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Abstract: Vision based human detection continuously attracts research interest since it is a topic of practical 
significance. The well-established Histogram of Oriented Gradients (HOG) human detector, though 
regarded as a reference for human detection, still suffers from the typical problem of the trade-off between 
precision and recall, relying on the threshold of its classifiers. In this paper, we propose a human detection 
system which can provide both good precision and recall without the need for adjusting the classification 
thresholds. Our strategy is to combine the HOG detector with a body part model in order to eliminate the 
false detections that do not match the human silhouette (body) model. For this purpose, a probabilistic 
model of the human body is learned to describe the relative position between the distinctive body parts. A 
HOG detection would be retained if the body parts can be detected in the confidence areas provided by the 
learned body model. Moreover, the body parts detectors are boosted cascade classifier learned with the 
Haar, HOG or LBP features. The multi-modal feature representation of the different human body parts is 
more robust against variations in human appearances. Experiment results on the INRIA data sets show that 
our human detector achieves a precision of 70% at a recall of 50%, which cannot be achieved by the HOG 
detector under any parameter settings.  

1 INTRODUCTION 

Human detection has been at the forefront of current 
research in machine vision with many applications 
such as video surveillance, car safety, robotics, 
biometrics and others. The human detection problem 
is often hindered by difficulties such as various 
types of occlusions and changes in human pose 
and/or appearance. A substantial number of methods 
have been developed over the years and much 
progress has been done in terms of detection rate and 
accuracy and also computation time.  

Many of the previous human detection 
approaches attempt to represent the entire human as 
a single object. What follows is a brief literature 
review on the problem of human detection. In 
(Papageorgiou and Poggio, 1999), the SVM 
classifier was learned to be applied on the entire 
human body for pedestrian detection. A shape model 
for human body has been proposed in (Felzenszwalb, 
2001), where human positions are inferred via 
template matching based on the Chamfer distance. 
Viola and Jones used their Haar cascade detector for 

pedestrian detection in (Viola et al., 2003). The Haar 
detector was developed originally for real-time face 
detection (Viola and Jones, 2001). The basic idea of 
this method is to select weak classifiers with the 
AdaBoost algorithm (Freund and Schapire, 1996). 
However, direct utilization of the Haar features for 
human detection does not work well and therefore, 
the researchers mentioned above improved their 
detection system by using additional motion 
information, which achieved much better 
performance. In 2005, Dalal and Triggs introduced 
the well-established HOG-SVM detector, based on 
the Histogram of Oriented Gradient (HOG) 
descriptors (Dalal and Triggs, 2005). Following the 
work of (Viola et al., 2003), a boosted cascade 
classifier based on the HOG features was proposed 
in (Zhu et al., 2006) to speed up the HOG-SVM 
algorithm.  

Another promising line of research commenced 
recently, exploring body part-based models to deal 
with occlusion and handle with multiple body poses. 
Mohan et al. (Mohan et al., 2001) divided human 
body into head-shoulder, legs, left and right arm and 
they trained SVM classifiers to learn each body part 
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using Haar wavelet features. Mikolajczyk et al. 
(Mikolajczyk et al., 2004) modelled human body by 
employing seven parts. For each part, a detector was 
learned by using orientation-based features similar 
to those of the SIFT descriptor (Lowe, 1999) and 
aprior Gaussian mixture model for upper body was 
used to calculate a pose likelihood and handle 
various body poses. A similar method based on 
associating a probabilistic assemble of body parts 
into a full body configuration was presented in 
(Micilotta et al., 2005). Additional skin colour 
information was also taken into account to calculate 
the overall joint likelihood required for the final 
body configuration. In (Felzenszwalb et al., 2008) 
and (Felzenszwalb et al., 2010) the HOG-SVM  
(Dalal and Triggs, 2005) was used as a building 
block for a proposed so called deformable part-based 
models.  

