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Abstract: Actualization of vector maps of the urban transport infrastructure, including street and road network, in 
conditions of constant changes is a resource-consuming task and it requires the automation of the process. 
The article considers the solving of problem of transport infrastructure objects recognition in hyperspectral 
images by deep convolutional neural networks. The hyperspectral images from different sources are 
considered for solving the problem. We propose a new approach to the formation of receptive fields of 
convolutional neural networks: the receptive field covers several pixels, but the depth of the colour channels 
is limited. In the proposed approach the receptive field moves in three dimensions - in two spatial 
dimensions and in spectral channels dimension. It gives the ability to recognize the transport infrastructure 
objects by spatial patterns and spectrum. 

1 INTRODUCTION 

The modern pace of large cities development entails 
a permanent changing of transport infrastructure. 
This is especially noticeable at the stage of preparing 
the city for receiving a major sporting or cultural 
event. In general, the changes in the transport 
infrastructure are determined by several factors: 

• steady increase in the level of motorization in 
the cities; 

• construction of new residential buildings; 
• reconstruction and building of engineering 

facilities; 
• construction of new sociocultural and sports 

facilities; 
• expanding the boundaries of the city; 
• growing demand of citizens to transport 

accessibility. 
Changes in transport infrastructure in most cases 

are systematized, but at the moment there are no 
clear mechanisms for notification of all involved 
organizations and services. Particular difficulties are 
experienced by non-governmental organizations 
distributing cartographical information or offering 
services based on it. Actualization of vector maps of 
the city street and road network in conditions of 

constant changes becomes a task, which requires 
involvement of a large number of resources. 

The solution of the problem of timely updating 
the map data is possible by the automation of the 
process. One of the methods is recognition of 
satellite images of areas. At the same time, the use 
of ordinary photos is associated with the problem of 
incomplete data and as a consequence of the poor 
quality of recognition. When operating with a city 
map it is advisable to use hyperspectral images 
because they contain a larger amount of information 
at each point in the image, which greatly improves 
the quality of transport infrastructure recognition. 

Hyperspectral measurements for physical-
chemical properties assessment help to evaluate 
road-transport infrastructure objects conditions. This 
research trend is concerned in papers (Resende et al., 
2014; Mei et al., 2014; Cavalli et al., 2008; Wei et 
al., 2009; Herold et al., 2004a; Gomez, 2002; 
Miraliakbari and Hahn, 2014). 

Hyperspectral images are third dimensional data 
array which consists of spatial information about 
object and spectral information for each spatial 
coordinate. Each pixel of hyperspectral image is 
attributable to its spectral feature. Information is 
represented in tens and hundreds of neighboring 
bands (about 5-10 nm). Frequently hyperspectral 
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information is represented like “hypercube” 
(Figure 1). 

For effective solving of problems mentioned 
above hyperspectral data must have high spatial 
resolution and must span spectral region from 0.4 to 
2.5 μm. The important aspect is development of road 
pavement spectral library for different classes and 
different conditions and typical materials for urban 
territory on the basis of field data acquired by hand 
spectroradiometer.  

 
Figure 1: Schema of “hypercube” formation. 

The process of transport infrastructure objects 
monitoring is associated with a range of features 
which is defined by a necessity of preliminary 
processing as well. 

Firstly, given that in the three-dimensional land 
surface structure, road-transport infrastructure 
objects are the “bottom layer” that can be covered or 
shadowed by surrounding surfaces such as trees, 
buildings or vehicles. 

Secondly, the problem of hyperspectral data 
processing would be solved essentially more easily 
if all image pixels were “pure”, i.e. each pixel 
contains information only about the single object. 
However, natural surfaces rarely consist of 
homogeneous material. Furthermore, the total 
radiation from all of the objects inside the spatial 

resolution element is registered by the sensor as 
single image pixel. Therefore in general the 
operator-user deals with the so called “mixed pixel”. 
The mixture dynamics of two or more materials 
inside the single pixel can be described by linear and 
non-linear models (Keshava, 2003; Kukharenko, 
2013). 

Thirdly, remote sensing hyperspectral data 
contains information not only about the surface but 
also about the atmosphere conditions. The 
atmospheric correction procedure intends for 
rejection of this warping factor and image 
transformation from spectral brightness units to 
spectral reflectance index units (Mikheeva and 
Fedoseev, 2014; Zhuravel and Fedoseev, 2013; 
Yuanliu et al, 2007; Schowengerdt, 2010, Schott, 
2007).  

Finally, the spectral profiles of transport 
infrastructure objects frequently are similar to 
spectral profiles of typical urban infrastructure 
artificial objects (roofs of buildings, engineering 
structures). This fact can influence negatively to 
results of hyperspectral data processing (Herold et 
al., 2004a).  

To get the satisfactory results during the usage of 
high resolution hyperspectral images for monitoring 
and evaluation of road-transport infrastructure 
objects conditions, several processing stages must be 
applied (in the case of correct initial data are 
prepared) (Cavalli et al, 2008; Chang, 2000; 
Gualtieri and Cromp, 1999; Ratle et al., 2010).  

