
Compressing Inverted Files using Modified LZW

Vasileios Iosifidis and Christos Makris
Department of Computer Engineering and Informatics, University of Patras, Rio 26500, Patra, Greece

Keywords: Inverted File, Compression, LZ78, LZW, GZIP, Binary Interpolative Encoding, Gaps, Reorder, Searching
and Browsing, Metrics and Performance.

Abstract: In the paper, we present a compression algorithm that employs a modification of the well known Ziv
Lempel Welch algorithm (LZW); it creates an index that treats terms as characters, and stores encoded
document identifier patterns efficiently. We also equip our approach with a set of preprocessing
{reassignment of document identifiers, Gaps} and post-processing methods {Gaps, IPC encoding, GZIP} in
order to attain more significant space improvements. We used two different combinations of those discrete
steps to see which one maximizes the performance of the modification we made on the LZW algorithm.
Performed experiments in the Wikipedia dataset depict the superiority in space compaction of the proposed
technique.

1 INTRODUCTION

Inverted files are considered to be the best structures
for indexing in information retrieval search engines
(Baeza-Yates and Ribeiro-Neto, 2011, Büttcher,
Clarke and Cormack 2010). The main problem one
has to tackle with them in an information retrieval
system is that when the number of documents in the
collection increases, the size of data indices grows
significantly, hence scalability in terms of efficient
compression techniques is a mandatory requirement.

At present, in the large-scale information
retrieval systems, the term-oriented inverted index
technology is commonly used. An inverted index
consists of two parts: a search index storing the
distinct terms of the documents in the collection, and
for each term a list storing the documents that
contain these terms. Each document appears in this
list either as an identifier or it is accompanied with
extra information such as the number of appearances
of the term in the document. When only the
document identifiers appear then the list is usually
an ascending list of identifiers so that it can be easily
compressed ((Baeza-Yates and Ribeiro-Neto, 2011,
Büttcher, Clarke and Cormack 2010, Witten, Moffat
and Bell, 1999).

In this paper we try to envisage a new
compression scheme for inverted files that is based
on an elegant combination of previously published

solutions. In particular we try to find common
appearances inside the terms, and store those
common appearances as encodings that require less
space. Our basic idea comes from the most widely
used algorithm, the LZ78 (Ziv et al. 1978), LZW
(Welch and Terry, 1984) and a method which
reassigns the document identifiers of the corpus
(Arroyuelo et al. 2013).

As we will describe later, the modified LZW is
trying to find patterns inside the inverted file and
encodes them into numbers. The reassign method
(Arroyuelo et al. 2013) helps us to keep the encoded
values ‘small’ and also it produces patterns for our
method to find. After the reassignment the document
identifier values require fewer digits for
representation because the range they required
previously was larger.

In section 2 we describe related work. In section
3 we present an analysis of the methods we used. In
section 4 we present our ideas, the modifications we
made and an example of how it works. In section 5
we present the results which came from
experimentation on the Wikipedia’s dataset and also
we compare this technique with the one which
produces arithmetic progressions (Makris and
Plegas, 2013) and is considered to achieve
compression more effective than previous
techniques. In section 6 and 7 we explain our
experiments and conclude with future work and
open problems.

156
Iosifidis, V. and Makris, C.
Compressing Inverted Files using Modified LZW.
In Proceedings of the 12th International Conference on Web Information Systems and Technologies (WEBIST 2016) - Volume 1, pages 156-163
ISBN: 978-989-758-186-1
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

2 RELATED WORK

Many compressing file methods have been proposed
in the scientific bibliography. The majority of these
compression methods use gaps, between document
identifiers (DocIds), in order to represent data with
fewer bits. The most well-known methods for
compressing integers are the Binary code, Unary
code, Elias gamma, Elias delta, Variable-byte and
the Golomb code (Witten, Moffat and Bell, 1999).
Over the past decade, there have been developed
some methods which are considered to be the most
successful. These methods are: Binary Interpolative
Coding (Moffat and Stuiver, 2000) and the OptPFD
method in (Yan et al., 2009) that is an optimized
version of the techniques appearing in (Heman,
2005; Zukowski, Heman, Nes and Boncz, 2006) and
that are known as PforDelta family (PFD).

