
Design and Implementation of the CloudMdsQL Multistore System 

Boyan Kolev1, Carlyna Bondiombouy1, Oleksandra Levchenko1, Patrick Valduriez1, 
Ricardo Jimenez2, Raquel Pau3 and Jose Pereira4 

1Inria and LIRMM, University of Montpellier, Montpellier, France 
2LeanXcale and Universidad Politécnica de Madrid, Madrid, Spain 

3Sparsity Technologies, Barcelona, Spain 
4INESC TEC and University of Minho, Braga, Portugal 

Keywords: Cloud, Multistore System, Heterogeneous Data Stores, SQL and NoSQL Integration. 

Abstract: The blooming of different cloud data management infrastructures has turned multistore systems to a major 
topic in the nowadays cloud landscape. In this paper, we give an overview of the design of a Cloud 
Multidatastore Query Language (CloudMdsQL), and the implementation of its query engine. CloudMdsQL 
is a functional SQL-like language, capable of querying multiple heterogeneous data stores (relational, 
NoSQL, HDFS) within a single query that can contain embedded invocations to each data store’s native 
query interface. The major innovation is that a CloudMdsQL query can exploit the full power of local data 
stores, by simply allowing some local data store native queries (e.g. a breadth-first search query against a 
graph database) to be called as functions, and at the same time be optimized. 

1 INTRODUCTION 

The blooming of different cloud data management 
infrastructures, specialized for different kinds of data 
and tasks, has led to a wide diversification of DBMS 
interfaces and the loss of a common programming 
paradigm. This makes it very hard for a user to 
integrate and analyze her data sitting in different 
data stores, e.g. RDBMS, NoSQL, and HDFS. For 
example, a media planning application, which needs 
to find top influencers inside social media 
communities for a list of topics, has to search for 
communities by keywords from a key-value store, 
then analyze the impact of influencers for each 
community using complex graph database traversals, 
and finally retrieve the influencers’ profiles from an 
RDBMS and an excerpt of their blog posts from a 
document database. The CoherentPaaS project 
(CoherentPaaS, 2013) addresses this problem, by 
providing a rich platform integrating different data 
management systems specialized for particular tasks, 
data and workloads. The platform is designed to 
provide a common programming model and 
language to query multiple data stores, which we 
herewith present. 

The problem of accessing heterogeneous data 
sources has long been studied in the context of 
multidatabase and data integration systems (Özsu 

and Valduriez, 2011). More recently, with the 
advent of cloud databases and big data processing 
frameworks, the solution has evolved towards 
multistore systems that provide integrated access to 
a number of RDBMS, NoSQL and HDFS data stores 
through a common query engine. Data mediation 
SQL engines, such as Apache Drill, Spark SQL 
(Armbrust et al., 2015), and SQL++ provide 
common interfaces that allow different data sources 
to be plugged in (through the use of wrappers) and 
queried using SQL. The polystore BigDAWG 
(Duggan et al., 2015) goes one step further by 
enabling queries across “islands of information”, 
where each island corresponds to a specific data 
model and its language and provides transparent 
access to a subset of the underlying data stores 
through the island’s data model. Another family of 
multistore systems (DeWitt et al., 2013, LeFevre et 
al., 2014) has been introduced with the goal of 
tightly integrating big data analytics frameworks 
(e.g. Hadoop MapReduce) with traditional RDBMS, 
by sacrificing the extensibility with other data 
sources. However, since none of these approaches 
supports the ad-hoc usage of native queries, they do 
not preserve the full expressivity of an arbitrary data 
store’s query language. But what we want to give 
the user is the ability to express powerful ad-hoc 
queries that exploit the full power of the different 

352
Kolev, B., Bondiombouy, C., Levchenko, O., Valduriez, P., Jimenez-Peris, R., Pau, R. and Pereira, J.
Design and Implementation of the CloudMdsQL Multistore System.
In Proceedings of the 6th International Conference on Cloud Computing and Services Science (CLOSER 2016) - Volume 1, pages 352-359
ISBN: 978-989-758-182-3
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



data store languages, e.g. directly express a path 
traversal in a graph database. Therefore, the current 
multistore solutions do not directly apply to solve 
our problem. 

