
Towards an SDLC for Projects Involving Distributed Systems

Rodrigo Augusto dos Santos, Avelino F. Zorzo and Sabrina Marczak
Faculdade de Informática, Pontifícia Universidade Católica do Rio Grande do Sul, Ipiranga Avenue, Porto Alegre, Brazil

Keywords: Distributed Systems, Distributed Teams, Project Management, Life Cycle, SDLC, PLC.

Abstract: Since the 1970’s, Distributed Systems have been turning into a more viable and reliable option for the
implementation of information systems. This evolution continued ever since, and now they are applicable to
a variety of purposes, such as online games, cloud computational solutions, etc. It is possible then to assume
that today, Distributed Systems are found everywhere, and that there is a great probability for any given in-
progress software development project to be using this paradigm as part of its delivery. Thus, it is relevant to
study the impacts that Distributed Systems bring to Project Management. In this paper we discuss those
impacts and challenges, as well as propose a Software Development Lifecycle and some associated practices
that are to be used for software development projects involving Distributed Systems. Such practices are
optimized for implementation under a Waterfall model, but are also adaptable for use with well known agile
framework Scrum. The preliminary validation with industry professionals suggests that our proposals do
support more appropriate management and execution of projects involving Distributed Systems solutions.

1 INTRODUCTION

A project is defined by PMI (2015) as being “a
temporary endeavour in that it has a defined
beginning and end in time, and therefore defined
scope and resources”. According to PMBoK (2013),
“Project Management is the application of
knowledge, skills, tools and techniques to project
activities to meet the project requirements”.

By 1970, the wide adoption of Distributed
Systems (DS) became a fact, and Information
Technology (IT) Project Managers around the world
were forced to deal with it. DS, according to Couloris
et al (2012), “are the ones in which hardware or
software components, located at networked
computers, communicate and coordinate their actions
only by passing messages”.

Couloris et al (2012) also provides some examples
that fit this definition, such as web search, multiplayer
online games, and financial trading systems, thus
stating that DS includes “many of the most significant
technological developments of recent years”,
“ranging from a small intranet to the Internet”. This
obviously turns the intersection between PM and DS
into a relevant research area.

Our hypothesis though is that system distribution
in a project may be regularly “abstracted” by IT
project teams, with decisions regarding it becoming
delegated to development teams only. The rest of the

project team would focus on supposedly “attention-
worthy, value-driven requirements”, such as screens,
reports, and other “tangible” features, thus, greatly
increasing the risk of project failure.

This abstraction culture would also reflect upon
academia, with small attention from researches on the
intersection of DS and PM. In order to shed some
light into our hypothesis, we performed a Systematic
Mapping Study (SMS) (Section 2.1), seeking to
understand how the intersection between DS and PM
has been studied in academia. We also performed an
interview-based field study (Section 2.2) to
understand industry’s perception about the topic.

The results from the SMS and field-based study
led us to propose a Software Devolopment Life Cycle
(SDLC) and some practices associated with it, both
tailored for Software Develpment Projects involving
DS (Section 3). These proposals were preliminarily
validated through the process of member checking
(Section 3.2). The limitations and future work are
described in Section 3.2 and Section 4, respectively.

2 RESEARCH BACKGROUND

In this section we present the methodologies used in
our Systematic Mapping Study (SMS) and interview-
based field study, as well as their results.

158
Santos, R., Zorzo, A. and Marczak, S.
Towards an SDLC for Projects Involving Distributed Systems.
In Proceedings of the 18th International Conference on Enterprise Information Systems (ICEIS 2016) - Volume 1, pages 158-165
ISBN: 978-989-758-187-8
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

2.1 Systematic Mapping Study

As a comparison measure for the volume of research
on DS PM, we have used PM involving Distributed
Teams (DT). Since DT has been adopted by many
organizations distributing their software development
projects worldwide, seeking cost and quality
advantages (Herbsleb,2001), DT PM became a
popular research topic.

Although DS and DT are two distinct subjects,
with no direct relation between them, both topics are
present in a great number of today’s IT projects,
having the research on each of them the same
characteristic of being able to intersect with PM. The
SMS, thus, was performed for confirming the level of
attention provided to DS PM when compared to the
volume of studies focusing on DT PM.

