
Automatic Refactoring of Single and Multiple-view UML Models
using Artificial Intelligence Algorithms

Abdulrahman Baqais and Mohammad Alshayeb
Department of Information Science and Technology, King Fahd University of Petroleum & Mineralsy,

KFUBM Blvd., Dhahran, Saudi Arabia

1 INTRODUCTION

Refactoring tends to improve the internal structure
of the software while preserving its
behaviour(Fowler and Beck, 1999). This process
attempts to reduce the complexity of the software
and cut its maintaince cost(Mens and Tourwe, 2004)
promoting its quality status(Alshayeb, 2009).

1.1 Research Problem

The majority of articles that discuss software
refactoring are focusing on software code (Fowler
and Beck, 1999, O'Keeffe and Cinnéide, 2008,
Alkhalid et al., 2011b). Recently, a slight increase in
the interest of refactoring at the design level
emerged(Misbhauddin and Alshayeb, 2015).
Different methods have been applied to refactor
UML diagrams namely: pattern-based (Song et al.,
2002a), formal rules (Massoni et al., 2005) and
graph transformation (Mens, 2006).
Refactoring UML diagrams is favorable since
designing activity precedes coding and as such
abnormalities, ill-structure or potential bugs can be
detected and corrected early (Sunyé et al., 2001).
Each UML diagram has different design smells and
requires different refactoring operations.
Refactoring UML design smells for each diagram
manually exhibits some drawbacks such as: it’s
costly in terms of cost and time and it requires
domain experts. Automating the refactoring process
surely will save time and cost and will help software
practioners to improve their designs.
Most of the other refactoring approaches are carried
out on single instances of UML diagrams (Ghannem
et al., 2011, Issa, 2007). In this research, we are
extending the field by applying AI refactoring on a
multiple-view UML model and comparing the
results with individual UML diagrams. This will
show the advantages of adopting multiple-view
refactoring.

The overall aim of this research is to “refactor UML

models by providing the user with a set of AI
techniques, that utilize software metrics and
refactoring operations, to produce refactoring
sequences that improve quality”.

1.2 Research Motivation

Most of the recent articles in the literature focus on
source-code level refactoring, this research seeks the
developemnt of applying AI refactoring at the design
level to various UML diagrams. It sets itself apart
from other works by including a multiple-view UML
model (Misbhauddin, 2012) (A novel model
proposed by a PhD student) and refactor it along
with a detailed comparison between UML diagrams
refactoring and multiple-view UML refactoring
utilizing different AI algorithms. A multiple-view
UML model unifies two UML views: Structural and
Behavioural.

Figure 1: UML Views and Diagrams.

A recent thoroughly systematic review published in
Empirical Software Engineering Journal emphasizes
the need to pursue further research on UML Model
Refactoring: “The results of this review indicated
that UML model refactoring is a highly active area

Baqais, A. and Alshayeb, M.
Automatic Refactoring of Single and Multiple-view UML Models using Artificial Intelligence Algorithms.
In Doctoral Consortium (DCMODELSWARD 2016), pages 3-8

3

of research. Quite a few quality techniques and
approaches have been proposed in this area, but it
still has some important issues and limitations to be
addressed in future work” (Misbhauddin and
Alshayeb, 2015).

1.3 Multiple-View Model

The multiple-View model proposed by Misbhauddin
(Misbhauddin, 2012) combines three diagrams: class
diagram, sequence diagram and use case diagrams.
Each diagram represented one view as illustrated in
Figure 1. Misbhauddin extended the metamodel of
these three diagrams to form one model named an
integrated model. Then, he ran some experiments to
show that the integrated model can reveal some
hidden smells of each diagram that was not clear
when refactoring each diagram individually.

2 OUTLINE OF OBJECTIVES

In this section, we discuss the research objective and
the research questions.

2.1 Research Objectives

The main objective of this research is to:
“automatically refactor UML models using
a set of Artificial Intelligence techniques, that are
guided by software metrics, in order to apply
refactoring operations that lead to quality
improvement”. To achieve the main objective, the
following sub-objectives are proposed:
1. Evaluate various AI algorithms that can be used

for software refactoring at UML model level.
2. Apply AI algorithms to refactor the individual

UML models and the multiple-view UML
model.