The Interpolative Coding (IPC) (Moffat and L.
Stuiver, 2000) has the ability to code a sequence of
integers with a few bits. Instead of creating gaps
from left to right, compression and decompression
are done through recursion. Consider a list of
ascending integers < a1, a2… an>. IPC will split the
list into two other sub lists. The middle element, an/2,
will be binary encoded and the first and last element
of the list will be used as boundary of bits. The least
binary representation would require log (an – a1 + 1)
bits. The method runs recursively for the two sub lists.

Some methods for performance optimization are
pruning-based (Ntoulas and Cho, 2007; Zhang et al.,
2008). Some other methods try to take advantage of
closely resembling that may exist between different
versions of the same document in order to avoid size
expansion of the inverted indexes (He, Yan and
Suel, 2009; He and Suel 2011). Another method is
storing the frequency of appearances from document
identifiers of various terms and also the term
positions (Akritidis and Bozanis, 2012; Yan et al.,
2009).

Moreover, there is a variety of researches which
focus on the family of LZ algorithms. The statistical
Lempel-Ziv algorithm (Kwong, Sam, and Yu Fan
Ho, 2001) takes into consideration
the statistical properties of the source information.
Also, there is LZO (Oberhumer, 1997/2005) which
supports overlapping compression and in-place
decompression.

Furthermore, there is one case study where the
most common compressing methods were applied
for evaluation of a hypothesis that the terms in a
page are stochastically generated (Chierichetti,
Kumar and Raghavan, 2009). In parallel, there is a
recent method which converts the lists of document

identifiers as a set of arithmetic progressions which
consist of three numbers (Makris and Plegas, 2013).
Finally, Arroyuelio et al. (2013) proposed a
reassignment method that allows someone to focus
on a subset of inverted lists and improve their
performance on queries and compressing ratio.

In our approach we used a combination of
methods which we will describe below. We
compared our method with a recent method (Makris
and Plegas, 2013) which has very good compressing
ratio. In section 3 we present two different
combinations of the methods we used so as to
evaluate the behavior of the modification we made
and to see which one achieves the maximum
compressing ratio.

3 USED TECHNIQUES

In our scheme we employed several algorithmic
tools in order to produce better compressing ratios.
The tools we used for this purpose are described
below.

3.1 LZ78 Analysis

LZ78 (Ziv et al. 1978) algorithms achieve
compression by replacing repeated occurrences of
data with references to a dictionary that is built
based on the input data stream. Each dictionary entry
is of the form dictionary[...] = {index, character},
where index is the index to a previous dictionary
entry, and character is appended to the string
represented by dictionary[index]. The algorithm
initializes last matching index = 0 and next available
index = 1. For each character of the input stream, the
dictionary is searched for a match: {last matching
index, character}. If a match is found, then the last
matching index is set to the index of the matching
entry, and nothing is output. If a match is not found,
then a new dictionary entry is created: dictionary
[next available index] = {last matching index,
character}, and the algorithm outputs last matching
index, followed by character, then resets last
matching index = 0 and increments next available
index. Once the dictionary is full, no more entries
are added. When the end of the input stream is
reached, the algorithm outputs last matching index.

3.2 LZW Analysis

LZW (Welch and Terry 1984) is an LZ78-based
algorithm that uses a dictionary pre-initialized with
all possible characters (symbols), (or emulation of a

Compressing Inverted Files using Modified LZW

157

pre-initialized dictionary). The main improvement of
LZW is that when a match is not found, the current
input stream character is assumed to be the first
character of an existing string in the dictionary
(since the dictionary is initialized with all possible
characters), so only the last matching index is output
(which may be the pre-initialized dictionary index
corresponding to the previous (or the initial) input
character).

3.3 Reassignment Analysis

DocIds which are contained inside an inverted file
may be large numbers using many bytes to be
stored. Using the reorder method (Arroyuelo et al.
2013), all the DocIds are reassigned as different
numbers in order to focus on a given subset of
inverted lists to improve their performance on
querying and compressing. For example consider a
term < T1 >, which contains DocIds: [100, 101,
1001, 1002, 1003]. So the step that is going to be
applied will re-enumerate all the DocIds inside the
term and the whole corpus of the inverted file. After
the reorder the result would be:
100 → 1, 101 → 2, 1001 →3, 1002 → 4, 1003 →5
So the term would be like:
<T1> = [1, 2, 3, 4, 5]

This step helps us reduce the Gaps between
DocIds, and reduce some space of the Inverted File.
Another use of this method is to decrease the starting
encoding value of the modified LZW. So we also
use the reassignment method to decrease the
encoded values.