The number of papers selected as a result of
systematic search was 37 out of 127. Out of these, 28
focused on PM intersection with DT, 8 focused on
PM intersection with DS and only 1 focused on PM
intersecting both DT and DS at the same time. These
results demonstrate an imbalance in the academic
interest towards both DT and DS. Another imbalance
indicator is that out of the 8 DS PM papers, 50% of
them were published before year 2000.

2.2 Interview-based Field Study

Due to the SMS results, we designed an interview-
based field study with IT industry professionals. Our
intent was to better understand the practical relation
of the DS and PM areas, what are today’s challenges
of projects involving DS, as well as what could be
used as possible countermeasures for such challenges.

Semi-structured interviews were conducted with
16 professionals from Brazil (14) and United States
(2). The selection criteria was based on their IT
industry experience (at least 10 years) and ability to
be critical (as perceived by the researchers).

Their role distribution was: 9 project managers, 2
development leaders, 2 test leaders, 1 business
analyst, 1 architect, and 1 IT Manager. In average,
they had: 17.2 years of work experience, 12.5 years
of technical work experience, 6.7 years of managerial
experience, and 5.8 years of experience with the
current exployer. Next, we briefly present the
findings of our field-based study.

2.2.1 Technical Project Managers

The perception of 68.75% of our interviewees is that
project managers usually are not involved with
technical aspects in the projects they manage. Still,

62.5% considered beneficial, project delivery wise, to
have project managers with technical knowledge.

2.2.2 Awareness of System Distribution

Regarding awareness of what DS is, 62.5% of the
interviewees were not even familiar with the concept.
After Section 1 definition was provided, all
interviewees confirmed they now understood the
concept, having 84% of them claimed to have
participated in DS projects in the past 5 years.

Therefore, the high volume of today’s software
development projects involving DS does make it
difficult even for experienced professionals to realize
how frequently they are inserted in such context. For
them, these are “just regular projects”, where DS is a
almost a mandatory solution aspect. This constitutes
evidence of an “abstraction trend” of the DS feature.

2.2.3 The Challenges from DS Projects

The discussed challenges of DS projects were either
technical or managerial aspects of software
development. Each interviewee was allowed to
provide as many challenges as they wanted, including
ones for a same item. The challenges were then
grouped into categories.

The list of categorized main technical challenges
and their individual occurences is as follows: Testing
(14), IT infrastructure (17), integrations (6), fidelity
of non-production to production environments (4),
system security (3), system architecture (6),
requirements (7), deployments (7), existence of too
many implementation options (3) and others (8).

We also discussed managerial challenges related
to DS projects. The list of categorized main
managerial challenges and their individual
occurences is as follows: obtain a skilled team (5),
risk management (9), knowledge management (5),
team management (4), communication (8), vendor
management (5), project planning (6) and others (7).

After the interviews, the main definition of
“system distribution” of our study was restricted to
solutions that are: (i) distributed regarding their IT
infrastructure, e.g. a software distributed between an
application server and a database server; and (ii)
distributed among different softwares, integrated with
each other through interfaces or other mechanisms
that allow exchanges, such as of data, tokens, etc.

2.2.4 Failed DS Projects

From the DS projects that the interviewees
participated in the last 5 years, an average project
failure of 38,44% was reported, having 81,25% of the

Towards an SDLC for Projects Involving Distributed Systems

159

interviewees claimed, based solely on their
perceptions, to see failure reasons that could be linked
to the system distribution aspect and the
aforementioned technical and managerial challenges.

The interviewees then provided a set of
countermeasure choices they would like to have for
dealing with DS projects challenges. The most
recurring one was a Software Development Life
Cycle (SDLC) specialized in DS (9 occurrences). The
other choices were a development framework (2), PM
framework (1), diverse tools (3) and others (1).

According to Taylor (2004), “an SDLC is a subset
of the project life cycle”, “focused on accomplishing
the product requirements”. The main difference from
Project Life Cycle (PLC) activities is that SDLC
activities focus on technical aspects of project
deliverables while PLC ones are more related to
management and leadership (Taylor, 2004).