3. Evaluate and compare the quality impro-
vement/degradation of the refactored UML
models.

In this research, we aim to provide answers to the
following research questions:

1. Which AI algorithms are effective in
refactoring UML models?

2. Is refactoring a multiple-view UML model
different from refactoring a single-view UML
model using AI?

3. Does refactoring a multiple-view UML model,
using the proposed approach, yield better
quality than refactoring a single-view model?

Research question (RQ) 1 is concerned with the
process, techniques and approaches that facilitate
refactoring at model level. Three UML diagrams are
selected: class diagram, use case diagram and
sequence diagram. These diagrams are the ones
used by (Misbhauddin, 2012) to construct a
multiple-view UML model. Figure 2 shows the
popularity of these three diagrams using Google
Trend.

Metaheuristic-based refactoring or generally a
search-based algorithm received an increasing
interest recently and it’s applied extensively on
software code by a premier research groups such as:
Search-Based Software Engineering (SBSE). We
anticipated the same technique can generate fruitful
advantages if it is applied to the different UML
models such as sequence and use case diagram.
RQ 2 is concerned with employing AI techniques to
refactor multiple-view UML model.
RQ 3 is measuring the impact of those techniques on
improving the model quality. It is worth noting that
software metrics may conflict with each other, thus,
improving one metric may lead to degrading the
values of the other metric (for example coupling and
cohesion). This issue is far clearer for multiple-view
model refactoring.

 Figure 2: Interest of some UML over time.

DCMODELSWARD 2016 - Doctoral Consortium on Model-Driven Engineering and Software Development

4

3 STATE OF THE ART

Refactoring is defined by Opdyke, as “program
restructuring transformation that supports the design,
evolution, and reuse of object-oriented application
framework” (Opdyke, 1992). Fowler, who wrote the
classic reference in code refactoring, defined it as “a
change made to the internal structure of software to
make it easier to understand and cheaper to modify
without changing its observable behavior” (Fowler
and Beck, 1999).

Model Refactoring is performed to satisfy
specific design qualities. There are some reasons
that urge decision makers to work on model
refactoring (Song et al., 2002b): to meet design
goals, to address deficiencies uncovered by design
analyses and to explore alternative designs. The first
to start refactoring UML diagrams was Sunye et al.
(Sunyé et al., 2001).

Some papers addressed refactoring use case
diagrams (Rui and Butler, 2003, Yu et al., 2004,
Khan and El-Attar, 2014).

Some works targeted the refactoring of a
sequence diagram such as: (Ren et al., 2003, Liu et
al., 2006, Dae-Kyoo, 2008).

Most of the refactoring activities are presented in
Fowler Catalogue (Fowler and Beck, 1999, Fowler
et al., 2004, Fowler, 2013). However, these
operations are addressing ill-code structure. El-Attar
and Miller (El-Attar and Miller, 2010) proposed a
comprehensive list of refactoring activities
addressing ill-structured use case diagram; they
referred to this list as anti-patterns (El-Attar and
Miller, 2010). Other works include the ones by
cortellessa et al. (Cortellessa et al., 2010) and Llano
et al. (Llano and Pooley, 2009).

Alkhalid et al. (Alkhalid et al., 2011a) applied
clustering algorithms for software refactoring. Their
work, however, was focused on two conflicted
metrics only: Coupling and Cohesion.

Search-based refactoring at code level was
investigated by O’Keefee and Mel Ó Cinnéide
(O'Keeffe and Cinnéide, 2008). They compared
several techniques on five programs in which four of
them are open-source. Jensen and Cheng (Jensen
and Cheng, 2010) applied Genetic Programming to
aid for automated refactoring. Koc et al. (Koc et al.,
2012) proposed Artificial Bee Colony (ABC)
optimization for automating refactoring and
compared it with several other techniques.

Mel Ó Cinnéide et al. (Mel et al., 2012) used AI
for automated refactoring focusing on cohesion
metrics only. Kessentini et al. (Kessentini et al.,
2011) implemented a genetic algorithm to detect bad

smells.

3.1 A Summary of the Previous Work
Issues

The articles mentioned in this section suffer from
some issues that we would like to address in our
research:

• Most of them are targeting code refactoring
(Alkhalid et al., 2010, Koc et al., 2012,
O'Keeffe and Cinnéide, 2008), while our focus
is towards refactoring UML models.

• None of them is targeting a multiple-view
UML diagram.

• None of them is comparing multiple-view of
UML with a single view, while in our research
both single-view UML and multiple-view
UML models are refactored and compared
using the same research settings.