Several types of features have been applied to 
capture the key characteristics of humans. Various 
types of local features, such as SIFT, Haar wavelets, 
and HOG, have been compared in (Dalal and Triggs, 
2005). Their experiments show that the HOG 
detector, which employs the HOG descriptors and a 
trained SVM classifier, outperforms the other types 
of features for the human detection task. Following 
this comparative study, the HOG detector has 
become a reference for human detection. However, 
this detector still manifests a trade-off between the 
detection precision and recall. Obviously, the false 
alarm and missdetection rates follow opposite trends 
and their values are related to the HOG descriptor 
parameters (block size, cell size, and block stride) 
and the classification threshold of the HOG-SVM 
classifier. As it has been verified in various 
experiments, a smaller block stride in the HOG 
detector, yields lower achieved missdetection rate  
(higher recall) but higher resulting false alarm rate 
(lower precision) (Dalal and Triggs, 2005). Besides, 
increasing the SVM classification threshold makes 
the classification more stringent so that the number 
of false detections are reduced (better precision) at 
the expense of higher number ofmissed detections 
(lower recall).  

Motivated by the behaviour of the HOG detector 
with respect to the threshold of its corresponding 
SVM classifier, we aim to propose a human 
detection system providing both good precision and 
recall without adjusting the classification thresholds. 
For this purpose, we combine the HOG detection 
with a learned human body model so that the 
detections which do not match the body model (and 
they are hopefully false detections) are removed. 
The HOG detector is first employed with the goal of 

detecting as many human candidates as possible in 
order to ensure a high recall. The detection precision 
is thereafter increased relying on additional 
individual body part detections. A body model is 
learned, based on Gaussian distributions, to describe 
the one-to-one geometric relations between the body 
centroid and each body part. A candidate human 
detected by the HOG detector would be retained if at 
least one of the body parts is found in the confidence 
areas with respect to the learned Gaussian body 
model. To better capture the characteristics of 
different body parts, the Haar, HOG, and LBP 
feature descriptors are incorporated while we 
building the boosted classifiers for body parts 
detectors. 

The rest of the paper is constructed as follows. 
Section 2 presents the proposed method. 
Experimental results are addressed in Section 3. 
Finally, conclusions are given in Section 4. 

2 PROPOSED METHOD  

2.1 Overview of the Proposed Human 
Detection Method 

The proposed human detection method explores the 
part-based representation of human body to verify 
the detections of the HOG detector. The detection 
framework consists of two main phases.  

Firstly, potential human bodies and body parts 
are detected at all locations and scales using the 
HOG pedestrian detector and body part detectors 
respectively. In particular, the HOG detector with a 
classification threshold 0=Δ  is applied to select as 
many potential human candidate regions as possible. 
The detectors for the five human body parts are 
boosted cascade classifiers learned with different 
features.  

In the second phase, the false HOG detections 
are removed based on information provided from 
additional body part detections. A probabilistic body 
model for upright humans is learned to describe the 
geometric relations between each body part and the 
body centroid. The learned body model provides 
high confidence neighbourhoods for searching for 
the head, upper body, and lower body.  A candidate 
human detected with the HOG detector would be 
retained if at least one body parts lies in the 
corresponding neighbourhood. 
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Figure 1: Illustration of the parameters to be used in the 
probablistic human body model. 

2.2 Body Models 

2.2.1 Body Parts 

We use five body parts to represent a human, 
namely, frontal face, profile face, upper body, 
profile upper body, and lower body. In particular, 
the face is a very distinctive part of a human body 
due to specific features like eyes, nose and mouth, 
thus, it provides clear indication for discriminating 
between true and false human detections. Detecting 
both frontal and profile faces makes it possible to 
handle frontal and profile body poses. However, 
faces may become hardly detectable at low 
resolution. Including frontal and profile upper bodies 
in our set of body parts could help to overcome this 
limitation. The lower body is added to provide a 
complete coverage of the body space. 