3 AN APPROACH FOR DS SDLC

Given the discussed results, we propose an SDLC
optimized for running Software Development
Projects involving DS. The top-level structure of our
SDLC contains its key phases, activities, and
deliverables, all adherent to the generic SDLC
process defined by Taylor (2004).

Because of this generic nature, our main
contribution is thereby on the differentiated practices
we are proposing, and that should be used in
association with the organized structure of the SDLC.
These practices are adaptations on well-known and
disseminated items, such as a Project Architecture
Document or a System Requirements Document for
example, tailoring them for use within DS Projects.

Our Phase-Activity-Deliverable structure has to
be viewed then as a non-prescriptionary guide. It can
be used as is, but it also is easily mappable against
different SDLC versions in use by IT companies
around the world, which means they could keep using
their own processes while simply adding our
proposals to them, as they see fit.

3.1 Overall View of Our DS SDLC

The proposed SDLC is designed for an optimal
implementation with Waterfall (Pressman, 2001).
Adaptations are also proposed for use with Scrum,
since one cannot ignore its growing use in today’s
industry, as demonstrated by VersionOne (2015).

We present our DS SDLC and its associated
practices next, all in high-level detail due to space
restrictions. We have represented the activitiy flows

of each phase through activity diagrams, compliant
with Unified Modeling Language (UML) notations.
One customization to the notations was made, related
to the representation in the diagrams of inputs and
outputs for each activity. Inputs are represented on
top left and outputs on bottom right of each activity.

Our suggested SDLC practices and some
examples related to them are textually described. For
the software integration proposals (type of solution
‘ii’ as defined in Section 2.2.3), examples are based
on software integrated data-wise (exchange of data
through data interfaces, for example).

3.1.1 Vision Phase

In the Vision Phase, the Project is initiated through
the assignment of a Project Manager and initial
project team. Preliminary project planning is made by
obtaining high-level time and cost estimates.
Visibility on DS Project challenges should exist, so
that due countermeasures can be planned and
implemented, as early as possible in the project. An
overall view of the Vision Phase activities, with its
inputs and outputs can be seen in Figure 1.

Figure 1: Vision phase of proposed Waterfall cycle.

Our Recommended Practices for Waterfall
 Business Requirements Document (BRD) should

have a section for “Business Integrations”, which
is filled in with key details of all identifiable
integrations at a business level (business process,
data flow, integration class, etc.);

 DS Non-Functional Requirements (NFR) should
be documented in the BRD for the application
being developed and for each of its integrations
(level of availability needed, number of
simultaneous connections, data volume and data
periodicity, etc);

ICEIS 2016 - 18th International Conference on Enterprise Information Systems

160

 Project Architecture Document (PAD) should
have a DS Section, containing visual, incremental
architecture information. Business requirements
are mapped against integration / infrastructure
requirements;

 PAD should include applicable
integration/infrastructure technical information,
such as data format, data contract, security
measures, error handling and logging etc;

 Due care is provided for Project Management
Plan (PMP) auxiliary plans, such as Stakeholder
and Communication Plans. A customer, a
technical and a management liaisons are
appointed for each integration;

 Risk Register (RR) should start with a default list
of DS risks. The list is continually refined by
Project Management Office (PMO) through
feedback coming from live projects. It becomes
available for upcoming projects;

 All documents above are protential inputs for the
Project Schedule and Budget (PSB);

 PMP, BRD and PSB are baselined.

How These Practices Support Waterfall?
 Provision of visibility around integrations /

infrastructure demands, as early as possible;
 Better stakeholder identification, reducing the

chances of late engagement and Change Requests;
 Helps all stakeholders in setting up their new

mindset about the true complexities of their
project, as early as possible;

 Schedule and budget are more realistic, as the
distribution characteristic is now considered.

Adapting These Practices for Scrum
 Product Owner identifies integration needs before

Project start;
 Integration / infrastructure needs are discussed

during the first project meeting, usually the
Release Planning one;

 Infrastructure and support teams are encouraged
to be on-board the discussion already in this
phase, early in the project;

 Integration / infrastructure requirements should be
treated as user stories, added to the Product
Backlog and prioritized according to their value;

 Definition Of Ready (DOR) should take in
consideration the DS characteristics of the project
in question. For example, it could include
“complete data contract being available” and/or
“data sample being available”.

