
Individual Mobility Patterns in Urban Environment

Pierpaolo Mastroianni1, Bernardo Monechi2, Vito D. P. Servedio3,4, Carlo Liberto1, Gaetano Valenti1

and Vittorio Loreto3,2
1ENEA, Casaccia Research Center, Via Anguillarese 301, 00123, Rome, Italy

2Institute for Scientific Interchange Foundation, Via Alassio 11/c, 10126, Turin, Italy
3Sapienza University of Rome, Physics Dept., P.le Aldo Moro 2, 00185 Roma, Italy
4Institute for Complex Systems (ISC-CNR), Via dei Taurini 19, 00185 Roma, Italy

Keywords: Urban Mobility, Daily Patterns, Optimization, Circadian Rhythm.

Abstract: The understanding and the characterization of individual mobility patterns in urban environments is important
in order to improve liveability and planning of big cities. In relatively recent times, the availability of data
regarding human movements have fostered the emergence of a new branch of social studies, with the aim
to unveil and study those patterns thanks to data collected by means of geolocalization technologies. In this
paper we analyze a large dataset of GPS tracks of cars collected in Rome (Italy). Dividing the drivers in
classes according to the number of trips they perform in a day, we show that the sequence of the traveled
space connecting two consecutive stops shows a precise behavior so that the shortest trips are performed at the
middle of the sequence, when the longest occur at the beginning and at the end when drivers head back home.
We show that this behavior is consistent with the idea of an optimization process in which the total travel time
is minimized, under the effect of spatial constraints so that the starting points is on the border of the space in
which the dynamics takes place.

1 INTRODUCTION

The spreading of ICT (Information and Communica-
tion Technology) devices across the population has
led to the unprecedented possibility to monitor the
daily activity of citizen’s in almost real time (Mayer-
Schonberger and Cukier, 2013). Despite privacy is-
sues (Tene and Polonetsky, 2012; Rubinstein, 2013),
these new technology are of utmost importance in so-
cial science studies, since they are opening the pos-
sibility for a better understanding of large-scale col-
lective phenomena (Gonzalez-Bailon, 2013; Lazer
et al., 2009; Eluru et al., 2009). Among the possi-
bility offered by the large availability of human activ-
ity data, the study of how people move and interact
within a urban environment could give an important
contribute to the future social challenges in terms of
reducing pollution and increase the livability of big
cities (United Nations Secretariat, 2014). Moreover,
the study of other phenomena like epidemic spread-
ing(Eubank et al., 2004; Colizza et al., 2007) can-
not abstract from the understanding of human mobil-
ity. For these reasons, many relatively recent works
have focused on the derivation of universal statistical

laws characterizing the patterns of human movements
(Brockmann et al., 2006; Gonzalez et al., 2008; Song
et al., 2010; Simini et al., 2012; Wang et al., 2014).
In this paper we address the problem of the charac-
terization of the daily patterns of car drivers, in order
to understand how they move between different areas
of the city during each day. Similarly to other works
(Bazzani et al., 2010; Gallotti et al., 2012; Rambaldi
et al., 2007; Gallotti, 2013; Gallotti et al., 2015), we
analyze a large database of GPS tracks of private cars
collected in the Rome (Italy) district during the whole
month of May 2011. The study of the dynamics of car
travel has a long tradition in Complex Systems and
Physics framework, modelling traffic flows from both
an Eulerian and Lagrangian perspectives (Treiber and
Kesting, 2013; Rambaldi et al., 2007). Our findings
suggest that there is a universal pattern in the way
drivers choose the sequence of places they have to
visit, so that independently of their number the se-
quence of the length of the trips connecting them has
a “parabolic” shape. Note that a similar approach has
been used also considering mobile phone data (Cal-
abrese et al., 2013), which is a proxy for multi-modal
mobility, i.e. all the possible kind of means of trans-
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portation are considered. By means of a model intro-
duced in (Mastroianni et al., 2015), we show how this
pattern can emerge from the interplay between the ge-
ometric constraints of the space in which the stops are
placed and the need to optimize the overall travel time
in order to get back to the starting point at the end of
the day.