2.2.2 Learn the Relations between the Body 
Parts and Body Centroid 

Motivated by (Mikolajczyk et al., 2004), a 
probability distribution model is learned with 
annotated humans to describe the relative location of 
the body parts. In our method, we model the relative 
distances between the body centroid and the body 
parts by bivariate Gaussian distributions. The whole 
body model consists of a set of one-to-one 
probabilistic relations. To reduce the complexity of 
the model, we assume that frontal and profile faces 
lie approximately at the same distance from the body 
centroid. The same hypothesis is made for frontal 
and profile upper bodies. Thus, three different 
Gaussian distributions are learned, one for face 
(frontal and profile faces) ),( 11 ΣμN , one for upper 

bodies (frontal and profile) ),( 22 ΣμN , and one for 

lower bodies ),( 33 ΣμN . 

Let P  be the set of body parts which include 
upper body, lower body and face. The relative 
distance iZ  between the centroid of the body, B , 

and a body part P∈ip  is calculated as: T
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ip  (See Figure 1). The normalization with respect to 

the body size in Equation (1) makes it easy to deal 
with height and width variability among the 
annotated humans used for training.  

We assume that iZ  follows a bi-variate Gaussian 
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covariance matrix Σ  of ),( ΣμN  can thus be 

estimated using Maximum-likelihood: 





= −−=Σ

=

N
i ii

i i

zz
N

z

1
T))((

1 μμ

μ




 (2)

where iz is a realization of iZ  provided by the 
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2.2.3 Confidence Areas for Body Parts 
Locations  

The normalized distance iZ  between the body 

centre and body parts has been modelled as 
Gaussian distribution, i.e., ),(~ ΣμNiZ . The 

distribution could provide us a high confidence 
neighbourhood for a particular body part with 
respect to the body’s centroid. The covariance 
matrix Σ  describes the spread of the distribution 
around the mean. If we set the confidence level as 
0.95 when selecting the confidence region, then the 
region that contains 95% of all samples that can be 
drawn from the Gaussian distribution forms a 
confidence region for the distribution. The 
Mahalanobis distance is used to measure the 
distance from the test point z  to the bivariate 
Gaussian: 

)()()( 12 μμ −Σ−= − zzzmd  (3)
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Figure 2: Confidence areas for body parts (yellow: face, 
red: upper body, green: lower body).  

The eigenvectors 1v , 2v  of Σ define a new 

coordinate system R  in which the Mahalanobis 
distance between the test point z′  and distribution 

),0( DN  where 1 2( , )D diag λ λ= , is: 
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In the coordinate system R ′ , the 95% 
confidence area for 1 2[ , ] ( )TZ v v Z μ′ = −  is: 

95.0))(( 2 =≤ ∗szmP d , (5)

where *s is a scalar equal to 5.991 according to the 
probability table of the chi-squared distribution. The 
solution of Equation (5) is a confidence ellipse ε ′  in 
the coordinate system R ′ . The confidence ellipse 
ε can be obtained by rotation and translation of 
ε ′ to provide us the confidence area for searching 
the body parts within the range of image 
coordinates. Figure 2 shows an example of the 
confidence areas for a few pedestrians, in which the 
three learned confidence areas for face, upper body 
and lower body are annotated with yellow, red and 
green ellipses, respectively. 

2.3 Body Part Detectors 

Table 1: The body parts detectors. 

Body part detector Feature type 
Frontal face LBP 
Profile face LBP 
Upper body HAAR 

Upper body profile HOG 
Lower body HAAR 

Five boosted cascade classifiers are trained with the 
labelled training set to detect the five body parts in 

our body model. The detectors are employed at a 
range of locations and scales by applying a multi-
scale pyramid and a sliding window. We use 
different feature pools for describing different body 
parts. For the frontal and profile face classifiers we 
utilised Local Binary Patterns (LBP) (Ojala et al., 
2002) because they are efficient for texture 
description, a characteristic which has been found to 
be effective for face detection (Ahonen et al., 2004). 
For the frontal upper body and lower body, we 
applied the Haar features (Viola and Jones, 2001) 
which perform well even at low resolution. Finally, 
the profile upper body classifier is learned with the 
HOG features. These features provide a better 
performance and also reduced training time 
compared to the Haar features. Table 1 provides 
more details about the body parts classifiers in terms 
of feature types employed. 