How These Practices Support Scrum?
 “All” project aspects really become visible to

everyone at all times, including the ones related to
system distribution, which tended to be
“suppressed” before;

 Delivered functionalities will tend to be more
stable, as DS key characteristics receive proper
attention. Value delivered and perceived increase.

3.1.2 Planning Phase

In this Phase, one executes final project planning
based on information now available. Full architecture
and infrastructure requirements assessments are now
possible, and any gaps before execution should be
addressed. System design is complete. An overall
view of the Planning activities, with its inputs and
outputs can be seen in Figure 2.

Figure 2: Planning phase of proposed Waterfall cycle.

Our Recommended Practices for Waterfall
 PAD registers the detailed business process flows

that will support the solution;

Towards an SDLC for Projects Involving Distributed Systems

161

 The Infrastructure Document (IFR) should
register detailed information on required
infrastructure. Hardware, software and
networking needs are mapped, especially the ones
affecting system distribution, such as servers’
latencies and locations, ports and protocols, etc;

 RR is updated with new risks, including DS ones;
 System Requirement Specification (SRS) must be

created and kept in close alignment with BRD and
PAD, thus making sure no previoulsy raised
system distribution key definitons are lost. These
should instead only be incremented in the SRS,
thus making the work to create this artifact easier;

 Test Plan (TP) must include detailed information
about the needed environments, data masses, log
testing etc. It also could include the plan for test
environment redundancy, in case part of tests are
in the Project’s critical path;

 Test specification must be created and kept in
close alignment with SRS, thus making sure no
previoulsy raised system distribution key
definitons are lost;

 System Design Specification (SDS) must be
created and kept in close alignment with the SRS,
thus making sure no previoulsy raised system
distribution key definitons are lost. They should
instead only be incremented in the SDS;

 SRS, PMP and PSB are updated and re-baselined.

How These Practices Support Waterfall?
 End of Planning phase has all major solution

specifications and a complete design, all
considering the DS characteristics of the project;

 Improved visibility acquired regarding what are
the main technical constraints and risks for the rest
of the project, before execution.

Adapting These Practices for Scrum
 There should be acceptance criterion created for

each infrastructure / integration story, such as:
 What should be the systems’ behavior when

the integrations are and are not available?
 What should be the systems’ behavior when

the data contract is or is not being respected,
regarding for example, data consumption and
data transformation?

 Integration / infrastructure scope are treated as
user stories and are added into a Sprint Planning
scope, if Ready criteria is met.

How These Practices Support Scrum?
 Clear prioritization of Integration and

Infrastructure aspects in relation to regular
software requirements, all based on their now

perceived value for the solution;
 Raised DS acceptance criterion will later be used

during development and testing cycles. Due
importance is provided to the validation of the
system distribution key characteristic.

3.1.3 Building Phase

In the Building Phase, one assembles the required
Non-Production and Production infrastructures, as
well as creates the software product through
codification and developer´s level testing. Finished
Test Cases are also an output of this phase. An overall
view of the Building phase activities, with its inputs
and outputs can be seen in Figure 3.

Figure 3: Building phase of proposed Waterfall cycle.

Our Recommended Practices for Waterfall
 IT Infrastructure, non-production (and production

if possible), is raised during this phase. Attention
to all needs mapped in the infrastructure
document is essential;

 Logging and monitoring functionalities must be
implemented according to the strategy previously
mapped in the PAD. This allows easier
traceability of defects in non-production
environment, as it will be possible to quickly
identify from which application the defect comes.
Also, when in production, traceability of incidents
will also be benefited by the same approach;

 Developer Integration Test (DIT) first includes
only mocked integrations, but in a second
moment, if possible, will be done with all
integrations in the non-production environment,
thus simulating what will be found in production.

ICEIS 2016 - 18th International Conference on Enterprise Information Systems

162

How These Practices Support Waterfall?
 Completion of the development step with a much

more stable code, mainly due to attention given to
key distribution details.

Adapting These Practices for Scrum
 Sprint Zero includes the assembly of non-

production infrastructure;
 Sprint Zero includes test analysis for test

scenarios generation. Next sprints have the same
approach. This generates better coverage during
test execution.