In this paper, we give an overview of the design 
of a Cloud multidatastore query language 
(CloudMdsQL) and the implementation of its query 
engine. CloudMdsQL is a functional SQL-like 
language, capable of querying multiple 
heterogeneous databases (e.g. relational, NoSQL and 
HDFS) within a single query containing nested 
subqueries (Kolev et al., 2015). Thus, the major 
innovation is that a CloudMdsQL query can exploit 
the full power of local data stores, by simply 
allowing some local data store native queries (e.g. a 
breadth-first search query against a graph database) 
to be called as functions, and at the same time be 
optimized based on a simple cost model, e.g. by 
pushing down select predicates, using bind join, 
performing join ordering, or planning intermediate 
data shipping. CloudMdsQL has been extended 
(Bondiombouy et al., 2015) to address distributed 
processing frameworks such as Apache Spark by 
enabling the ad-hoc usage of user defined 
map/filter/reduce operators as subqueries, yet 
allowing for pushing down predicates and bind join 
conditions. 

2 LANGUAGE OVERVIEW 

The CloudMdsQL language is SQL-based with the 
extended capabilities for embedding subqueries 
expressed in terms of each data store’s native query 
interface (Kolev et al., 2015). The common data 
model respectively is table-based, with support of 
rich datatypes that can capture a wide range of the 
underlying data stores’ datatypes, such as arrays and 
JSON objects, in order to handle non-flat and nested 
data, with basic operators over such composite 
datatypes. 

Queries that integrate data from several data 
stores usually consist of subqueries and an 
integration SELECT statement. A subquery is defined 
as a named table expression, i.e. an expression that 
returns a table and has a name and signature. The 
signature defines the names and types of the 
columns of the returned relation. Thus, each query, 
although agnostic to the underlying data stores’ 
schemas, is executed in the context of an ad-hoc 
schema, formed by all named table expressions 
within the query. A named table expression can be 
defined by means of either an SQL SELECT 
statement (that the query compiler is able to analyze 

and possibly rewrite) or a native expression (that the 
query engine considers as a black box and delegates 
its processing directly to the data store). For 
example, the following simple CloudMdsQL query 
contains two subqueries, defined by the named table 
expressions T1 and T2, and addressed respectively 
against the data stores rdb (an SQL database) and 
mongo (a MongoDB database): 
T1(x int, y int)@rdb = 
       (SELECT x, y FROM A) 
T2(x int, z array)@mongo = {* 
  db.B.find({$lt: {x, 10}}, {x:1, z:1}) 
*} 
SELECT T1.x, T2.z 
FROM T1, T2 
WHERE T1.x = T2.x AND T1.y <= 3 

The purpose of this query is to perform relational 
algebra operations (expressed in the main SELECT 
statement) on two datasets retrieved from a 
relational and a document database. The two 
subqueries are sent independently for execution 
against their data stores in order the retrieved 
relations to be joined by the common query engine. 
The SQL table expression T1 is defined by an SQL 
subquery, while T2 is a native expression (identified 
by the special bracket symbols {* *}) expressed as 
a native MongoDB call. The subquery of expression 
T1 is subject to rewriting by pushing into it the filter 
condition y <= 3, specified in the main SELECT 
statement, thus reducing the amount of the retrieved 
data by increasing the subquery selectivity. Note that 
subqueries to some NoSQL data stores can also be 
expressed as SQL statements; in such cases, the 
wrapper must provide the translation from relational 
operators to native calls. 