4 METHODOLOGY

Our Methodology is based on the following phases:
1. Refactoring Set-up: This step involves three

components: operations, algorithms and quality
metrics.

2. Automation: This involves the implementation
of AI algorithms, tuning the parameters and
validating the results using quality metrics.
Tuning the parameters usually will be done by
running the experiments several times and
record the results until a satisfied value of the
quality metric is reached. Some algorithms such
as Simulated Annealing have been applied in
software refactoring, so we might tune the
parameters to similar values for comparison
purpose. For each AI algorithm, an objective
function will be specified that needs to be
maximized (or minimized). The objective
function represents a quality metric that we
need it to be optimized. Basically, we will work
on one objective function that addresses one or
combined quality metrics.

3. Empirical Analysis.

We are going to use different quality metrics to
evaluate the refactored diagram. For multiple-view
UML model, we may propose new metrics if we
find that the existing metric are not suitable to
measure the multiple-view UML model quality.
Figure 3 summarizes our research cycle:

Automatic Refactoring of Single and Multiple-view UML Models using Artificial Intelligence Algorithms

5

Figure 3: The experiment steps of our PhD Thesis.

4.1 Individual Diagram Refactoring
Process

In this part, we will describe with sufficient details
all the processes, operations and tasks required to
produce our results. The description here can be
used as a reference for all four diagrams, since the
flow chart of the four diagrams is similar.
1. The first phase involves preparing the data,

which in this part, is the UML diagram. The
data will be either: senior students’ projects,
published data or commercial models. There is
the possibility that some data is not clean and
needs some preprocessing.

2. Transforming the UML diagram to an
intermediate representation of the model. This is
to facilitate implementing the algorithms.

3. In order to apply algorithms to the refactoring
problem, we must map it to a suite of AI
algorithms. Sometimes, it is not obvious how
the problem can be encoded to be tackled by the
algorithm.

4. Producing a refactoring decision is the most
important phase and the core job of this
research. The same process is applicable for all
selected UML diagrams. In addition, since the
multiple-view UML model is not fully studied
in the literature and hence, we presume that all
steps may need some adjustments, as we may
find very few multiple-view UML models
available.

Figure 4: An activity diagram showing our proposed
solution.

4.2 Validation

As discussed earlier, refactoring aims to improve the
software artifact code or model. In order to ensure
that the refactoring operation has successfully
improved the artifact, a set of quality metrics are
measured. If the refactoring operation leads to
optimize the values of these metrics, then the
refactoring operation is considered valid.

Use case diagrams depict the functionality of the
system. Two types of metrics were investigated in
the literature: size complexity and effort estimation.
Effort estimation was investigated in the literature.
We opt to propose refactoring operations that
improves the size complexity. Sequence diagram
involves sending messages between classes.
Reducing the number of communication between
different classes lead to better understanding of the
system and reduce the overhead. Hence, we selected
refactoring operations that impacts on the cohesion
and coupling of the sequence diagrams. There are
many metrics designed to class diagrams. CK
metrics is known to be the most popular to capture
its quality. So, we are going to use them. For
multiple-view model, we might propose new metrics
or choose one of the above metrics and compare the
effectiveness of refactoring operations to multiple-
view with the single-view diagrams.

5 STAGE OF THE RESEARCH

Currently, we have accomplished half of the PhD
work. We automatically refactored use case and
sequence diagrams. We applied three search-based
algorithms: Hill climbing, Late-Acceptance Hill
Climbing and Simulated Annealing to refactor two
use case models using two complexity metrics. We
also refactored sequence diagram in order to
improve its cohesion and coupling metrics. We
compared a k-mean clustering algorithm with a
hybridized algorithm named KSA that hybridize k-
mean and SA algorithms together. We are going to
continue with refactoring class diagram and
multiple-view UML diagram. At the end of this
research, the following deliverables are expected:

• A comprehensive review of software
refactoring detections and operations focusing
mainly on search-based techniques.

• Conclusion on the appropriateness of a set of
AI algorithms for refactoring of use case,
sequence, class and multiple-view diagrams.

DCMODELSWARD 2016 - Doctoral Consortium on Model-Driven Engineering and Software Development

6

• A detailed report showing the performance of
various AI algorithms in refactoring UML
diagrams and setting a comparison framework
among these algorithms using statistical
techniques.

• New metrics, if necessary, which are applicable
to measure the quality of the multiple-view
model.

