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Abstract: The main contribution of this paper is to implement a hybrid method of coordination from the combination 
of interaction models developed previously. The interaction models are based on the sharing of rewards for 
learning with multiple agents in order to discover interactively good quality policies. Exchange of rewards 
among agents, when not occur properly, can cause delays in learning or even cause unexpected behavior, 
making the cooperation inefficient and converging to a non-satisfactory policy. From these concepts, the 
hybrid method uses the characteristics of each model, reducing possible conflicts between different policy 
actions with rewards, improving the coordination of agents in reinforcement learning problems. Experi-
mental results show that the hybrid method can accelerate the convergence, rapidly gaining optimal policies 
even in large spaces of states, exceeding the results of classical approaches to reinforcement learning. 

1 INTRODUCTION 

Multi-agent systems in general comprises of adap-
tive agents that interact with each other in order to 
conduct a given task. In a multi-agent system, agents 
need to interact and to coordinate themselves for 
carrying out tasks (Stone and Veloso, 2000). Coor-
dination between agents can help to avoid problems 
with redundant solutions, inconsistency of execution, 
resources wasting and deadlock situations. In this 
context, coordination models based on learning are 
capable of solving complex problems involving social 
and individual behaviors (Zhang and Lesser, 2013). 

Besides learning how to coordinate itself, an 
agent from a multi-agent system must also be able to 
cooperate to other agents in the system, attempting 
to solve problems that locally require unknown 
knowledge or problems that compromise the agent 
performance to be solved. In this way, sharing agent 
expertise (usually in terms of action policies) be-
comes essential to converge to a global behavior that 
satisfies a certain specification or that simply solves 
a particular problem.  

An alternative to share agent’s expertise among 
multi-agents is using specific computational para-
digms that maximize performance based on rein-

forcement parameters (reward or punishment) ap-
plied to agents as they interact with the environment. 
Such paradigms are called Reinforcement Learning 
(RL) (Kaelbling et al., 1996) (Sutton and Barto, 
1998). 

RL algorithms, such as Q-learning (Watkins and 
Dayan, 1992), can be used to discover the optimal 
action policy for a single agent when it repeatedly 
explores its state-space.  

Formally, an action policy can be modeled by a 
5-tuple b=〈A, S, s°, *, 〉 that maps states and ac-
tions in order to determine, among a set of actions A 
and a set of states S, which an action a ∈ A should 
be performed at a given state s ∈ S. An action policy 
model has also an initial state s° ∈ S, an objective 
state s* ∈ S, and a transition relation  that defines 
the range of actions possible to be generated from a 
state. The relation  is defined as memoryless, i.e., 
it defines actions taking into account uniquely the 
current state, which qualifies the approach as a Mar-
kovian Decision Process (MDP).  

A major concern that arises from this action-
policy-discovering approach is that it tends to suffer 
with large state-spaces, due to state-space explosion 
problems. In this case, RL involving multiple agents 
has shown to be a promising strategy that modular-
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izes the whole problem and locally implements ac-
tion policies (Ribeiro et al., 2008). 

The whole idea behind the implementation of lo-
cal policies is discovering a global action plan gen-
erated by the proper combination of local knowledge 
of agents. When this approach leads to the best global 
action plan, the policy Q is said to be optimal (Q*) 
and it maximizes the reward received by agents.  

The approach investigated in this paper aims to 
improve the way agents share information with each 
other. In order to transmit and receive information, 
agents are required to share a cooperative and coor-
dinated interaction model that eventually leads to 
improved action policies. So, the kernel for estab-
lishing optimized information sharing strategies for 
multiple agents is the interaction model.  

In this paper we introduce a hybrid coordination 
model for multi-agents using RL techniques. Our 
approach collects “good” features from individual 
approaches in the literature and integrates them into 
a single framework, which can then be used to estab-
lish optimized information sharing strategies for 
multiple agents. Preliminary results compare the 
performance of the hybrid model with respect to the 
each particular model that has been used to compose 
our framework. In general, we have observed a con-
vergence rate among agents substantially better than 
in the other cases. 