How These Practices Support Scrum?
 System analysis team is one step ahead of the rest

of the team, thus making sure requirements are
well understood before actual implementation.
Same happens to test team, and now the project
benefits from the “planned in advance” testing.

3.1.4 Testing Phase

In this phase one performs detailed integrated testing
from both the test team’s and user’s perspectives.
Defect management and handling happen during the
entire phase. Performance testing, when applicable, is
also carried out on this phase. An overall view of the
Testing Phase activities, with its inputs and outputs
can be seen in Figure 4.

Figure 4: Testing phase of proposed Waterfall cycle.

Our Recommended Practices for Waterfall
 Testing should provide an important focus on the

Non-Functional Requirements (NFRs),
considering they highly influence the system
distribution decisions;

 Mocked data should be avoided at this stage. The

use of data masses that are the closest possible to
production is encouraged;

 Mocked integrations should be avoided at this
stage. It is ideal to have all systems integrated in
the testing non-production environment;

 Test infrastructure and overall environment in use
must be the closest possible to production;

 Sign-offs should be received from who is
performing the tests by the end of System
Integration Testing (SIT) and User Acceptance
Testing (UAT).

How These Practices Support Waterfall?
 An independent test team will validate what was

built and delivered;
 Stabilization of defects prior to handing the

system over to users for UAT testing;
 Realistic testing will help in preventing many

incidents in production.

Adapting These Practices for Scrum
 Production environment can be raised and be

continuously refined at this point;
 Proposed waterfall test practices can be used

equally in Scrum, without adaptations.

How These Practices Support Scrum?
 The benefits are the same coming from the

proposed practices in Waterfall Testing phase.

3.1.5 Releasing Phase

In this phase one provides the support team and users
with the application training. Application is made
available for use in production. Provision of warranty
for the application, through the solution of production
incidents. Project closure is executed. An overall
view of the Releasing Phase activities, with its inputs
and outputs can be seen in Figure 5.

Our Recommended Practices for Waterfall
 A deployment and rollback plans should be

available for tracking of all the deployment tasks
and their impacts to each integration;

 A post-deployment plan should be available in
order to help validating if all core functionalities
from the deployed / integrated systems are
unnafected and available;

 A “System Profile” Document (SPD) describes, in
business terms, the implemented system, its
purpose, integration points, data flowing in and
out, etc. This is the base of the Knowledge
Transfer (KT) for the support team and users;

Towards an SDLC for Projects Involving Distributed Systems

163

 Lessons learned document captures learned items
that will be inputs to upcoming projects. A DS
section exists in the document.

How These Practices Support Waterfall?
 Project closure occurs when the system is fully

transitioned to production and accepted by users;
 System transition to the support team is also

needed for closing out the project.

Adapting These Practices for Scrum
 If there is not enough time in last sprint, then

create a “Sprint-F” (for Final), for carrying out KT
and the remaining documentation, including SPD;

 Lessons learned are filled out as part of final
Sprint Review and Sprint Restrospective, using
Sprint-F for that as well, if needed.

How These Practices Support Scrum?
 Documentation is generated only until it generates

value for the users / customers;
 Project closure happens when expected product

value has been delivered;
 System maintenance is considered, as there is the

foment of KT for that purpose;
 Continuous improvement of projects through the

raise of lessons learned.

Figure 5: Releasing phase of proposed Waterfall cycle.

3.1.6 Monitoring and Controlling Phase

This phase happens in parallel to the project,

providing oversight for all phases. Change impacts
are monitored, action being taken when needed and
status being reported. An overall view of the
Monitoring and Controlling (M&C) Phase activities,
with its inputs and outputs can be seen in Figure 6.

Figure 6: M&C phase of proposed Waterfall cycle.

Our Recommended Practices for Waterfall
 Status reports addresses the DS aspect, describing

what is the status on infrastructure as well as on
each integration. Items such as difficulties faced,
steps completed, opportunities, risks, teams
engagement, etc should be on the report.

How These Practices Support Waterfall?
 Synchronization of all stakeholders’ visibility on

all key project aspects, including the DS one;
 Foment of the whole team’s participation on all

project issues and decisions.