6 CONTRIBUTION

There are some issues in AI-based software
refactoring: the selection of techniques, the suitable
metrics, the model transformation approaches and
the application on the multiple-view UML models.
Leveraging the power of AI for refactoring is
promising. Studying the applicability of various AI
techniques over a set of different UML diagrams
will surely enrich the domain. Testing our approach
on different views of UML including the multiple-
view model will add another dimension to the
Model-driven refactoring literature. In addition, our
techniques are extendable and scalable by
implementing on other UML diagrams or models,
and by improving the applied AI algorithms via
operator and parameter tuning.

In summary, the major contributions of this
research to the model-based literature are outlined
below:
• Contribution 1: Refactoring the multiple-view

UML model:
• Contribution 2: Comparison between

refactoring UML models and multiple-view
UML model

6.1 Limitations

At this stage, we are not able to anticipate all types
and instances of limitations in our research.
However, the following limitations emerged from
our work so far. Knowing these limitations at an
early stage, we are trying to mitigate their effects on
the validity of our research:

• Data is an issue in the field of software
engineering. Many authors rely on a generated
UML from an available source code (Ghannem
et al., 2013, Ghannem et al., 2011), others rely
on published data (Song et al., 2002b). Al-
Dallal (AlDallal, 2014) reported the issue of
the absence of repository for model refactoring.
To mitigate this effect, we have collected data
from three different sources. These sources

are: open source, senior projects of students
and real-world case studies (either free or
commercial).

• Metrics is one of our research tools to validate
the results. There is some controversy on how
these metrics reflect what they measure
precisely and to which degree they are valid.
To mitigate the effect of this limitation, we rely
on the wide adoption of these metrics by many
authors in the domain.

• Some of the Artificial Intelligence techniques
do not show explicitly the steps on how the
software is refactored. To mitigate that, an
analysis with a brief description of the
algorithm and its running steps is going to be
provided.

• In running our experiments, we are relying on
our implementations of the algorithms. We are
going to run extensive testing to ensure the
correctness of their implementation.

ACKNOWLEDGEMENT

The authors would like to thank KFUPM for
support.

REFERENCES

Aldallal, J. 2014. Identifiying Refactoring opportunities in
object-oriented code: a systematic literature review.
Information and software technology.

Alkhalid, A., Alshayeb, M. & Mahmoud, S. 2010.
Software Refactoring at the function level using new
adaptive k-nearest neighbor algorithm. Advances in
engineering software, 41, 1160-1178.

Alkhalid, A., Alshayeb, M. & Mahmoud, s. A. 2011a.
Software refactoring at the class level using clustering
techniques [online]. [accessed].

Alkhalid, A., Alshayeb, M. & Mahmoud, s. A. 2011b.
Software refactoring at the package level using
clustering techniques. IET software, 5, 276-284.

Alshayeb, M. 2009. Empirical investigation of refactoring
effect on software quality. Information and software
technology, 51, 1319-1326.

Cortellessa, V., Marco, A. D., Eramo, R., Pierantonio, A.
& Trubiani, C. 2010. Digging into UML models to
remove performance antipatterns. Proceedings of the
2010 icse workshop on quantitative stochastic models
in the verification and design of software systems.
Cape town, south africa: acm.

Dae-kyoo, K. Year. Software quality improvement via
pattern-based model refactoring. In: high assurance
systems engineering symposium, 2008. Hase 2008.
11th ieee, 3-5 dec. 2008 2008. 293-302.

Automatic Refactoring of Single and Multiple-view UML Models using Artificial Intelligence Algorithms

7

El-attar, M. & Miller, J. 2010. Improving the quality of
use case models using Antipatterns. Software &
systems modeling, 9, 141-160.

Fowler, M. 2013. Catalog of Refactorings [online].
Available: http://www.refactoring.com/catalog/
[accessed 21-oct-2014 2014].

Fowler, M. & beck, k. 1999. Refactoring: improving the
design of existing code, reading, ma, addison-wesley
professional.

Fowler, S. W., Lawrence, T. B. & Morse, E. A. 2004.
Virtually embedded ties. Journal of management, 30,
647-666.

Ghannem, A., Boussaidi, G. E. & Kessentini, M. 2013.
Model refactoring using interactive genetic algorithm.
In: ruhe, g. & zhang, y. (eds.) Search based software
engineering. Springer berlin heidelberg.

Ghannem, A., Kessentini, M. & el Boussaidi, G. Year.
Detecting model refactoring opportunities using
heuristic search. In, 2011 2011. Riverton, nj, usa: ibm
corp., 175-187.