CloudMdsQL allows named table expressions to 
be defined as Python functions, which is useful for 
querying data stores that have only API-based query 
interface. A Python expression yields tuples to its 
result set much like a user-defined table function. It 
can also use as input the result of other subqueries. 
Furthermore, named table expressions can be 
parameterized by declaring parameters in the 
expression’s signature.  For example, the following 
Python expression uses the intermediate data 
retrieved by T2 to return another table containing the 
number of occurrences of the parameter v in the 
array T2.z. 

 
T3(x int, c int 
     WITHPARAMS v string)@python = 
{* 
  for (x, z) in CloudMdsQL.T2: 
    yield( x, z.count(v) ) 
*} 

Design and Implementation of the CloudMdsQL Multistore System

353



A (parameterized) named table can then be 
instantiated by passing actual parameter values from 
another native/Python expression, as a table function 
in a FROM clause, or even as a scalar function (e.g. in 
the SELECT list). Calling a named table as a scalar 
function is useful e.g. to express direct lookups into 
a key-value data store. 

Note that parametrization and nesting is also 
available in SQL and native named tables. For 
example, we validated the query engine with a use 
case that involves the Sparksee graph database and 
we use its Python API to express subqueries that 
benefit from all of the features described above 
(Kolev et al., 2015). In fact, our initial query engine 
implementation enables Python integration; however 
support for other languages (e.g. JavaScript) for 
user-defined operations can be easily added. 

In order to also address distributed processing 
frameworks (such as Apache Spark) as data stores, 
we introduce a formal notation that enables the ad-
hoc usage of user-defined Map/Filter/Reduce (MFR) 
operators as subqueries in CloudMdsQL to request 
data processing in an underlying big data processing 
framework (DPF) (Bondiombouy et al., 2015). An 
MFR statement represents a sequence of MFR 
operations on datasets. In terms of Apache Spark, a 
dataset corresponds to an RDD (Resilient 
Distributed Dataset – the basic programming unit of 
Spark). Each of the three major MFR operations 
(MAP, FILTER and REDUCE) takes as input a dataset 

and produces another dataset by performing the 
corresponding transformation. Therefore, for each 
operation there should be specified the 
transformation that needs to be applied on tuples 
from the input dataset to produce the output tuples. 
Normally, a transformation is expressed with an 
SQL-like expression that involves special variables; 
however, more specific transformations may be 
defined through the use of lambda functions. Let us 
consider the following simple example inspired by 
the popular MapReduce tutorial application “word 
count”. We assume that the input dataset for the 
MFR statement is a text file containing a list of 
words. To count the words that contain the string 
‘cloud’, we write the following composition of MFR 
operations: 
T4(word string, count int)@hdfs = {* 
   SCAN(TEXT,'words.txt') 
  .MAP(KEY,1) 
  .FILTER( KEY LIKE '%cloud%' ) 
  .REDUCE(SUM) 
  .PROJECT(KEY,VALUE) 
*} 

This MFR subquery is also a subject to rewriting 
according to rules based on the algebraic properties 
of the MFR operators. In the example above, the 
MAP and FILTER operations will be swapped, thus 
allowing the filter to be applied earlier. The same 
rules apply for any pushed down predicates. 

 
Figure 1: Architecture of the query engine. 

DataDiversityConvergence 2016 - Workshop on Towards Convergence of Big Data, SQL, NoSQL, NewSQL, Data streaming/CEP, OLTP
and OLAP

354



3 SYSTEM OVERVIEW 

In this section, we introduce the generic architecture 
of the query engine, with its main components. The 
design of the query engine takes advantage of the 
fact that it operates in a cloud platform, with full 
control over where the system components can be 
installed. The architecture of the query engine is 
fully distributed (see Figure 1), so that query engine 
nodes can directly communicate with each other, by 
exchanging code (query plans) and data. 