2 GPS TRACKS DATA AND DAILY
DYNAMICS PATTENRS

2.1 Data

Approximately 4% and 8% of the whole vehicle pop-
ulation inside the Rome (Italy) district during the
months of May 2011 and May 2013, respectively, was
monitored on behalf of an insurance company (Oct,
2014). For that, time, position, velocity and covered
distance of single vehicles were recorded by sampling
each trajectory at a time scale of 30 seconds (on fast
speed roads, e.g., on highways) or at a spatial scale of
2km (elsewhere). This sampling strategy was chosen
by that company to ensure a better sampling rate on
arterial roads. A further signal was also recorded each
time the engine was switched on or off so that a travel
is defined as the temporal ordered sequence of points
between the engine start and stop. Due to privacy is-
sues, it is not possible to know any information about
the owner of the vehicle performing the trips. Hence,
in the following we do not distinguish between private
or professional drivers, nor the reasons why a trip has
been performed. In total, we are able to study the
spatial pattern of 13,527 vehicles during 20 working
days with an average number of trips per day equal to
11,524. Errors due to GPS signal quality have been
already considered in (Mastroianni et al., 2015), we
refer to this work for details. We consider as the same
trip, two consecutive journeys performed by the same
car if the stop time between them, i.e. the difference
between the switch off time of the engine at the end
of the first trip and the switch on time at the beginning
of the second, is smaller than 5 minutes. The distri-
butionP(n) of the numbern of trips performed by a
driver during a day can be approximated forn≥ 5 by
an exponential law with a typical lengthn0 = 2.51(2)
as displayed in Fig. 1. The trips made up by a small
number of stops clearly dominate overall our sample.

2.2 Parabolic Pattern of Trips

Considering the sequence of then trips performed in
a day by the same driver it is possible to define the
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Figure 1: Distribution of the number of tripsn performed
by a driver in each day. Black line represents the best fit
with an exponential function∝ exp(− n

n0
).

quantity lnk , i.e., the distance traveled during thekth

trips. We can then computelnk by averaging over all
the kth of the drivers withn movements. This op-
eration of average might hide the differences inside
the sample it makes regular patterns emerge from the
data. If the way in which each driver chooses the se-
quence of stops performed during a day would be ran-
dom, the sequence oflnk would not depend onk. In-
stead they follow the behavior in Fig. 2 panel a. For
every value ofn, the sequence oflnk strongly depends
on k. Moreover, the sequence oflnk seems to be par-

ticularly regular being symmetric aroundk = (n+1)
2 ,

where it reaches its minimum value. Thus,lnk de-

creases starting fromk= 0 until k= (n+1)
2 is reached,

then starts growing again untilk= n. Note thatln0 and
lnn are the highest values of the sequence and their val-
ues become more similar asn grows. This suggests
that for eachn, lnk can be approximated by a parabola,
whose coefficients depend onn:

pn(k) = ank2+bnk+ cn. (1)

For every value ofn, pn(k) is a parabola with sym-
metry axis orthogonal to thek axis. Fitting pn(k)
by means of the sequencelnk with the corresponding
value ofn, the coefficientsan, bn andcn grow with n
as a power-law (Fig. 2 panel b).

Thus it is possible to write:

an = An−ηa

bn = Bn−ηb

cn =Cn−ηc.

(2)

where A = 8.8(7)Km, B = 21(1)Km,
C = 24.5(8)Km, ηa = 2.00(4), ηb = 1.33(4)
andηc = 0.55(2). Thus, combining equations (1) and
(2),

pn(k) = An−ηak2+Bn−ηbk+Cn−ηc. (3)

Dividing each members of (3) byCn−ηc, we get
pn(k)

cn
=

A
C

n−(ηa−ηc)k2+
B
C

n−(ηb−ηc)k+1. (4)
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Figure 2: (a) sequenceslnk for some values ofn. Differ-
ent colors correspond to different values of the number of
trips n. (b) sequences of the coefficients of the parabolic fit
pn(k) for n≥ 4. Continuous lines are power law fit of the
sequences. (c) sequenceslnk divided bycn as functions of̂k.

Note that with the estimated values of the parameters,

ηa−ηc = 1.45(4)

ηb−ηc = 0.78(4).
(5)

This indicates that, within the estimated errors, the
following relation holds

ηa−ηc = 2(ηb−ηc). (6)

The relation (6) allows to derive a scaling law for
equation (3). In fact

pn(k)
cn

=
A
C

n−2(ηb−ηc)k2+
B
C

n−(ηb−ηc)k+1

=
A
C
(n−(ηb−ηc)k)2+

B
C

n−(ηb−ηc)k+1.

(7)

Then it is possible to define a new variablek̂ =
n−(ηb−ηc)k, obtaining a universal expression for the
parabola independent ofn

p(k̂) =
A
C

k̂2+
B
C

k̂+1. (8)
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Figure 3: sequences of euclidean distancesdn
k (panel a) and

travel timestn
k (panel b) for some values ofn.