Adapting These Practices for Scrum
 Daily Scrums, Sprint Plannings and Release

Plannings may have part of their time dedicated
for the review of the teams’ accomplishments
regarding infrastructure / integrations items.

How These Practices Support Scrum?
 “All” project aspects become visible to

everyone, including the ones related to DS.

3.2 Validation and Limitations

We define this research as an empirical, qualitative
one. As such, our DS SDLC and practices, after
created, went through the process of “member
checking”, a traditional validation technique used in

ICEIS 2016 - 18th International Conference on Enterprise Information Systems

164

empirical work (Singer, 2007).
We invited 5 participants from the 16 IT

professionals, who had previously participated on our
interview-based field study, to participate again in the
validation session. They were chosen due to the
authors’ perception of their highly critical opinions as
well as the importance of their previous contibutions.

We also invited 2 additional professionals that had
no previous contact whatsoever with this research.
They were selected based on their seniority as IT
professionals, each one having more than 15 years of
work experience in IT. Both were from Brazil.

The feedback obtained was encouraging. These
professionals all agreed that many practical benefits
should come from the implementation of our
proposed SDLC and practices. All of them also had
their own inputs with improvements, which in turn
led to the version of our model discussed in this paper.

We did not include in preliminary validation the
application of the SDLC in real-life projects given
time constraints. However, the field study provided
us with an initial rich data set that suffices before we
continue our work. Our next step is, then, to observe
how the SDLC is welcomed in real-life projects and
what suggestions industry professionals will make to
improve and further its scope, if any. For now, the
current limitations of our study are as follows:

 No practical experiments with real projects
and/or companies conducted so far;

 Field study participants were from Brazil and
the United States only while member checking
participants were from Brazil only;

 Small diversity of companies, (one American
company providing 9 out of 16 participants);

 Our SDLC currently does not drill down to
task-step structure;

 The SDLC has some generic management
activities and deliverables. These will migrate
into an independent PLC in the future.

4 CONCLUSIONS

In this work we discussed the many challenges
brought by DS to Software Development Projects.
Little research exists though on the intersection of
Distributed Systems and Project Management.

As presented in our results, professionals from the
IT industry do recognize the importance of
understanding those challenges and taking systematic
actions in order to mitigate or eliminate most of them.

We believe that our SDLC and related practices
are in line with the industry needs for an effective
countermeasure for the identified challenges,

addressing them by broadening project teams´
awareness about the importance of properly handling
the System Distribution aspect on the projects they
are inserted in.

The SDLC will also provide elements to facilitate
communication with users and customers, allowing
them to realize how complex a software truly is, not
only from a regular requirements perspective, but
from technical and infrastructure perspectives as well.

More research is still needed for verifying the
effectiveness of our proposals, as well as their
easiness of use, both when used by themselves as well
as when simply coupled to other SDLCs. This is the
cornerstone of our research’s next step.

REFERENCES

PMI Inc., 2015. What is Project Management?. Consulted
on October 13, 2015. Available at http://www.pmi.org
/about-us/about-us-what-is-project-management.aspx.

PMI, 2013. A Guide to the Project Management Body of
Knowledge: PMBoK Guide. Project Management
Institute. Pennsylvania, 5th edition.

Coulouris, G., Dollimore, J., Kindberg, T., Blair, G., 2012.
Distributed Systems Concepts and Design, Addison-
Wesley, Boston, 5th edition.

Taylor, J., 2004. Managing Information Technology
Projects: Applying Project Management Strategies to
Software, Hardware and Integration Initiatives.
AMACOM. New York.

Version One, 2015. “The 9th Annual State of Agile Report”.
Consulted on October 07, 2015. Available
at http://info.versionone.com/state-of-agile-developme
nt-survey-ninth.html.

Herbsleb, J. D., Moitra, D. 2001. Global Software
Development. In IEEE Software, V.16, n.2, 16-20.
IEEE.

Pressman, R, Maxim, Bruce, 2014. Software Engineering
A Practitioner’s Approach. McGraw-Hill. New York,
8th edition.

Shull, F., Singer, J., Sjoberg, Dag, 2007. Guide to
Advanced Empirical Software Engineering. Springer.
New Jersey, 2008 edition.

Towards an SDLC for Projects Involving Distributed Systems

165