The remainder of this paper is organized as fol-
lows. In the following section, the state of the art is 
presented, in which: (i) describes some coordination 
methods for learning in multi-agent systems; (ii) 
reviews of the Q-learning algorithm; and (iii) sum-
marizes the interaction models. The details of the 
proposed method, environmental assessment and 
numerical results to demonstrate the performance of 
the method are present in Section 3. Conclusions are 
drawn in Section 4. 

2 LEARNING IN MULTI-AGENT 
SYSTEMS 

Learning in multi-agent systems, unlike learning in 
environment with a single agent, assumes that the 
relevant knowledge is not locally available in a sin-
gle agent, although it is necessary to coordinate the 
whole process (Chakraborty and Stone, 2014), 
(Zhang and Lesser, 2010), (Xuan and Lesser, 2002). 
One way for an agent to coordinate its actions is by 
interacting with other agents, changing and evolving 
their own coordination model. 

Coordination by interaction provides the combi-

nation of efforts among a group of agents when 
searching for solutions to global problems (DeLoach 
and Valenzuela, 2007). A situation of interaction is a 
set of behaviors resulting from a group of agents that 
act to satisfy their goals and consider constraints 
imposed by resources limitations and individual 
skills. In the literature, learning from interactions 
composes a preeminent research topic (Ribeiro et al., 
2013), (Xinhai and Lunhui, 2009), as well as collec-
tive or social learning (Ribeiro et al., 2013), (Ribeiro 
and Enembreck, 2013).  

Learning problems involving RL interaction 
models depends basically on a structure that enables 
communication among agents, so that they can share 
their accumulated rewards, which immediately rein-
forces the transition system. With this propose, 
Chapelle et al. (2002) propose an interaction model 
that calculates rewards based on the individual satis-
faction of neighboring agents. In this learning pro-
cess, agents continuously emit a level of personal 
satisfaction. Differently, Saito and Kobayashi (2016) 
develop a learning strategy in which agents are able 
to keep memory about information they have accu-
mulated, so they can reuse them in the future. This 
method has been tested on colored mazes and re-
ports confirm that it positively impacts on jumpstarts 
and reduces the total learning cost, compared to the 
conventional Q-learning method. 

Ribeiro and Enembreck (2013) combine theories 
from different fields to build social structures for 
state-space search, in terms of how interactions be-
tween states occur and how reinforcements are gen-
erated. Social measures are used as a heuristic to 
guide exploration and approximation processes. Ex-
periments show that, identifying different social be-
havior within the social structure that incorporates 
patterns of occurrence between explored states helps 
to improve ant coordination and optimization process. 

Usually, it is challenging to integrate different 
methods into a single improved generic coordination 
model, especially due to the diversity of the classes 
of problems and the amount of knowledge necessary 
from the problem domain. Furthermore, in a multi-
agent system, conflicting values for cumulative re-
wards can be generated, as each agent uses only lo-
cal learning values (DeLoach and Valenzuela, 
2007). Thus, the collective learning assumes that the 
relevant knowledge occurs when rewards are shared, 
intensifying the relationship between agents. 

2.1 Reinforcement Learning 

RL tries to solve problems where an agent receives a 
return from the environment (rewards or punish-
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ments) for its actions. This type of learning has been 
extensively investigated in the literature (Grze’s and 
Hoey, 2011), (Devlin et al., 2014), (Efthymiadis and 
Kudenko, 2015), (Tesauro, 1995), (Walsh et al., 
2010), (Zhang and Lesser, 2013) in order to approx-
imate solutions to NP-hard problems.  

To properly formalize a RL problem, it is essen-
tial to first describe how a MDP structure is com-
posed. A MDP is a tuple 〈S, A, Ta

s,s’, Ra
s,s’〉 such that 

S is a finite set of environmental conditions, that 
may be composed, for example, by a variable se-
quence of states 〈x1, x2, …, xv〉; A is a finite set of 
actions, where an episode an is a sequence of actions 
a ∈ A which leads the agent from a state sinitial to a 
state sobjective, Ta

s,s’ is a transition state relation T : S × 
A → [0,1], that indicates the probability of an agent 
to reach a state s’ when an action is applied at the 
state s. Similarly, Ra

s,s’ is a reward function R : S × A 
→ ℜ received whenever a transition Ta

s,s’ occurs. 
The goal of a RL agent is to learn a policy π: S × 

A which maps the current state s into a desired ac-
tion to maximize the rewards accumulated over the 
time, describing the agent’s behavior (Kaelbling et 
al., 1996). To achieve optimal policies, the RL algo-
rithm must iteratively explore the state space S × A, 
updating the accumulated rewards and storing re-
wards in Q(s, a) (Equation 1). 