Each query engine node consists of two parts – 
master and worker – and is collocated at each data 
store node in a computer cluster. Each master or 
worker has a communication processor that supports 
send and receive operators to exchange data and 
commands between nodes. To ease readability in 
Figure 1, we separate master and worker, which 
makes it clear that for a given query, there will be 
one master in charge of query planning and one or 
more workers in charge of query execution. To 
illustrate query processing with a simple example, 
let us consider a query Q on two data stores in a 
cluster with two nodes (e.g. the query introduced in 
Section 2). Then a possible scenario for processing 
Q, where the node id is written in subscript, is the 
following: 
• At client, send Q to Master1. 
• At Master1, produce a query plan P (see Figure 

2) for Q and send it to Worker2, which will 
control the execution of P. 

• At Worker2, send part of P, say P1, to Worker1, 
and start executing the other part of P, say P2, by 
querying DataStore2. 

• At Worker1, execute P1 by querying DataStore1, 
and send result to Worker2. 

• At Worker2, complete the execution of P2 (by 
integrating local data with data received from 
Worker1), and send the final result to the client. 

 
Figure 2: A simple query plan. 

This simple example shows that query execution 

can be fully distributed among the two nodes and the 
result sent from where it is produced directly to the 
client, without the need for an intermediate node. 

A master node takes as input a query and 
produces a query plan, which it sends to one chosen 
query engine node for execution. The query planner 
performs query analysis and optimization, and 
produces a query plan serialized in a JSON-based 
intermediate format that can be easily transferred 
across query engine nodes. The plan is abstracted as 
a tree of operations, each of which carries the 
identifier of the query engine node that is in charge 
of performing it. This allows us to reuse query 
decomposition and optimization techniques from 
distributed query processing (Özsu and Valduriez, 
2011), which we adapt to our fully distributed 
architecture. In particular, we strive to: 
• Minimize local execution time in the data stores, 

by pushing down select operations in the data 
store subqueries and exploiting bind join by 
subquery rewriting; 

• Minimize communication cost and network 
traffic by reducing data transfers between 
workers. 
To compare alternative rewritings of a query, the 

query planner uses a simple catalog, which is 
replicated at all nodes in primary copy mode. The 
catalog provides basic information about data store 
collections such as cardinalities, attribute 
selectivities and indexes, and a simple cost model. 
Such information can be given with the help of the 
data store administrators or collected by wrappers in 
local catalogs which are then merged into the global 
catalog. The query language provides a possibility 
for the user to define cost and selectivity functions 
whenever they cannot be derived from the catalog, 
mostly in the case of using native subqueries. 

The query engine is designed to verify the 
executability of rewritten subqueries to data stores, 
e.g. due to selection pushdowns or usage of bind 
join. For this reason, each wrapper may provide the 
query planner with the capabilities of its data store to 
perform operations supported by the common data 
model. 

Workers collaborate to execute a query plan, 
produced by a master, against the underlying data 
stores involved in the query. As illustrated above, 
there is a particular worker, selected by the query 
planner, which becomes in charge of controlling the 
execution of the query plan. This worker can 
subcontract parts of the query plan to other workers 
and integrate the intermediate results to produce the 
final result. 

Design and Implementation of the CloudMdsQL Multistore System

355



Each worker node acts as a lightweight runtime 
database processor atop a data store and is composed 
of three generic modules (i.e. same code library) - 
query execution controller, operator engine, and 
table storage - and one wrapper module that is 
specific to a data store. These modules provide the 
following capabilities: 
• Query execution controller: initiates and controls 

the execution of a query plan (received from a 
master or worker) by interacting with the operator 
engine for local execution or with one or more 
workers (through communication processors). 

• Operator engine: executes the query plan 
operators on data retrieved from the wrapper, 
from another worker, or from the table storage. 
The operator engine may write an intermediate 
relation to the table storage, e.g. when it needs to 
be consumed by more than one operator or when 
it participates in a blocking operation. 

• Table Storage: provides efficient, uniform storage 
(main memory and disk) for intermediate and 
result data in the form of tables. 