We also used a modified reassignment method
(Arroyuelo et al. 2013) where we reordered the
pages based on the term intersections. For example
consider a term < T1 >, < T2 >, which contain
DocIds: [100, 105, 110, 120] and [29, 100, 105, 106,
107, 110, 120, 400] respectively. Now if we use the
first reorder method the result would be:
100 → 1, 105 → 2, 110 →3, 120 → 4, 29 → 5, 106
→ 6, 107 → 7, 400 → 8
So the terms < T1 > and< T2 > would be like:
< T1 > = [1, 2, 3, 4]
< T2 > = [5, 1, 2, 6, 7, 3, 4, 8]

Now if we apply the second reorder method the
encoding would be the same in this case but the
output of the terms would be like this:
< T1 > = [1, 2, 3, 4]
< T2 > = [1, 2, 3, 4, 5, 6, 7, 8]

We use this method (Arroyuelo et al. 2013) in
order to create more repeated patterns for the

modified LZW. The above example shows that if we
used first method < T1 > and < T2 > would not have
the same nth elements in common. The modified
LZW has a good compressing ratio when it’s
locating common sequences. So the second method
produces sequences which are common to the
previous lists. In this example, if the first method is
applied it will produce more encoding values than
the second method (assumed we have already
encoded the unique pages inside the index). After we
applied this technique, we noticed a slight
improvement between the compressed files, of the
modified LZW, for the two reordering methods.

3.4 GZIP Analysis

GZIP (Witten, Moffat and Bell, 1999) is a method of
higher-performance compression based on LZ77.
GZIP is using hash tables to locate previous
occurrences of strings. GZIP is using Deflate
algorithm (Deutsch, L. Peter, 1996) which is a mix
of Huffman (Huffman, David A. et al. 1952) and
LZ77 (Ziv et al. 1977). GZIP is “greedy”; it codes
the upcoming characters as a pointer if at all
possible. The Huffman codes for GZIP are generated
semi-statically. Because of the fast searching
algorithm and compact output representation based
upon Huffman codes, GZIP outperforms most other
Ziv-Lempel methods in terms of both speed and
compression effectiveness.

4 OUR CONTRIBUTION

We present two different schemes with a
combination of the described methods. The main
intuition behind these methods is based on
“greedily” compressing by repetitively applying
algorithmic compression schemes. We used these
methods because they are considered of being state
of the art methods in compression (gap, binary
interpolative code, GZIP), so they have been used to
achieve the maximum compressing ratio.

One of the pre-processing methods is the reorder
of the corpus where we change all the DocIds
starting for value 1 and we go on, reassigning all the
DocIds of the inverted file. The re-enumeration is
done based on one or more lists (Arroyuelo et al.
2013). When we used the re-enumeration based on
more than one list, the modified LZW was slightly
better than the re-enumeration based on one list.
Another step is, after reordering the inverted file, to
sort the reenumerated DocIds and store the intervals
of them inside the inverted file. This step has a good

WEBIST 2016 - 12th International Conference on Web Information Systems and Technologies

158

compression ratio and for it we coin the term gap
method. We also use binary interpolative encoding
(Moffat and Stuiver, 2000) and GZIP
(http://en.wikipedia.org/wiki/GZIP, Witten, Moffat
and Bell, 1999) compression.

In the first scheme we have four different
methods that we apply. First is reorder method
(Arroyuelo et al. 2013), second we apply our
modified LZW, third we use binary interpolative
coding (Moffat and L. Stuiver, 2000) and last we use
GZIP (Witten, Moffat and Bell, 1999). In the second
scheme we again use four different methods but this
time they are a bit different. Again we apply reorder
method as a first step but as a second step we
employ the gap method. As a third step we use
modified LZW and for last step we use GZIP.

We propose this combination of techniques
because they are state of the art. We experimented
with other compressing methods such as gamma,
delta, Golomb encodings but their results were not
as good as interpolation’s encoding. Also gap
method was easy to implement and it achieved great
compressing ratio. Reorder method was primarily
used to enhance our modification on LZW. GZIP on
the other hand was used to minimize the output so
we could achieve the maximum compressing ratio.

Pseudo code describes the steps below. Figure 1
is the first scheme and Figure 2 is the second
scheme.

Figure 1: 1st scheme.

Figure 2: 2nd scheme.