Generally the process of thematic processing can 
be divided into two main stages (Resende et al., 
2014): 

• objects of interest detection and extraction; 
• classification of road-transport infrastructure 

objects. 
To extract the road pavement the algorithms of 

controlled classification are used. These algorithms 
require spectral samples availability (Herold et al., 
2004b).  

In this case spectral samples are contained in 
spectral library, which is filled up by the 
measurements from field and aviation 
hyperspectrometer. The algorithms of controlled 
classification offer two approaches: determinate and 
statistical. 

The determinate approach is used in the case 
when objects classes don’t overlap in the feature 
space (Schowengerdt, 2010). However, natural and 
artificial objects are generally nonhomogeneous and 
spectral characteristics of research objects are 
similar or particularly overlapped (for example, for 
different types of soils and road pavements). 
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Therefore the classification methods which are 
based on statistical approach for feature variations 
considering and accept to attribute of pixels to 
another’s classes if the frequency of their appearance 
is low have been popular (Chandra, 2008). 

Despite of extensive researches in the application 
of hyperspectral images, their usage in solving the 
problem of recognition of transport infrastructure 
objects is associated with a number of difficulties 
described above. One of the methods leveling these 
difficulties is the application of artificial intelligence 
techniques to solve the problem (Saprykin and 
Saprykina, 2015). In recent years the convolutional 
neural networks have proved themselves in the field 
of image processing. The researches are actively 
conducted in the field of recognition of images, 
consisting of the three color channels (Krizhevsky et 
al., 2012; Simonyan and Zisserman, 2014). 
However, the processing of hyperspectral imaging is 
studied insufficiently, and more research is 
necessary to find the optimal network architecture 
and training algorithms. This article considers the 
problem of recognition of transport infrastructure 
objects in hyperspectral images by deep 
convolutional neural networks. 

2 CONVOLUTIONAL NEURAL 
NETWORKS 

Recent researches have shown great success of 
convolutional neural networks in images 
recognition. The architecture and training algorithms 
of such neural networks are similar to ordinary 
feedforward networks, but they are optimized for 
handling large amounts of input data. The input 
layer of convolutional neural networks is 
represented as 3-D data set. When passing through 
the layers of the neural network the size of the input 
array is changed, and eventually it is reduced to one-
dimensional array, which is easily treated by a 
conventional feedforward neural network (Figure 2). 
Such transformation with retention of high learning 
ability requires a large number of layers, so it is 
reasonable to use deep convolutional neural network 
(Simonyan and Zisserman, 2014).  

The convolutional neural network consists of the 
following types of intermediate layers: convolutional 
layers, max pooling layers and fully connected 
layers. Convolutional layers serve to identify the 
characteristics of facilities in accordance with pre-
trained patterns. Max pooling layers allow to select 
the strongest signal from the considered region and 

reduce the size of data array. At the final stage of 
data processing the fully connected layer is used, 
which directly determines what class the facility 
described by the input data set is (Krizhevsky et al., 
2012). 

 
Figure 2: Schema of reducing of the input data set in 
convolutional neural network. 

Convolutional neural network is not fully 
connected. Each subsequent intermediate network 
layer is associated with a small number of neurons in 
the previous layer that unites their presence in a 
small local area - receptive field. The important 
point, accelerating the training and working of the 
neural network, is using the same weights for all 
receptive fields of the layer (parameters sharing). 
When designing the convolutional layer such 
parameters as the depth of the output array, stride, 
and zero-padding can be varied. By varying the 
depth of the output array the number of features 
which are recognizable by the layer can be 
controlled. Zero-padding is used in the case of the 
necessity to preserve the original image size. 

Due to the small size of the receptive fields the 
convolutional layer may incorrectly detect a feature, 
which does not belong to an object. To prevent such 
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mistakes it is necessary to zoom-out the considered 
area, for this purpose the max pooling layer is used. 
Neurons in this layer do not use parameters, and 
therefore the training is not required. Their work 
comes down to choosing the strongest signal from 
the treated area. After passing the array through the 
max pooling layer the most characterized object 
features are remained. 

3 CONVOLUTIONAL NEURAL 
NETWORK FOR 
HYPERSPECTRAL IMAGES 

The initial data for the experiments are hyperspectral 
images of Samara region which were acquired in 
2013-2014 in 36, 48 and 72 spectral bands in the 
range 0.35–1.05 μm. Field quasi-synchronous 
measurements via FieldSpec-4 spectroradiometer of 
Samara transport infrastructure typical objects have 
been used as patterns (Figure 3). Moreover, to 
research of hyperspectral data thematic processing 
methods we use information acquired by AVIRIS 
and HYDICE sensors parallelly in 224 and 191 
spectral bands. The spectral range for AVIRIS data 
is 0.36–2.5 μm and for HYDICE data is 0.4–2.47 
μm. The preliminary processing of initial data is 
used for vacant channels filtering and atmospheric 
correction. The module FLAASH, which is the part 
of program system ENVI, was used for atmospheric 
correction. We also used another method of 
atmospheric correction called empirical line method. 
This method has displayed more accurate results but 
it can be used only in the case of spectral patterns 
availability in the processing image. It is desirable to 
have artificial materials in the image as patterns, or 
patterns could be artificial materials under condition 
of once only acquisition with the aerospace data. In 
the stage of preliminary processing operations of 
information dimension reduction has been used. The 
most popular methods of dimension reduction are 
Principle component analysis (PCA) (Gorban et al., 
2008; Rodarmel and Shan, 2002) and Independent 
component analysis (Robila, 2005). PCA has been 
used in this research.  