• Wrapper: interacts with its data store through its 
native API to retrieve data, transforms the result 
in the form of table, and writes the result in table 
storage or delivers it to the operator engine. 
In addition to the generic modules, which are 

valid for all the workers, the components of a 
worker collocated with a data processing framework 
as data store, have some specifics. First, the worker 
implements a parallel operator engine, thus 
providing a tighter coupling between the query 
processor and the underlying DPF and hence taking 
more advantage of massive parallelism when 
processing HDFS data. Second, the wrapper of the 
distributed data processing framework has a slightly 
different behavior as it processes MFR expressions 
wrapped in native subqueries. It parses and 
interprets a subquery written in MFR notation; then 
uses an MFR planner to find optimization 
opportunities; and finally translates the resulting 
sequence of MFR operations to a sequence of DPF’s 
API methods to be executed. The MFR planner 
decides where to position pushed down filter 
operations to apply them as early as possible, using 
rules for reordering MFR operators that take into 
account their algebraic properties. 

4 IMPLEMENTATION 

For the current implementation of the query engine, 
we modified the open source Derby database to 
accept CloudMdsQL queries and transform the 

corresponding execution plan into Derby SQL 
operations. We developed the query planner and the 
query execution controller and linked them to the 
Derby core, which we use as the operator engine. In 
this section, we focus on the implementation of the 
components, which each query engine node consists 
of (Figure 3). 

 
Figure 3: Query engine implementation components. 

4.1 Query Planner 

The query planner is implemented in C++; it 
compiles a CloudMdsQL query and generates a 
query execution plan (QEP) to be processed by the 
query execution engine. The result of the query 
planning is the JSON serialization of the generated 
QEP, which is represented as a directed acyclic 
graph, where leaf nodes are references to named 
tables and all other nodes represent relational 
algebra operations. The query planning process goes 
through several phases, which we briefly focus on 
below. 

The query compiler uses the Boost.Spirit 
framework for parsing context-free grammars, 
following the recursive descent approach. 
Boost.Spirit allows grammar rules to be defined by 
means of C++ template metaprogramming 
techniques. Each grammar rule has an associated 
semantic action, which is a C++ function that should 
return an object, corresponding to the grammar rule. 

DataDiversityConvergence 2016 - Workshop on Towards Convergence of Big Data, SQL, NoSQL, NewSQL, Data streaming/CEP, OLTP
and OLAP

356



The compiler first performs lexical and syntax 
analyses of a CloudMdsQL query to decompose it 
into an abstract syntax tree (AST) that corresponds 
to the syntax clauses of the query.  

At this stage the compiler identifies a forest of 
sub-trees within the AST, each of which is 
associated to a certain data store (labelled by a 
named table) and meant to be delivered to the 
corresponding wrapper to translate it to a native 
query and execute it against the data store. The rest 
of the AST is the part that will be handled by the 
common query engine (the common query AST). 

Furthermore, the compiler performs a semantic 
analysis of the AST by first resolving the names of 
tables and columns according to the ad-hoc schema 
of the query following named table signatures. 
Datatype analysis takes place to check for datatype 
compatibilities between operands in expressions and 
to infer the return datatype of each operation in the 
expression tree, which may be further verified 
against a named table signature, thus identifying 
implicit typecasts or type mismatches. WHERE 
clause analysis is performed to discover implicit 
equi-join conditions and opportunities for moving 
predicates earlier in the common plan. The cross-
reference analysis aims at building a graph of 
dependencies across named tables. Thus the 
compiler identifies named tables that participate in 
more than one operation, which helps the execution 
controller to plan for storing such intermediate data 
in the table storage. In addition, the optimizer avoids 
pushing down operations in the sub-trees of such 
named tables. To make sure that the dependency 
graph has no cycles, hence the generated QEP will 
be a directed acyclic graph, the compiler implements 
a depth-first search algorithm to detect and reject 
any query that has circular references. 