On the first scheme, we reorder the inverted file

in order to reduce the range of the numbers and
create the patterns based on the second approach we
described in section 3.3. Then we use the modified
LZW and after that we proceed with binary
interpolation coding and GZIP in order to reduce the
inverted file even more.

On the second scheme we again reorder the
inverted file for the same reason as previously but
now we use the gap technique. Gap method
combined with the reorder method, has great
compressing ratio but it makes modified LZW
inefficient as we will explain below.

4.1 Modification of LZW

In our algorithm we are using a modification of the
LZW. Instead of characters the modified LZW reads
DocIds as characters and tries to find patterns inside
terms. Furthermore, the LZW has an index which
contains letters and numbers and their encoded
values which goes till 255, so it starts encoding after
255. We build an index, which in the start is
completely empty, that consists of patterns that are
found and their encoded number. As we know, the
DocIds are webpages which are enumerated. In
order to avoid collisions on decompression we must
locate the largest number inside the inverted file and
take the max (DocIds) + 1, as the starting encoding
number of the modified LZW (this is done by the
previous step, the re-enumerate step, so we will not
have to scan the whole file from the start).

4.2 Compression with Modified LZW

After we find the maximum document identifier, we
are ready to begin building the index. For each term
we build a list which contains the DocIds of each
term. The algorithm goes: for each DocId in the list
check if it exists inside the index. There are two
cases:

Case 1: The DocId does not exist inside the
index. In this case the DocId is inserted into the
index and it is encoded. The index contains pairs of
key-values (keys are the DocIds and values are the
encoded values of the DocIds). After the insertion to
the index the compressor will output the DocId, not
the encoded value, to the compressed inverted file,
so when the decompressor starts decoding it will
build the index the exact way the compressor did.

Case 2: The DocId of the list exists inside the
index. In this case we have two sub cases:

o Sub Case 1: The current DocId and the next
DocId of the list are being united and checked
if their union exists inside the index. If their

Compressing Inverted Files using Modified LZW

159

union does not exist then their union is encoded
and inserted into the index. The compressor
outputs the encoded value of the DocId which
exists inside the index and also the next DocId
is checked if it is inside the index. If it does not
exist then it is inserted into the index. If it
exists then we proceed with the next element in
the list.

o Sub Case 2: The current DocId in union with
the next DocId, inside the list, is already stored
inside the index. In this sub case the algorithm
checks iteratively if the union of DocIds takes
the union of the previous step in union with the
next DocId inside the list, exists inside the
index. It will go on and on till the list finishes
or when the union is not stored inside the
index. In the first case, when we reach the end
of the list, compressor just outputs the encoded
value of the union which is already stored
inside the index. If the union does not exist
then execute Sub Case 1.

So for each term we build a list which contains the
document identifiers and we check if their unions
exist inside the index.

4.3 Decompression with Modified
LZW

Decompression works the same way as the
compression, by building the index. The encoded
values begin from the maximum value of the re-
enumerate method. So modified LZW decompressor
is creating a list for every term, storing the DocIds or
the encoded values of patterns. For each element
inside the list it checks if the element is inside the
index. Again there are two cases:

Case 1: The element does not exist inside the
index and its value is smaller than the bound which
separates DocIds and encoded values. So the
decompressor will process the element as a DocId. It
will encode the element and store it to the index.
After the insertion decompressor will output the
current list element and continue with the next
element inside the list.

Case 2: The element exists inside the index and
its value is bigger than the bound’s value. In this
case the decompressor will know that the element is
the encoded value of a DocId or a union of DocIds.
Decompressor will get the DocId or the union of
DocIds from the index and output it to the file. But
the algorithm does not stop here. Decompressor
knows that the compressor outputted the encoded
value because the union with the next element of the
list did not exist into the index. So the outputted

value is united with the next element inside the list
and the union is encoded and stored into the index.
After that, decompressor continues with the next
element inside the list.

4.4. Index Creation

As we described in the section 4.1 the pattern
matching method we applied is based on building an
index. We scan the list of document identifiers of
each term and for each element we check if it exists
inside the index and then we encode it or search for
DocId unions that are not encoded.

