. After the application of PCA, 39 decor-
related features are always kept, which form the
final bottleneck features. The number of 39 fea-
tures is the common length of a traditional MFCC
feature vector. The reduction performed in this
manner always keeps more than 97% of the en-
ergy of the analyzed features.

4 EXPERIMENTAL SETUP

4.1 Types of Features Used

We consider the following three types of input fea-
tures. All are computed from recordings sampled at
16 kHz. We use frames of a 25 ms length and a frame-
shift of 10 ms as is standard in speech processing.

MFCC - We utilize 13 static coefficients, with
delta and delta delta parameters. The input feature
vector consists of coefficients from 11 concatenated
frames, five preceding and five following the current
frame. It thus contains 11×39 = 429 features.

FBC - Filter Bank Coefficients (described for ex-
ample in (Deng et al., 2013)) are given as short-term
mel-scaled log energy given in 29 critical frequency
bands, supplemented by the total log energy of the
current frame. We add the delta and delta-delta pa-
rameters to the static coefficients. The input feature
vector consists of coefficients from 11 concatenated
frames, five preceding and five following the current
frame. It thus contains 11×90 = 990 features.

TRAP - TempoRAl Patterns (Grézl and Fousek,
2008) are defined as short-term mel-scaled log energy
given in 23 critical frequency bands, supplemented by
the total log energy of the current frame. Next, 300 ms
(31 frames) long energy trajectories are transformed
by Discrete Cosine Transform and the first 16 coeffi-
cients are retained. The input feature vector consists
of 24×31 = 384 elements.

Potentially, various combinations of the above in-
put features can be considered and submitted to the
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network for selection of the most representative bot-
tleneck features. This is however beyond the scope of
the current paper.

4.2 Training of Deep Neural Networks

The DNN-based acoustic models as well as networks
for generating the bottleneck features are trained
to provide scaled likelihood estimates for physical
states of the baseline GMM model using MFCC in-
put features. The Theano library (Bergstra et al.,
2010) is used for training, which has a fixed dura-
tion of 50 epochs and is carried out using settings
from (Grézl and Fousek, 2008): The activation func-
tion is sigmoid. Each hidden layer consists of 1024
units. The potential bottleneck layer has 128 units.
The mini-batch size is 1000 and the learning rate is
0.08.

4.3 GMM Acoustic Models and
CMLLR Adaptation

Regardless of the input features, speaker-independent
and context-dependent tied-state HMMs of Czech
phonemes and several types of non-speech events
(e.g., breathing, various hesitation sounds, cough, lip-
smack, etc.) are utilized.

In all these cases, the training parameter which
controls the tying of states is set to the same value
so that the resulting model contains 4k physical states
with up to 32 Gaussian components per state (i.e.,
120k components in total).

The models are adapted to given acoustic condi-
tions using an unsupervised procedure, which runs in
two recognition passes as follows:

In the first pass, we utilize the default model to
obtain phonetic transcript of the given recording. The
recording is then split into 5-minute-long segments.
For each such segment, CMLLR is employed to es-
timate a global linear transformation matrix using
the created phonetic transcript and the given acous-
tic model. Then, the second speech recognition pass
is performed, where the estimated transforms are ap-
plied on all feature vectors belonging to the corre-
sponding segments. We estimate the CMLLR trans-
form using the frames containing speech only; the
frames corresponding to noises are left out.

4.4 Recognition System Employed

The investigation is performed using our own ASR
system for Czech language. Its core is formed
by a one-pass speech decoder performing a time-
synchronous Viterbi search.

The lexicon of the system contains 550k entries
(word forms and multi-word collocations) that were
observed most frequently in a 10 GB large corpus
covering newspaper texts and broadcast program tran-
scripts. Some of the lexical entries have multiple pro-
nunciation variants. Their total number is 580k.

The employed Language Model (LM) is based on
N-grams. For practical reasons (mainly with respect
to the very large vocabulary size), the system uses
bigrams. In the training word corpus, 159 million
unique word-pairs (1062 million in total) belonging
to the items in the 550k lexicon were observed. How-
ever, 20 percent of all ”word-pairs” actually include
sequences containing three or more words, as the lex-
icon contains 4k multi-word collocations. The unseen
bigrams are backed-off by the Kneser-Ney smoothing
technique (Kneser and Ney, 1995).

5 EXPERIMENTAL EVALUATION

We present a comparison of WER achieved by the in-
vestigated acoustic models. The results are summa-
rized in Table 1. All discussed WER improvements
are meant as absolute. We use the notation ”Acoustic
Model: Features” (for example GMM:MFCC) to de-
scribe the considered configurations of our systems.
By ”aGMM” we denote the adapted GMM acoustic
models.

Along with the three distorted datasets described
in Section 2, we also present baseline accuracy
achieved on recordings without any nonlinear distor-
tion. The dataset, denoted as ”News”, consists of ra-
dio broadcasts of Czech news (2 hours and 59 minutes
of speech, 25991 words). The recordings contain read
utterances as well as the spontaneous speech of sev-
eral speakers. The recordings are sampled at 16 kHz.

5.1 Comparison of BNC and MFCC
Features within the GMM System

The baseline GMM:MFCC system exhibits perfor-
mance comparable to all GMM:BNC systems on the
undistorted dataset ”News”. On distorted data sets
”MP3” and ”Denoised”, almost all of the GMM:BNC
systems achieve significantly lower WER (by 9.8-
17.5% or 16.2-21.3%, respectively). We explain it
partly by the fact that the neural network is able to use
the temporal context of the input features to comple-
ment the information that is missing within short-term
MFCCs computed from distorted utterances.