A well known method that can be used to solve 
RL problems is called Q-learning (Watkins and Da-
yan, 1992). The basic idea of the method is that the 
learning algorithm learns an optimal evaluation 
function for all pair state-action in S × A. The Q 
function provides a mapping Q: S × A → V, where V 
is the value of expected utility when performing an 
action a in state s. The function Q(s,a), of the ex-
pected reward when choosing the action, is learned 
through a trial and error approach, as described by 
Equation 1: 

)]([),(),( VyRasQasQ ×++← α  (1)

where α ∈ [0,1] is the learning rate, R is the reward, 
or cost resulting from taking action a in state s, y is 
the discount factor and V is obtained by using the 
function Q learned by now. A detailed discussion 
about Q-learning can be found in (Watkins and Da-
yan, 1992). 

In this paper, Q-learning is used to generate and 
evaluate partial and global action policies. By apply-
ing Q-learning it is possible to find a policy to an 
agent. However, if similar agents interact into the 
same environment, each agent has its own MDP, and 
optimal global behavior can not be set by local anal-
ysis. Thus, in an environment formed by several 
agents, the goal is to select the actions of each MDP 

at time t, so that the total expected rewards for all 
agents is maximized. 

2.2 Reinforcement Learning with 
Multiple Shared Rewards 

In RL algorithms with multiple shared rewards, 
agents can produce a refined set of behaviors ob-
tained from the executed actions. Some behaviors 
(e.g., a global action policy) are shared by agents 
through a partial policy action (Qi). Usually, such 
policies contain partial information (learning values) 
about the environment (E), but communicate with a 
central structure to share rewards in an integrated 
way in order to maximize the sum of the partial re-
wards obtained during the learning process. When 
policies Q1,…,Qx are integrated, it is possible to 
make a new policy ∂ = {Q1,....,Qx}, where ∂(s,a) is a 
table that denotes the best rewards acquired by 
agents during the learning process.  

 
Figure 1: Learning with shared rewards (Ribeiro et al., 
2008). 

Figure 1 shows how agents exchange infor-
mation during learning. When the agent A* receives 
rewards from other agents Agenti, the following pro-
cess occurs: when Agenti reaches the goal state g 
from a state s ≠ g with a lower-cost way, the agent 
uses a model to share such rewards with other 
agents. The learning values of a partial policy 

iQ
^

 
can be used to upgrade the overall policy ∂(s,a), fur-
ther interfering in how other agents update their 
knowledge and interact with the environment. 

Figure 1 also shows the function that shares such 
rewards. This task can be accomplished in three 
ways (summarized in subsection 2.2.1), all internally 
using Q-learning. The best rewards from each agent 
are sent to ∂(s,a), forming a new policy with the best 
rewards acquired by agents Agenti = {i1,...ix}, which 
can be socialized with other agents. A cost function 
(Equation 2) is used to estimate ∂(s,a), which calcu-
lates the cost of an episode (path from an initial state 
s to the goal g) in a given policy. 
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The discovery of this path is performed with the 
A* algorithm which produces a generative model for 
managing policies that maximize the expected 
amount of reward, i.e., optimal policies, according to 
the methodology presented in (Ribeiro et al., 2006). 

The cooperative RL algorithm, the other algo-
rithms, and the elements formalizing the RL models 
are detailed in (Ribeiro et al., 2008). Figure 2 sum-
marizes the learning process with the models in an 
activity diagram that uses the algorithms proposed in 
(Ribeiro et al., 2008).  

 
Figure 2: The learning process activity diagram with the 
interaction models. 

2.2.1 Interaction Models 

In this subsection, we summarize the models pre-
sented in (Ribeiro et al., 2008). 