Convolutional neural networks are widely used 
in the classification of images as they provide good 
recognition quality with relatively small effort. 
However, when working with hyperspectral images, 
this advantage can be substantially reduced because 
of the large dimension of the data, since each point 
of the image is represented by a vector of hundred or 
more values. There is an approach that uses a single 

point of image as the receptive field with a full range 
of values of spectral vector (Hu et al, 2015). The 
disadvantage is the insensitivity of the method to the 
spatial patterns, and as a consequence, the inability 
to recognize objects by the features. 

 
Figure 3: Spectral characteristics of typical transport 
infrastructure objects in Samara region. 

We propose a new approach to the formation of 
receptive fields, which allows to keep the 
advantages of the convolutional networks and use 
the information from all color channels of 
hyperspectral image. In the proposed approach the 
receptive field covers several pixels, but the depth of 
the color channels, that can be used simultaneously, 
is limited. During operating of the neural network 
the receptive field moves not only in the horizontal 
plane, as in the current implementations, but also in 
the depth of color channels, thus covering the whole 
available spectrum. The value of the stride for the 
color channels must be less than the depth of 
receptive field. This allows to overlap the color 
channels, to increase the number of processed 
images in different spectra, and thus improve the 
quality of recognition. 

The described approach of receptive field 
formation requires changes in the standard structure 
and training algorithm of the convolutional neural 
network, since each depth of color channels requires 
its own set of weighting coefficients (or filters in 
terms of convolutional neural networks). The 
requirement is dictated by the fact that the same 
spatial filters may be responsible for completely 
different features in different spectral channels. To 
meet this requirement an extra dimension is 
introduced to the array of trained filters. Moving in 
this dimension is performed synchronously with the 
movement of receptive field to a new depth of 
spectral channels. With such work organization the 
weights sharing is carried out only in the horizontal 
movement of receptive field. During movement 
deeper into the spectral channels the weights sharing 
is not used. Thus the structure of neural network 
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differentiates the data streams for different spectral 
channels. 

To implement the described neural network the 
TensorFlow framework is chosen, because it has a 
clear API and the flexibility to transform 
multidimensional data sets (Abadi et al., 2015). 
TensorFlow has already had an implementation of 
convolutional neural network. This neural network 
architecture is highly configurable, that allows to 
implement the described differentiation of data 
streams by spectral channels. The framework also 
allows to use the graphics processor unit (GPU), 
which significantly reduces the training time of the 
neural network on hyperspectral images of the city's 
transport infrastructure. 

4 CONCLUSIONS AND FUTURE 
RESEARCH 

In this article, we have reviewed the main problems 
arising during recognition of hyperspectral images 
of cities and detection of transport infrastructure 
objects on them. The new method of the 
classification of hyperspectral images is proposed. It 
is based on deep convolutional neural network that 
differs from the existing ones by movement of the 
receptive field in three dimensions - in two spatial 
dimensions and in spectral channels dimension. This 
approach makes it easier to recognize the transport 
infrastructure objects in dense urban areas. 

Further research is related to carrying out a large 
number of experiments with hyperspectral images of 
cities. It is necessary to compare the results of object 
recognition in images taken from different satellites 
operating in different spectral ranges and with 
different number of spectral channels. It is necessary 
to investigate the usage of artificial neural networks 
at the stage of clearing and pre-processing of raw 
hyperspectral images. 

Subsequently, it is necessary to carry out a 
comparative description of object recognition quality 
of the developed method and the existing methods 
(for example, Support Vector Machine, Spectral 
Angle Mapper, Maximum Likelihood Method, 
Mahalanobis Distance Method, etc.). Comparison of 
methods should be carried out by several 
parameters, the most important of which are the 
accuracy (probability of correct determination of the 
class), and receiver operating characteristic curve 
(ratio of the probability of true positive outcome and 
the probability of false positive outcome). In 
addition to the qualitative characteristics, the 

performance, scalability and the ability to process 
information in concurrent threads should also be 
compared.  

Further work also needs improving the 
convolutional neural network classifying the 
transport infrastructure facilities. It is intended the 
usage of the latest developments in this area: spatial 
factorization, label smoothing and asynchronous 
stochastic gradient descent. It is necessary to 
increase productivity and quality of recognition to 
allow wide application of the method in transport 
geographic systems. 

Modern intelligent transport systems involve the 
usage of unmanned aerial vehicles. To date, the 
payload of such vehicles is presented by a wide 
range of sensors, including hyperspectral cameras. 
The data received from the sensors require a 
semantic interpretation. The proposed in this paper 
approach to processing of hyperspectral data, 
focused on effective recognition of the transport 
infrastructure, may be used as a part of spatial data 
processing complex in the structure of the modern 
intelligent transport system. 
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