In the below example we will show exactly how
the compression and decompression algorithms
work. Let’s assume we have 5 terms T1, T2, T3, T4,
and T5 which consist of the below DocIds:
T1: < 1, 2, 3, 4, 5, 9, 10 >
T2: < 1, 2, 3, 4, 5, 9, 10, 14, 17 >
T3: < 1, 2, 3, 4, 5, 9, 10, 17 >
T4: < 1, 2, 3, 4, 5, 6, 7, 8, 21, 23 >
T5: < 1, 2, 3, 4, 5, 6, 7, 8, 21, 23, 29 >

The bound is 29, so the encoding numbers will
begin on 30. We run the Modified LZW and we get:
T1: < 1, 2, 3, 4, 5, 9, 10 >
T2: < 30, 31, 32, 33, 34, 35, 36, 14, 17 >
T3: < 37, 32, 33, 34, 35, 36, 42 >
T4: < 43, 33, 34, 6, 7, 8, 21, 23 >
T5: < 46, 34, 48, 49, 50, 51, 52, 29 >

The encoded values of DocIds and unions:
First list

'1': 30, '2': 31, '3': 32, '4': 33, '5': 34, '9': 35, '10': 36
Second list

'1 2': 37, '3 4': 38, '5 9': 39, '10 14': 40, '14': 41, '17':
42

Third list
'1 2 3': 43, '4 5': 44, '9 10': 45

Fourth list
'1 2 3 4': 46, '5 6': 47, '6': 48, '7': 49, '8': 50, '21': 51,
'23': 52

Fifth list
'1 2 3 4 5': 53, '6 7': 54, '8 21': 55, '23 29': 56, '29': 57

In this case the data do not seem very
compressed because this is a small input, but if the
input was gigabytes of DocIds then we could see a
difference.

Decompression takes as an input the compressed
inverted file and with the same logic (reading the
DocIds and building the index) it restores the
original inverted file.

WEBIST 2016 - 12th International Conference on Web Information Systems and Technologies

160

5 RESULTS

We ran both the schemes to see which one was
better. The machine we used has these specs: AMD
PHENOM II X6 1100T 3.3 GHz, 16 GB ram, 1 TB
hdd, Linux 12.04 64bit.

We used as Inverted File: Wikipedia 21 GB text
file (Callan, 2009). As we noticed on the data set,
Wikipedia has almost 6.5 million pages, but the
numbers of those pages are not enumerated
sequentially. Some pages had numbers bigger than
20 million. So if we used the Wikipedia’s page
labels the modified LZW would start the
compression from the biggest number which would
require more digits to be stored inside the
compressed file. In order to start from the smallest
possible number we used the reorder method.

Table 1: First scheme.

Steps Ratio of
compression

Reorder 22%
Modified-LZW (+ above steps) 38%

IPC (+ above steps) 65%
GZIP (+ above steps) 82%

Table 2: Second scheme.

Steps Ratio of
compression

Reorder 22%
Gaps (+ above steps) 72%

Modified-LZW(+ above steps) 73%
GZIP (+ above steps) 90%

Ratio is based on the original inverted file
(Wikipedia 21 GB) for both Table1 and Table 2.

Modified LZW on the first scheme in table has a
16% ratio which could be improved if we had a
machine with more ram, because in our case we had
to split the reordered file and run modified LZW for
each sub file separately. In total the first scheme had
output a compressed file which is 82% smaller than
the original Inverted File.

On the second scheme we see that the modified
LZW has 1% compressing ratio. Also in this case
(second scheme) we had to slice the file to sub files
to run Modified LZW faster. So it may have
different results if we could build the index for the
whole inverted file and not on separately sub files.

A main drawback is the fact that we cannot
decompress a specific term. We have to go all the
way back decompressing each file, for each step so
we can obtain the initial (after reorder method)
inverted file. Another drawback of our technique is

that the decompression is extremely slow. In
compression we use dictionaries where we hash the
keys so we can search in constant time for the
patterns. In decompression we are using hashes to
values too so we can retrieve the keys which are the
original values. So in our machine, which lacks of
memory for this purpose, ram is used for hashing
keys and values. In order to avoid memory overflow,
we use external memory, hard disks, to store the
key, value pairs. After we reach 90% of ram space
we start appending key-value pairs to disk. For every
encoded value we have to search inside ram and if it
is not there we also have to search inside disk which
is very time consuming.