Discrete Model: The agents share learning in a 
predefined cycle interactions c. Cooperation in the 
discrete model occurs as follows: the agent accumu-
lates rewards obtained from its actions during the 
learning cycle. At the end of the cycle, each agent 

sends the values of iQ
^

 to ∂(s,a). The agent share its 
reward if and only if it improves the efficiency of 
the other agents at the same state. 

Continuous Model: The agents cooperate at 
every transaction Ta

s,s’. Cooperation in the continu-
ous model occurs as follows: if s ≠ g, then every 
action performed by the agent generates a reward 
value, which is the sum of the accumulated rein-
forcements for all players in action a in state s. The 
goal is to accumulate the greatest rewards in 

iQ
^

 that 
can be shared at each iteration. 

Objective-driven Model: Unlike the discrete 
model, cooperation occurs when the agent reaches 
the goal state, i.e., s = g. In this case, the agent inter-
acts accumulating reward values. It is necessary be-
cause in this model the agent shares his rewards only 

when the state goal is reached. When the agent 
reaches the goal state, the rewards value is sent to 
∂(s,a). If the state reward value improves the overall 
efficiency, then the agents share such rewards. It 
shows that even sharing unsatisfactory rewards (due 
to of lack interaction), the agent is able to adapt his 
behavior without damaging the global convergence. 

3 HYBRID COOPERATION 
MODEL 

In RL based on shared rewards, is usual to discover 
intermediate action policies that are not appropriate 
to achieve a certain goal. In fact, the knowledge ex-
change among agents may lead to intermediate ac-
tion plans that do not immediately fit to the agent’s 
convergence. As each agent constantly updates its 
own learning, it becomes necessary that all agents 
are aware of all updates happening and of the reward 
from each agent.  

Using the previously presented approaches for 
agent’s coordination based on shared rewards, there 
is no guarantees that the action plans will converge 
sometime. It can happen that policies with initially 
mistaken states and values are improved by rewards 
informed by other intermediate policies, improving 
the ∂(s,a) function. However, the opposite is also 
possible, i.e., initially interesting policies, with high 
level rewards, may become less interesting to be 
chosen during a given policy, as states previously 
producing successful hits and errors. 

 
A. 400 states and 5 agents 

 
B. 400 states and 10 agents 

Figure 3: Coordination models (Ribeiro et al., 2008). 

In order to  overcome  this  inconvenience  (local 
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maximum), we develop in this paper a hybrid meth-
od for multi-agents coordination. This approach 
emerges from the discrete, continuous and objective-
driven models previously presented. By analyzing 
results collected from those models, we claim that 
the behavior of ∂(s,a) changes as a function of num-
ber of interactions of the algorithms, the quantity of 
episodes involved in the problem and the cardinality 
of the set of agents that have been used. Figure 3 
supports our claim by comparing coordination mod-
els immerse in a 400-states environment.  

The proposed hybrid method capture the best 
features from each individual interaction model, at 
every interaction of the coordination. The discovery 
of new action policies is done without delaying the 
learning process, reducing the probability of con-
flicts among actions from different policies.   

Technically, the hybrid method can be summa-
rized as follows: at every interaction of Q-learning, 
the agent’s performance is collected from each inter-
action model. This composes what we call a learn-
ing table named HM-∂(s,a) (Hybrid Method). When 
the model update condition is reached, the agent 
starts its learning process using the best performance 
calculated from the learning tables in the interaction 
models. The learning is then transferred to HM-
∂(s,a). Therefore, the function HM-∂(s,a) will al-
ways comprise the best rewards obtained from the 
discrete, continuous and objective-driven models.  

Algorithm for the Hybrid Method 
M:discrete-D, continuous-C, objective-O  
//models 

Qi: QM_D, QM_C, QM_O //learning tables 
1 For each instance of Qi ∈ M do 
2 If QM_D *> QM_C and 
3    QM_D *> QM_O then 
4       HM-∂(s,a)  QM_D 
5 else if  
6 QM_C *> QM_D and 
7 QM_C *> QM_O then 
8    HM-∂(s,a)  QM_C 
9 else  
10    HM-∂(s,a)  QM_O 
11 end if 
12 end for  
13 Return (HM-∂(s,a)) 

Algorithm 1: Hybrid Method Algorithm. 