Issa, A. A. 2007. Utilising refactoring to restructure use-
case models. Lecture notes in engineering and
computer science.

Jensen, A. C. & Cheng, B. H. C. Year. On the use of
genetic programming for automated refactoring and
the introduction of design patterns. In, 2010 2010.
New york, ny, usa: acm, 1341-1348.

Kessentini, M., Kessentini, W., Sahraoui, H., Boukadoum,
M. & Ouni, A. Year. Design defects detection and
correction by example. In: 2011 IEEE 19th
international conference on program comprehension
(icpc), 2011/06// 2011. 81-90.

Khan, Y. & El-Attar, M. 2014. Using model
transformation to refactor use case models based on
antipatterns. Information systems frontiers, 1-34.

Koc, E., Ersoy, N., Andac, A., Camlidere, Z. S., Cereci, i.
& Kilic, H. 2012. An empirical study about search-
based refactoring using alternative multiple and
population-based search techniques. In: gelenbe, e.,
lent, r. & Sakellari, g. (eds.) Computer and
information sciences ii. Springer London.

Liu, H., Ma, Z., Zhang, L. & Shao, W. Year. Detecting
duplications in sequence diagrams based on suffix
trees. In: software engineering conference, 2006.
Apsec 2006. 13th asia pacific, 2006. IEEE, 269-276.

Llano, M. T. & Pooley, R. Year. UML specification and
correction of object-oriented anti-patterns. In:
software engineering advances, 2009. Icsea'09. Fourth
international conference on, 2009. IEEE, 39-44.

Massoni, T., Gheyi, R. & Borba, P. Year. Formal
refactoring for uml class diagrams. In, 2005 2005.
152-167.

Mel, #211, Cinn, #233, Ide, Tratt, L., Harman, M.,
Counsell, S. & Moghadam, I. H. 2012. Experimental
assessment of software metrics using automated
refactoring. Proceedings of the Acm-IEEE
international symposium on empirical software
engineering and measurement. Lund, sweden: Acm.

Mens, T. 2006. On the use of graph transformations for
model refactoring. In: lämmel, r., saraiva, j. & visser,

j. (eds.) Generative and transformational techniques
in software engineering. Springer berlin heidelberg.

Mens, T. & Tourwe, T. 2004. A survey of software
refactoring. IEEE transactions on software
engineering, 30, 126-139.

Misbhauddin, M. 2012. Toward an integarted metamodel
based approach for software refactoring.

Misbhauddin, M. & Alshayeb, M. 2015. Uml model
refactoring: a systematic literature review. Empirical
softw. Engg., 20, 206-251.

O'keeffe, M. & Cinnéide, m. Ó. 2008. Search-based
refactoring: an empirical study. Journal of software
Maintenance and evolution: research and practice, 20,
345-364.

Opdyke, w. F. 1992. Refactoring object-oriented
frameworks.

Ren, S., Rui, K. & Butler, G. 2003. Refactoring the
scenario specification: a message sequence chart
approach. In: konstantas, d., léonard, m., pigneur, y. &
patel, s. (eds.) Object-oriented information systems.
Springer berlin heidelberg.

Rui, K. & Butler, g. 2003. Refactoring Use case models:
the metamodel. Proceedings of the 26th australasian
computer science conference - volume 16. Adelaide,
australia: australian computer society, inc.

Song, E., France, R. B., Kim, D.-K. & Ghosh, S. Year.
Using roles for pattern-based model refactoring. In:
proceedings of the workshop on critical systems
development with uml (csduml'02), 2002a.

Song, E., France, R. B., kim, D.-k. & Ghosh, S. Year.
Using roles for pattern-based model refactoring. In,
2002 2002b.

Sunyé, G., Pollet, D., Traon, Y. L. & Jézéquel, J.-M. 2001.
Refactoring uml models. In: gogolla, m. & kobryn, c.
(eds.) ≪ ≫uml 2001 — the unified modeling language.
Modeling languages, concepts, and tools. Springer
berlin heidelberg.

Yu, W., Jun, L. & Butler, G. Year. Refactoring use case
models on episodes. In: automated software
engineering, 2004. Proceedings. 19th international
conference on, 20-24 sept. 2004 2004. 328-335.

DCMODELSWARD 2016 - Doctoral Consortium on Model-Driven Engineering and Software Development

8