Error handling is performed at the compilation 
phase. Errors are reported as soon as they are 
identified (terminating the compilation execution), 
together with the type of the error and the context, 
within which they were found (e.g. unknown table 
or column, ambiguous column references, 
incompatible types in expression, etc.). 

The query optimizer uses the cost information in 
the global catalog and implements a simple 
exhaustive search strategy to explore all possible 
rewritings of the initial query, by pushing down 
select operations, expressing bind joins, join 
ordering, and intermediate data shipping. 
Furthermore, it uses the capability manager to 
validate each rewritten subquery against its data 
store capability specification, which is exported by 
the wrapper into the global catalog in the form of a 

JSON schema. Thus, the capability manager simply 
serializes each sub-tree of the AST into a JSON 
object and attempts to validate it against the 
corresponding JSON schema. This allows a 
rewritten sub-plan to a data store to be validated by 
the query planner before it is actually delivered to 
the wrapper for execution; and in case the validation 
fails, the rewriting action (e.g. selection pushdown) 
is reverted. 

The QEP builder is responsible for the 
generation of the final QEP, ready to be handled by 
the query execution engine, which also includes: 
resolving attribute names to column ordinal 
positions considering the named table expression 
signatures, removing columns from intermediate 
projections in case they are no longer used by the 
operations above (e.g. as a result of operation 
pushdown), and serializing the QEP to JSON. 

4.2 Operator Engine 

The main reasons to choose Derby database to 
implement the operator engine are because Derby: 
• Allows extending the set of SQL operations by 

means of CREATE FUNCTION statements. This 
type of statements creates an alias, which an 
optional set of parameters, to invoke a specific 
Java component as part of an execution plan. 

• Has all the relational algebra operations fully 
implemented and tested. 

• Has a complete implementation of the JDBC API.  
• Allows extending the set of SQL types by means 

of CREATE TYPE statements. It allows working 
with dictionaries and arrays. 
Having a way to extend the available Derby SQL 

operations allows designing the resolution of the 
named table expressions. In fact, the query engine 
requires three different components to resolve the 
result sets retrieved from the named table 
expressions: 
• WrapperFunction: To send the partial 

execution plan to a specific data store using the 
wrappers interfaces and retrieve the results.  

• PythonFunction: To process intermediate 
result sets using Python code. 

• NestedFunction: To process nested 
CloudMdsQL queries. 
Named table expressions admit parameters using 

the keyword WITHPARAMS. However, the current 
implementation of the CREATE FUNCTION statement 
is designed to bind each parameter declared in the 
statement with a specific Java method parameter. In 
fact, it is not designed to work with Java methods 

Design and Implementation of the CloudMdsQL Multistore System

357



that can be called with a variable number of 
parameters, which is a feature introduced since Java 
6. To solve this gap, we have modified the internal 
validation of the CREATE FUNCTION statement and 
how to invoke Java methods with a variable number 
of parameters during the evaluation of the execution 
plan. For example, imagine that the user declares a 
named table expression T1 that returns 2 columns (x 
and y) and has a parameter called a as follows: 
T1(x int, y string  
     WITHPARAMS a string)@db1 = 
( SELECT x, y FROM tbl WHERE id = $a )  

The query execution controller will produce 
dynamically the following CREATE FUNCTION 
statement: 
CREATE FUNCTION T1 ( a VARCHAR( 50 ) ) 
RETURNS TABLE ( x INT, y VARCHAR( 50 )) 
LANGUAGE JAVA 
PARAMETER STYLE DERBY_JDBC_RESULT_SET  
READS SQL DATA 
EXTERNAL NAME 'WrapperFunction.execute' 

It is linked to the following Java component, 
which will use the wrapper interfaces to establish a 
communication with the data store db1: 
public class WrapperFunction { 
     public static ResultSet execute( 
            String namedExprName,  
            Long queryId,  
            Object... args 
            /*dynamic args*/ 
     ) throws Exception { 
    //Code to invoke the wrappers 
     } 
} 