This indicates that rescaling all the values oflnk by
cn, all the data would collapse over the curve defined
by Eq. (8). Fig. 2 in panel c shows the collapse of
the data for all thelnk sequences. The variability of
the data, combined with the parabolic approximation
used, does not provide a very precise collapse but the
indication of a universal scaling law still holds. Sim-
ilar properties can also be found for the sequence of
the euclidean distances between subsequent stopsdn

k
and for the sequence of the travel timestn

k . Their cor-
responding parabolas are shown in Fig. 3. Despite the
approximation of the parabolic fit, some general fea-
tures can be identified for all the previously presented
sequences. Independently of the value ofn, the first
value of the sequence withk = 1 is the largest one.
Apart fromn= 2 andn= 3, all the sequences are ini-
tially decreasing until a certain value ofk, sayk∗n, is
reached. Aroundk = k∗n the sequences reach a mini-
mum, then fork > k∗n they start growing withk. As n
grows, the value ofk∗n gets closer to the central value
of the sequencek = n+1

2 . Since the dynamics of the
individual is certainly related to the circadian rhythm,
the emergence of these parabolic pattern are probably
related to the constraint of going back to the origin of
the trip.

2.3 Spatial Constraints on Daily Stops

Indicating with~xk the coordinates of thek-th stops of
a driver, we can consider the point~x0 as the starting
point of the daily dynamics and study the spatial rela-
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Figure 4: sequencesdn(~xk,~x0) of the average distances from
the starting point.

tions between it and the other pointsk ∈ [1,n]. Con-
sidering all the sequences with the same number of
trips n, we can define the sequence of average dis-
tances between thek-th stop and the starting point
dn(~xk,~x0) = 〈|~xk −~x0|〉, where |.| indicates the eu-
clidean distance. Fig. 4 shows these values for some
value of the number of trips per dayn. It is evident
how the distance between the last point and the first
one is usually smaller with respect to the others, indi-
cating that usually at the end of the dynamics drivers
tend to go back to the starting point. However this
final distance is between 0.5km and 1km, so that the
final point does not coincide exactly with the first one.
The fact that the distance between the initial and the
other stops was usually constant suggested two kinds
of possible dynamics for the choice of the sequence
of the stops: anorbital dynamicsand abipolar dy-
namics, depicted in Fig. 5. In the orbital dynamics
the stops are disposed at a constant radius around the
origin. In the other case the driver performs a long
movement and then a series of shorter movements.
These movements are so that the distances between
the points they connect and the origin are quite con-
stant so that they are displaced on average over a cir-
cular arc centered in the origin. The last movement
is again a long one in order to get back to the origin.
In order to discriminate between these two dynamics,
we consider the barycenter of the intermediate stops
(i.e. withk 6= 0 andk 6= n)

~rc =
1

n−1

n−1

∑
k=1

~xk. (9)

Figure 5: Representations of an orbital (a) and bipolar (b)
dynamics for a driver performing 4 stops. In (a) the ra-
dius of gyrationR5 is comparable to the distance between
the origin and the barycenterdc,h since the points are rather
scattered, thus leading toρ5 > 0. On the contrary in (b) the
points are quite clustered around the barycenter and thus
ρ5 < 0.

The gyration radius around this point is

R2
n =

1
n−1

n−1

∑
k=1

|~xk−~rc|2, (10)

measuring how much the dispersion of the intermedi-
ate stops around their barycenter. We can also define
the quantitydc,h = |~rc−~x0|, i.e. the distance between
the starting point and the barycenter. IfRn < dc,h,
then the dispersion of the intermediate points will be
smaller than the distance between the starting point
and their barycenter, resulting in a bipolar dynamics.
The opposite condition will indicate instead an orbital
dynamics. To summarize these conditions with an
adimensional metrics, we define

ρn =
Rn−dc,h

Rn+dc,h
, (11)

which is bounded between−1 and 1, so thatρn < 0
andρn > 0 correspond respectively to the bipolar and
orbital dynamics. Fig. 6 shows the average values of
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Rn as function ofn. Forn≥ 5,Rn has a constant value
of 0.209(2), while for n< 5 its values are smaller but
still larger than 0. The only exception is represented
by the pointn = 3 which is slightly smaller than 0,
and the pointn= 2 which is equal to−1 by definition
sinceR2 = 0. Hence, the orbital dynamics seems to be
the dominant one across the whole sample of tracks.