This holds for neural network used for feature ex-
traction as well as for DNN acoustic model. It is no-
ticeable especially for the ”MP3” dataset, which we
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Table 1: Word Error Rates (WER) achieved on the considered datasets. Bold numbers indicate the best results among
competing systems. Abbreviation ”aGMM” denotes the adapted GMM acoustic models.

Model Features News Mp3 Denoised Lectures
DNN MFCC 10.08 19.45 15.29 47.85
DNN TRAP 9.72 22.84 13.69 46.65
DNN FBC 9.38 26.10 12.94 44.80
DNN FBC (No context) 10.35 43.00 15.73 50.56

GMM (Baseline) MFCC 13.48 43.42 45.22 56.11
GMM BNC(MFCC) 16.20 25.89 29.05 58.88
GMM BNC(FBC) 13.99 33.67 23.90 54.86
GMM BNC(TRAP) 14.13 26.45 24.19 55.20
GMM BNC(FBC)+MFCC 12.61 28.50 19.85 52.59
GMM BNC(TRAP)+MFCC 12.87 23.79 21.21 53.93
aGMM MFCC 11.32 21.44 37.94 48.22
aGMM BNC(MFCC) 14.95 21.32 28.35 53.87
aGMM BNC(FBC) 13.09 22.49 23.10 48.00
aGMM BNC(TRAP) 13.08 20.41 23.35 48.53
aGMM BNC(FBC)+MFCC 11.78 19.05 18.73 45.65
aGMM BNC(TRAP)+MFCC 11.90 18.61 20.10 47.04

demonstrate in Table 1 in row ”DNN:FBC(no con-
text)”. Here, the performance drops significantly,
when the input features consist of only the current
frame, not the 11 consecutive frames.

The GMM:BNC systems achieve only slightly
better WER on the ”Lecture” dataset (by 1.3% at
most), which suggests that neural networks are not in-
herently robust with respect to this type of distortion,
as discussed in more detail in Section 5.3.

The concatenation of MFCC and BNC features
is beneficial for the GMM:BNC systems (as was re-
ported for undistorted data in (Grézl and Fousek,
2008)). It reduces the WER values by 1.3-5.2% com-
pared to non-concatenated BNCs, depending on the
dataset and input features.

The CMLLR enhances the performance of
GMM:BNC systems on all distorted datasets. The
adaptation leads to the highest WER reduction for
compressed utterances (11.2%) and the ”Lecture”
dataset (6.9%).

5.2 Comparison of DNN and
aGMM:BNC Acoustic Models

The aGMM:BNC systems, based on either TRAP or
FBC, outperform the DNN systems on the ”MP3”
dataset and yield comparable results on the ”Lec-
tures” dataset. For the other datasets, the DNN sys-
tems achieve lower values of WER.

The best input features, for both DNN acoustic
models and bottleneck feature extraction, consists of
the FBC. This observation confirms that the less pro-

cessed short-term features form a more suitable input
for DNN models than conventional MFCC parame-
ters, as suggested, for example, in (Deng et al., 2013).

The computational demands of the aGMM:BNC
systems are high compared to DNN acoustic models.
Two models need to be trained (neural network and
the subsequent GMM acoustic model) and two recog-
nition passes are required to adapt the bottleneck fea-
tures.

5.3 Robustness of Investigated Systems
with Respect to Considered
Distortions

For the ”MP3” dataset, the performance of the best
DNN:FBC system deteriorated and was surpassed by
both other DNN systems and aGMM:BNC. We argue
(based on a complementary experiment) that this is
caused by a sensitivity of the DNN:FBC system to
the normalization of the input features. In all of our
experiments, we perform a robust normalization by
subtraction of the mean value estimated on the train-
ing dataset as a whole. Due to the compression of
the test set, the true mean value of the test set signif-
icantly differs from the mean estimated in this man-
ner, which deteriorates the results of DNN:FBC. On
other datasets, this deteriorating effect is not signifi-
cant. The DNN:MFCC is more robust in this context,
because the conventional computation of MFCCs in-
cludes Cepstral Mean Subtraction (CMS), i.e. a mean
normalization within each training and test utterance.
The performance of GMM:BNC systems seems to be
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uninfluenced by the effects of the normalization.
The DNN models appear insensitive to the spec-

tral subtraction artifacts contained in the ”Denoised”
dataset. The performance of the DNN system is near
to the level achieved on undistorted data. The best
GMM:BNC system is outperformed by 5.7% due to
the low efficiency of the CMLLR adaptation. The rea-
son is that the test data consists of very short sentences
(3−10 s long), which provide an amount of data too
small for estimating CMLLR.

The nonlinear analog amplification (and potential
clipping) within the ”Lecture” dataset is very harm-
ful to both types of models and all feature configura-
tions. Additional robust recognition techniques need
to be utilized for this type of distorted data (a partial
solution can be offered, e.g., by clipping removal pro-
posed in (Eaton and Naylor, 2013)).

6 CONCLUSIONS

We investigated the robustness of bottleneck-based
systems endowed with feature adaptation with re-
spect to nonlinear distortions in speech. We showed
that the bottleneck features are more robust than the
conventional MFCCs. On most considered datasets,
the bottleneck-based GMM models, adapted to given
distortions, achieve performance comparable to the
DNN models. However, the BNC-based systems are
much more demanding computationally, which hin-
ders their utilization.

The most robust acoustic model in our experi-
ments was the DNN model using FBC input features.
This is in accord with the results presented for clean
speech in literature; low-level frequency features rep-
resent an input more suitable for DNN systems than
conventional MFCCs.
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