Therefore, after accepting the execution plan in 
JSON format, the query execution controller parses 
it, identifies the sub-plans within the plan that are 
associated to a named table expression and 
dynamically executes as many CREATE FUNCTION 
statements as named table expressions exist with a 
unique name. As a second step, the execution engine 
evaluates which named expressions are queried 
more than once and must be cached into the 
temporary table storage, which will be always 
queried and updated from the specified Java 
functions to reduce the query execution time. 
Finally, the last step consists of translating all 
operation nodes that appear in the execution plan 
into a Derby specific SQL execution plan. Once the 
SQL execution plan is valid, the Derby core (which 
acts as the operator engine) produces a dynamic byte 
code that resolves the query that can be executed as 
many times as the application needs. 

Derby implements the JDBC interface and an 
application can send queries though the Statement 
class. So, when the user has processed the query 
result and closed the statement, the query execution 
controller drops the previously created functions and 
cleans the temporary table storage. 

To process data in distributed data stores we 
used a specific implementation of the Operator 
Engine and the MFR wrapper, adapting the parallel 
SQL engine Spark SQL (Armbrust et al., 2015) to 
serve as the operator engine, thus taking full 
advantage of massive parallelism when joining 
HDFS with relational data. To do this, each 
execution (sub-)plan is translated to a flow of 
invocations of Spark SQL’s DataFrame API 
methods. 

4.3 Wrappers 

The wrappers are Java classes implementing a 
common interface used by the operator engine to 
interact with them. A wrapper may store locally 
catalog information and capabilities, which it 
provides to the query planner periodically or on 
demand. Each wrapper also implements a finalizer, 
which translates a CloudMdsQL sub-plan to a native 
data store query. 

We have validated the query engine using four 
data stores – Sparksee (a graph database with Python 
API), Derby (a relational database accessed through 
its Java Database Connectivity (JDBC) driver), 
MongoDB (a document database with a Java API), 
and unstructured data stored in an HDFS cluster and 
processed using Apache Spark as big data 
processing framework (DPF). To be able to embed 
subqueries against these data stores, we developed 
wrappers for each of them as follows. 

The wrapper for Sparksee accepts as raw text the 
Python code that needs to be executed against the 
graph database using its Python client API in the 
environment of a Python interpreter embedded 
within the wrapper. 

The wrapper for Derby executes SQL statements 
against the relational database using its JDBC driver. 
It exports an explain() function that the query 
planner invokes to get an estimation of the cost of a 
subquery. It can also be queried by the query planner 
about the existence of certain indexes on table 
columns and their types. The query planner may 
then cache this metadata information in the catalog. 

The wrapper for MongoDB is implemented as a 
wrapper to an SQL compatible data store, i.e. it 
performs native MongoDB query invocations 
according to their SQL equivalent. The wrapper 

DataDiversityConvergence 2016 - Workshop on Towards Convergence of Big Data, SQL, NoSQL, NewSQL, Data streaming/CEP, OLTP
and OLAP

358



maintains the catalog information by running 
probing queries such as db.collection.count() 
to keep actual database statistics, e.g. cardinalities of 
document collections. Similarly to the Derby 
wrapper, it also provides information about available 
indexes on document attributes. 

The MFR wrapper implements an MFR planner 
to optimize MFR expressions in accordance with 
any pushed down selections. The wrapper uses 
Spark’s Python API, and thus translates each 
transformation to Python lambda functions. Besides, 
it also accepts raw Python lambda functions as 
transformation definitions. The wrapper executes the 
dynamically built Python code using the reflection 
capabilities of Python by means of the eval() 
function. Then, it transforms the resulting RDD into 
a Spark DataFrame. 