Now we are going to compare these results with
a new technique (Makris, and Plegas 2013). The
specific construction achieves good compressing
ratio and has been used for the same dataset
(Wikipedia). This new technique initially converts
the lists of DocIds to a set of arithmetic
progressions; in order to represent each arithmetic
progression they use three numbers. In order to do
that, they provide different identifiers to the same
document in order to fill the gaps between the
original identifiers that remain in the initial
representation. They use a secondary index in order
to handle the overhead which is produced because of
the multiple identifiers that have to be assigned to
the documents. They also use an additional
compression step (PForDelta or Interpolative
Coding) to represent it. The tables 3 and 4 show the
experiments which have been done to the
Wikipedia’s dataset.

Table 3: The compression ratio achieved by the (Makris
and Plegas, 2013) algorithms, with the secondary index
uncompressed.

 Base Multiple
Sequences IPC PFD

Wikipedia 78% 70% 44% 42%

Table 4: The compression ratio achieved by the (Makris
and Plegas, 2013) proposed algorithms, when compressing
the secondary index.

 Base
+

IPC

MS
+

IPC

Base
+

PFD

MS
+

PFD
Wikipedia 40% 38% 39% 38%

Table 3 shows the compression ratio which was
achieved in relation to the original size for the
proposed techniques (when the secondary index is
uncompressed) and the existing techniques. Table 4
depicts the compression ratio which was achieved by
the compression techniques in relation to the original

Compressing Inverted Files using Modified LZW

161

size when combining the proposed methods with the
existing techniques for compressing the secondary
index.

As we can see, the algorithm in this paper has a
better compression ratio than the algorithm from the
recent technique (Makris, and Plegas, 2013). The
main difference in these two papers is that in
(Makris and Plegas, 2013), they try to find
numerical sequences and they are compressing them
with the use of PForDelta or Binary Interpolative
Encoding. In this paper we are trying to find patterns
and then compress them with Binary Interpolative
Encoding and GZIP. The reason this paper is better
than the previous is because in this paper the
algorithm is “greedy” and we are using all the state
of the art compression techniques and also we are
using GZIP which is not used in the other method
(Makris and Plegas 2013). Without GZIP we get
65% and 73% compressing ratios on Wikipedia’s
dataset. We also tested the dataset using GZIP as the
only compressing method, in order to see if it has
greater compressing ratio than our 2 schemes. GZIP
compressed the dataset by 72%. It is clear that in
both schemes we achieved greater compressing ratio
than GZIP alone.

6 CONCLUSIONS

In our schemes we employed a set of pre-processing
and compression steps in order to achieve more
compression gains than previous algorithms. Let’s
explain why we used this order. The reorder step
minimizes the range of DocIds so the new inverted
file has smaller DocIds inside. Furthermore this step
is also helping the modified LZW. If we used the
modified LZW on the original inverted file, without
the reorder step, then the initial value of the codes
would be a bigger number than the reordered
inverted file. After, we use the modified LZW to
look for ‘word’ patterns inside the inverted file,
which has better results on our first scheme rather
than the second scheme. More analytically modified
LZW ran better in the first scheme because the Gap
method changed the structure of the whole inverted
file, gaps between the DocIds are not constant, plus
codes that modified LZW produces are longer than
the actual pattern gaps which are compressed. So in
many cases the lists that the Gap method produced
had numbers with fewer digits than the encoded
values of the modified LZW.

The last two steps, Binary Interpolative
Encoding and GZIP are used for a greedy approach.
Binary Interpolative Encoding is a very good integer

compression method and GZIP is the best
compression technique, using Deflate algorithm, so
we used them in order to find how much smaller
inverted file we can get.

Furthermore, a general disadvantage of the
modified LZW is that it demands machines with
large amount of main memory. In our experiments
we had to slice the re-enumerated inverted file into
smaller sub-files because we had memory overflow
problems if we used the whole re-enumerated
inverted file.

7 FUTURE WORK AND OPEN
PROBLEMS

We presented a set of steps that achieve a good
compression when handling inverted files. In a
further analysis we would like to test the schematics
to a larger set of data using stronger machines
because we believe that the modified LZW will have
better compressing ratio if we could store more
patterns inside the index. Furthermore we would like
to modify the algorithm so we can compress and
decompress separately terms and not the whole set
of data. We also want to implement the PForDelta
method as a third step instead of Binary
Interpolative Encoding; this seems worthwhile since
it is expected to improve the performance of our
techniques.

REFERENCES

Akritidis, L., Bozanis, P., 2012, Positional data
organization and compression in web inverted indexes,
DEXA 2012, pp. 422-429.