2.4 Combine HOG Detections with 
Body Part Detections 

In this subsection, the body part detections are 
combined with the HOG detections in order to 
eliminate the false detections. For each body B  
detected by the HOG detector, the confidence areas 
are searched sequentially for potential detection of 
body parts. When a part ip  is located in the correct 

confidence ellipse, the assembly },{ Bpi is formed. 

The candidates for the part ip  are searched within 

the 95% confidence neighbourhoods provided by the 
Gaussians distributions ),(~ iiZ ΣμN .  As the 

relative distance iz  between ip  and B  has been 

modelled to follow the distribution ),( ii ΣμN , the 

likelihood of the assembly can be calculated as: 
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When more than one body parts candidates are 
detected inside the same confidence ellipse, the most 
credible body part is selected based on the log-
likelihood criterion and used only once before being 
removed from the set of detected body parts: 
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We retain the HOG detection which has at least 
one body part located in a correct confidence area. 
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Otherwise, the HOG detections will be considered as 
false detections and will be removed. 

3 EXPERIMENTS 

To learn the Gaussian distributions of the body parts, 
we use the INRIA person positive training set 
(Guillaumin et al., 2009) which is composed of 260 
positive and 1218 negative images. Since only entire 
body annotations are provided in the dataset, we 
annotate the human body parts manually.  

 

 

 

Figure 3: Examples of human detections with the proposed 
method. Blue rectangles indicate those HOG detections 
kept after post processing with body part detectors, while 
red rectangles indicates those discarded. Yellow boxes are 
used for frontal and profile face, purple boxes for frontal 
and profile upper body, and green boxes for lower body. 

We test the performance of our detector on the 
INRIA person positive test. In our experiments, the 
detection of humans and human body parts takes on 
average 1.6 seconds per testing image, with a 2.6 
GHz Intel Core i5 processor. The post-processing 
(searching body part candidates within the 
confidence areas in order to eliminate false HOG 
detections) takes on average 0.03 seconds per image. 
The detected human regions are compared with the 
annotated humans of the ground truth images with 
which exhibit a minimum overlap of 35%. Figure 3 
shows some indicative examples of human detection 
results obtained with the proposed detector. The blue 
rectangles and the red rectangles indicate 
respectively those HOG detections retained and 
removed after our body part model-based post 
processing technique is applied. The detected body 
parts are also represented in Figure 3, with yellow 
boxes for frontal and profile face, purple boxes for 
frontal and profile upper body, and green boxes for 
lower body. 

The precision-recall curve of our detector is 
shown in Figure 4. We also tested the HOG detector 
at classification thresholds Δ  between 0 and 3 for 
references (refer also to Table 2). As can be seen 
from Table 2, the HOG detector with a classification 
threshold of 0=Δ  provides 37% precision and 65% 
recall on the test set. Starting from that point, our 
detector removes a substantial number of the false 
HOG detections and exhibits only few false alarms, 
achieving a high precision of 70%. However, there 
are also some true HOG detections that are 
erroneously removed when body parts are not 
detectable, resulting a recall of 50%. This is 
nonetheless a better overall performance that cannot 
be achieved by the HOG detector solely, at any 
threshold settings.  
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Figure 4: Precision-Recall curves of the detectors on the 
INRIA Person test set. 
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Table 2: Comparison of the overall precision and recall on 
the INRIA Person test set. 

 Pro-
posed 

HOG 
∆=0 

HOG 
∆=1 

HOG 
∆=2 

HOG 
∆=3 

Preci-
sion 

70% 37% 71% 78% 70% 

Re-
call 

50% 65% 42% 18% 3% 

4 CONCLUSIONS 

In this paper, by exploring an additional 
probabilistic human body model, we proposed an 
enhanced human detection method based on the 
HOG detector. Taking the HOG detector as a 
starting point, we use a body model to eliminate the 
false HOG detections and increase the precision. We 
demonstrate the efficiency of our human detection 
method on the INRIA person test set. Experimental 
results show that the proposed human detector can 
provide both good precision (70%) and recall (50%) 
with no need for adjusting the classification 
thresholds. 
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