5 CONCLUSIONS 

In this paper, we presented CloudMdsQL, a common 
language for querying and integrating data from 
heterogeneous cloud data stores and the 
implementation of its query engine. By combining 
the expressivity of functional languages and the 
manipulability of declarative relational languages, it 
stands in “the golden mean” between the two major 
categories of query languages with respect to the 
problem of unifying a diverse set of data 
management systems. CloudMdsQL satisfies all the 
legacy requirements for a common query language, 
namely: support of nested queries across data stores, 
data-metadata transformations, schema 
independence, and optimizability. In addition, it 
allows embedded invocations to each data store’s 
native query interface, in order to exploit the full 
power of data stores’ query mechanism. 

The architecture of CloudMdsQL query engine is 
fully distributed, so that query engine nodes can 
directly communicate with each other, by 
exchanging code (query plans) and data. Thus, the 
query engine does not follow the traditional 
mediator/wrapper architectural model where 
mediator and wrappers are centralized. This 
distributed architecture yields important 
optimization opportunities, e.g. minimizing data 
transfers by moving the smallest intermediate data 
for subsequent processing by one particular node. 
The wrappers are designed to be transparent, making 
the heterogeneity explicit in the query in favor of 
preserving the expressivity of local data stores’ 
query languages. CloudMdsQL sticks to the 
relational data model, because of its intuitive data 

representation, wide acceptance and ability to 
integrate datasets by applying joins, unions and 
other relational algebra operations. 

The CloudMdsQL query engine has been 
validated (Kolev et al., 2015; Bondiombouy et al., 
2015) with four different database management 
systems – Sparksee (a graph database with Python 
API), Derby (a relational database accessed through 
its JDBC driver), MongoDB (a document database 
with a Java API) and Apache Spark (a parallel 
framework processing distributed data stored in 
HDFS, accessed by Apache Spark API). The 
performed experiments have evaluated the impact of 
the used optimization techniques on the overall 
query execution performance (Kolev et al., 2015; 
Bondiombouy et al., 2015). 

REFERENCES 

Armbrust, M., Xin, R., Lian, C., Huai, Y., Liu, D., 
Bradley, J., Meng, X., Kaftan, T., Franklin, M., 
Ghodsi, A., Zaharia, M. 2015. Spark SQL: Relational 
Data Processing in Spark. In ACM SIGMOD (2015), 
1383-1394. 

Bondiombouy, C., Kolev, B., Levchenko, O., Valduriez, 
P. 2015. Integrating Big Data and Relational Data 
with a Functional SQL-like Query Language. Int. 
Conf. on Databases and Expert Systems Applications 
(DEXA) (2015), 170-185. 

CoherentPaaS, http://coherentpaas.eu (2013). 
DeWitt, D., Halverson, A., Nehme, R., Shankar, S., 

Aguilar-Saborit J., Avanes, A., Flasza, M., Gramling, 
J. 2013. Split Query Processing in Polybase. In ACM 
SIGMOD (2013), 1255-1266. 

Duggan, J., Elmore, A. J., Stonebraker, M., Balazinska, 
M., Howe, B., Kepner, J., Madden, S., Maier, D., 
Mattson, T., Zdonik, S. 2015. The BigDAWG 
Polystore System. SIGMOD Rec. 44, 2 (August 2015), 
11-16. 

Kolev, B., Valduriez, P., Bondiombouy, C., Jiménez-Peris, 
R., Pau, R., Pereira, J. 2015. CloudMdsQL: Querying 
Heterogeneous Cloud Data Stores with a Common 
Language. Distributed and Parallel Databases, pp 1-
41, http://hal-lirmm.ccsd.cnrs.fr/lirmm-01184016. 

LeFevre, J., Sankaranarayanan, J., Hacıgümüs, H., 
Tatemura, J., Polyzotis, N., Carey, M. 2014. MISO: 
Souping Up Big Data Query Processing with a 
Multistore System. In ACM SIGMOD (2014), 1591-
1602. 

Özsu, T., Valduriez, P. 2011. Principles of Distributed 
Database Systems – Third Edition. Springer, 850 
pages. 

Design and Implementation of the CloudMdsQL Multistore System

359