Anh, Vo Ngoc, and Alistair Moffat. "Inverted index
compression using word-aligned binary codes."
Information Retrieval 8.1 (2005): 151-166.

Arroyuelo D., S. González, M. Oyarzún, V. Sepulveda,
Document Identifier Reassignment and Run-Length-
Compressed Inverted Indexes for Improved Search
Performance, ACM SIGIR 2013.

Baeza-Yates, R., Ribeiro-Neto, B. 2011, Modern
Information Retrieval: the concepts and technology
behind search, second edition, Essex: Addison
Wesley.

Büttcher, S. Clarke, C. L. A., Cormack, G. V.,
2010, Information retrieval: implementing and
evaluating search engines , MIT Press, Cambridge,
Mass.

Callan, J. 2009, The ClueWeb09 Dataset. available at
http://boston.lti.cs.cmu.edu/clueweb09 (accessed 1st
August 2012).

WEBIST 2016 - 12th International Conference on Web Information Systems and Technologies

162

Chierichetti, F., Kumar, R., Raghavan, P., 2009.
Compressed web indexes. In: 18th Int. World Wide
Web Conference, pp. 451–460.

Deutsch, L. Peter. "DEFLATE compressed data format
specification version 1.3." (1996).

He, J., Suel, T., 2011. Faster temporal range queries over
versioned text, In the 34th Annual ACM SIGIR
Conference, China, pp. 565-574.

He, J., Yan, H., Suel, T., 2009. Compact full-text indexing
of versioned document collections, Proceedings of the
18th ACM Conference on Information and knowledge
management, November 02-06, Hong Kong, China.

Heman, S. 2005. Super-scalar database compression
between RAM and CPU-cache. MS Thesis, Centrum
voor Wiskunde en Informatica, Amsterdam.

Huffman, David A., et al. A method for the construction of
minimum redundancy codes. proc. IRE, 1952, 40.9:
1098-1101.

Jean-Loup Gailly and Mark Adler, GZIP Wikipedia
[http://en.wikipedia.org/wiki/GZIP]

Kwong, Sam, and Yu Fan Ho. "A statistical Lempel-Ziv
compression algorithm for personal digital assistant
(PDA)." Consumer Electronics, IEEE Transactions on
47.1 (2001): 154-162.

Makris, Christos, and Yannis Plegas. "Exploiting
Progressions for Improving Inverted Index
Compression." WEBIST. 2013.

Moffat and L. Stuiver. Binary interpolative coding for
effective index compression. Information Retrieval,
3(1):25–47, 2000.

Ntoulas A., Cho J., 2007. Pruning policies for two-tiered
inverted index with correctness guarantee, Proceedings
of the 30th Annual International ACM SIGIR
conference on Research and development in
Information Retrieval, July 23-27, Amsterdam, The
Netherlands.

Oberhumer, M. F. X. J. "LZO real-time data compression
library." User manual for LZO version 0.28, URL:
http://www. infosys. tuwien. ac.
at/Staff/lux/marco/lzo. html (February 1997) (2005).

Welch, Terry (1984). "A Technique for High-Performance
Data Compression". Computer 17 (6): 8–19.
doi:10.1109/MC.1984.1659158.

Witten, Ian H., Alistair Moffat, and Timothy C. Bell.
Managing gigabytes: compressing and indexing
documents and images. Morgan Kaufmann, 1999.

Yan, H., Ding, S., Suel, T., 2009, Compressing term
positions in Web indexes, pp. 147-154, Proceedings
of the 32nd Annual International ACM SIGIR
Conference on Research and Development in
Information Retrieval.

Zhang, J., Long, X., and Suel, T. 2008. Performance of
compressed inverted list caching in search engines. In
the 17th International World Wide Web Conference
WWW.

Ziv, Jacob, and Abraham Lempel. "A universal algorithm
for sequential data compression." IEEE Transactions
on information theory 23.3 (1977): 337-343.

Ziv, Jacob; Lempel, Abraham (September 1978).
"Compression of Individual Sequences via Variable-

Rate Coding". IEEE Transactions on Information
Theory 24 (5): 530–536.
doi:10.1109/TIT.1978.1055934.

Zukowski, M., Heman, S., Nes, N., and Boncz, P. 2006.
Super-scalar RAM-CPU cache compression. In the
22nd International Conference on Data Engineering
(ICDE) 2006.

Compressing Inverted Files using Modified LZW

163