3 DAILY DYNAMICS AS
CONSTRAINED
OPTIMIZATION

3.1 Modeling Road Network

In (Mastroianni et al., 2015) we have introduced a
simple model of road network, where the regular
roads of the city were represented as anN×N grid
whose links were of unit length and that could be trav-
eled at constant unit speed. We introduced a certain
numberNshortcut of additional links connecting ran-
dom nodes of the grid, that could be traveled at a
higher speedv> 1 and their length was the euclidean
distance between the nodes. These longer links repre-
sented arterial roads exploited by car driver in order to
cross rapidly the urban environment. We showed how
the interplay between the arterial roads and the ability
of the car drivers to optimally choose the path con-
necting the origin and the destination of a trip (i.e.,
minimizing the travel time), was able to explain the
sub-linear growth of the average speed during a trip
with the total trip length. However, in order to repro-
duce the correct paths the optimization has to be sub-
optimal: we supposed that the drivers are not able to
choose the globally optimal path due to their limited
knowledge of the urban environment, but can opti-
mize it piece-wise between known locations until the
car reach their destination. Thus, we defined a Navi-
gation Algorithm (NA) depicted in Fig. 7. Assuming
that a driver must go from the nodeA to the nodeB

Figure 7: Representation of the Grid Network with short-
cuts (green links) and of the Navigation Algorithm used to
build synthetic paths connecting the nodes A and B.

of the grid, the navigation algorithm proceeds as fol-
lows:

• Assuming that the current node visited by the al-
gorithm at its ith step isni, we choose an opti-
mization distanceloptim from a uniform distribu-
tion in [3, l(ni ,B)], wherel(ni ,B) is the euclidean
distance betweenni andB.

• The next visited nodeni+1 is chosen randomly be-
tween all the nodes whose distance fromni is less
thanloptim. Moreover, the angle between the lines
connectingni andni+1 andA andB is smaller than
an assigned valueα (α = 30o in the following).

• If B satisfies the conditions in the previous point,
it is automatically chosen asni+1

• If ni+1 = B the process ends.

Once a sequence of nodes{A,n1,n2, . . . ,B} is made
with the algorithm, the path connectingA and B is
built by concatenating all the shortest paths connect-
ing eachni with its successive nodeni+1. In the next
paragraph we used the NA and our urban network
model to build some synthetic paths and studied how
the parabolic patterns might emerge from a sequence
of trips.

3.2 The Traveling Salesman

We have seen how the sequence of trips performed
by a driver is linked to his circadian rhythm, since
the last one is usually performed to go back to his
initial location. Moreover, the sequence of stops is
chosen according to an orbital dynamics, i.e., they are
deployed at a constant radius around the origin. Thus,
we can use this information to build a model that can
reproduce these patterns in a simple way. By using
our grid model and the NA, we assume that a driver
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starts his daily dynamics from nodeistart and has to
perform othern−1 stops before going back home. He
may choose this node randomly from all the nodes in
the grid, but we this choice is fundamental in order to
obtain the desired pattern. Practically, the algorithm
defining the sequence proceeds as follows:

• We choosen− 1 distinct nodes as intermediate
stops. These nodes are chosen randomly between
all the nodes in the grid.

• We build a path connecting each pair of stopsi
and j (including istart) using the navigation algo-
rithm. Thus, we construct the matrixti, j of the
travel times of the paths connecting every pair of
stops.

• The sequence of stops{istart, i1, i2, . . . , in−1, istart}
is then the one that minimizes the total travel time,
i.e.,

T =
n−1

∑
k=0

tik,ik+1, (12)

wherei0 = in = istart.

• At the end of the procedure we have the optimal
sequencesdn

k , tn
k andlnk .

Note that this procedure would be equivalent to the
Traveling Salesman Problem(Flood, 1956) on the
grid with shortcuts if the shortest path between two
successive nodes would have been chosen instead of
the one build with the navigation algorithm. In the
following, we sampled more than 2,000 paths for each
value ofn andNshortcut in the grid model, and com-
puteddn

k , tn
k and lnk . For each path, the shortcuts are

reassigned over the grid. The speed on the links in the
grid and in the shortcuts has been chosen as constant,
with values of 1 and 2 respectively. Different choices
lead to qualitatively similar results. The first check
that can be made is that the choice ofistart must not be
random.

Fig. 8 shows the sequences ofdn
k for some val-

ues ofn in grids withL = 100 andNshortcuts= 0 and
Nshortcuts= 100. The values of the sequence asn in-
creases are quite constant or follow an irregular pat-
tern, rather different from the one observed in the
data. Fig. 9 shows the same sequences withistart cho-
sen randomly at the border of the grid. In this case it
is evident that the sequences show the desired behav-
ior: an initial decrease towards a minimum and then
an increase until a value similar to the initial one is
reached. This indicates that the interplay between the
optimization process and the confined geometry of the
urban environment is crucial in order to understand
how the observed patterns emerge. The “parabola-
like” sequence seems to be the results of an optimiza-
tion process performed within a limited area, starting
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Figure 8: Sequence of trip lengthslnk on the grid model with
Nshortcuts= 0 (a) andNshortcuts= 100 (b) when the origin of
the trips is randomly chosen on the grid.
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Figure 9: Sequence of trip lengthslnk on the grid model with
Nshortcuts= 0 (a) andNshortcuts= 100 (b) when the origin of
the trips is randomly chosen at the border of the grid.

from a point close to the boundaries of such area.
Note that, as we have seen in the data, alsotn

k and lnk
possess this kind of structure (Fig. 3).
In Section 2.2 it has been shown that approximating
the sequence ofdn

k with a parabolapn(k) it is pos-
sible to derive a scaling law for the sequence. De-
spite the fact that in our case the parabolic fit does
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not describe well the sequence, we can still use it in
order to see if there is a similar scaling also for the
sequences on the grid. Therefore, we fit the curves
in Fig. 9 with Eq. (1). In both cases we check that
the coefficientspn(k) are power-law decreasing with
n, so that equations (2) hold (see Fig. 10). Moreover,
also the relations between the coefficients in Eq. (6)
is still valid even though the approximation is worse
for Nshortcuts= 100 (Table 1 displays the values of the
exponents of Eq. 2 for some values ofNshortcuts).

Fig. 10 shows the collapsed sequences together
with the universal parabola independent fromn. It
is evident that, despite a scaling law seems to exist,
the parabola does not describe well the curves since
the found behavior shows a smaller curvature.

Table 1: Values of the exponents of Eq. (2) inferred from
the grid model.

Nshortcuts 0 50 100
ηa 2.89(8) 2.91(7) 2.95(5)
ηb 1.76(8) 1.72(8) 1.74(5)
ηc 0.62(1) 0.58(2) 0.58(2)

ηc−ηa −2.26(1) −2.34(9) −2.30(7)
2(dηc−ηb) −2.27(1) −2.3(2) −2.32(7)
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Figure 11: Collapsed sequence of trip lengthslnk on the grid
model withNshortcuts= 0 (a) andNshortcuts= 100 (b) when
the origin of the trips is randomly chosen on the border of
the grid.

4 CONCLUSIONS

In this paper we analyzed a large dataset of GPS
tracks about vehicles collected within the city of
Rome. After dividing the drivers according to the
number of trips performed within a day, we showed
that the sequence of travel length, as well as the se-
quences of travel times and geodesic distances be-
tween stops, exhibit a “parabolic pattern” so that each
sequence is initially decreasing until a minimum is
reached and then grows again to another maximum.
By fitting these sequences with a parabolic law we
showed that each one can be rescaled in a universal
form independent from the number of trips, suggest-
ing the existence of a universal mechanism responsi-
ble of this observed pattern. By using a model intro-
duced in (Mastroianni et al., 2015) to produce syn-
thetic paths in a simplified urban environment, we
showed that these findings are consistent with the idea
of drivers trying to minimize the total travel time. The
geometry of the problem seems to be crucial in order
to reproduce the correct behavior, so that the start-
ing point must be at the border of a space that con-
strains the dynamics. Despite the fact that the simu-
lated sequences of trip lengths are not well described
by parabolic laws, still the model exhibit a scaling law
similar to the one found empirically.
Despite the simplicity of the modeling scheme, the
empirical patterns found in the data are qualitatively
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reproduced. We argue that a more realistic model,
taking into account different traffic conditions could
lead to a better agreement with the data and a bet-
ter understanding on the behavioral changes of car
drivers. Finally, the universality of our findings have
still to be completely proven by performing similar
measurements in different urban environments and
time-frames. The observed patterns might be useful
in order to develop improved info-mobility systems
taking into account the possible behavior of a driver
on his next trip. The understanding of the behavior
of individual car movements could in fact help at im-
proving traffic forecast systems.
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