Algorithm 1 presents the integration of discrete, 
continuous and objective-driven interaction models. 
As it can be observed, for every learning cycle, the 
agent performance is compared with respect to the 
interaction models that have been used (by the oper-
ator ‘*>’ over the three learning tables). When a 
given model returns a superior performance with 
respect to the model that has been compared, this 

learning is transferred to HM-∂(s,a), which repre-
sents the current action policy of the Hybrid Method. 
The next section presents a simulation environment 
to assess the efficiency of the proposed model. 

3.1 Experimental Results 

In order to assess the proposed approach, we present 
a simulation environment composed by a state-space 
representing a traffic structure over which agents 
(drivers) try to find a route.  

The structure has an initial state (sinit), an objec-
tive state (g) and a set of actions A = {↑ (forward), 
→ (right), ↓ (back), ← (left)}. A state s is a pair 
(X,Y) in which the element define the position on the 
axis X and Y, respectively. A status function st : S → 
ST maps traffic situations (rewards) to states, such 
that ST = {–0,1 (free route); –0,2 (a bit stuck); –0,3 
(stuck or unknown); –0,4 (heavily stuck); –1 
(blocked); 1,0 (g)}. 

For this scenario, agents simulates available 
routes for drivers. The global goal is elaborate an 
action policy (combination that maps states and ac-
tions) that can determine the best route connecting 
sinit to g. The global action policy is defined by de-
termining step by step which action a ∈ A should be 
performed at each state s ∈ S. After every moving of 
the agent (transition/ interaction) from a state s to a 
state s’, it knows whether or not its action has been 
positive, as it recognizes the set of rewards shared 
by the other models. The rewards for a given transi-
tion Ta

s,s’ is denoted by st(s’).  

 
Figure 4: Simulated scenarios. The agents have a visual 
field depth of 1. 
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Figure 4 presents some scenarios that have been 
used for simulations. They have been arbitrarily 
generated, aiming to reproduce situations as closely 
as possible to real world situations. The agents are 
randomly positioned into the state-space. When an 
agent reaches the goal state, this agent is randomly 
positioned into others state s, until the stopping crite-
rion is satisfied (interactions numbers). 

3.2 Comparative Analysis 

The results illustrated in this section compares the 
Hybrid Method to the individual performances ob-
tained as in the Discrete, Continuous and Objective-
driven interaction models.   

The parameters that have been used in the Hy-
brid Method are the same as those used for the indi-
vidual models: discount fator (y) of 0.99 and learn-
ing rate (α) of 0.2 (Ribeiro et al., 2008).  

Experiments have been conducted on environ-
ments ranging from 100 (10 × 10) to 400 (20 × 20) 
states. For the sake of clarity, however, in this paper 
we concentrate them on the largest state-space. The 
results that follow compare the Hybrid Method to 
the other methods using 3, 5 and 10 agents, in an 
environment composed by 100, 250 and 400 states. 

Observe that in Figures 5-11 the Hybrid Method 
has shown to be more efficient with respect to the indi-
vidual performance achieved by the other models. In 
general, it has shown to be superior at any interaction 
phase, which substantially reduces the number of inter-
actions necessary to find out a proper action policy.  

 
Figure 5: 100 states and 3 agents. 

 
Figure 6: 100 states and 10 agents. 

 
Figure 7: 250 states and 3 agents. 

 
Figure 8: 250 states and 5 agents. 

 
Figure 9: 250 states and 10 agents. 

 
Figure 10: 400 states and 3 agents. 

 
Figure 11: 400 states and 10 agents. 
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For experiments on environments with 100 
states, the number of interactions has been reduced 
in average 22.8% when using 3 agents; 26.7% with 5 
agents; and 41.1% using 10 agents. For environ-
ments with 250 states, the method reduces the num-
ber of interactions in 21.1% with 3 agents; 21.9% 
with 5 agents; and 32.7% for 10 agents. For envi-
ronments with 400 states, the number of interactions 
has been reduced in 17,4% with 3 agents; 22,9% 
with 5 agents; and 29,1% for 10 agents. Table 1 
summarizes the improvements of the Hybrid Method 
compared to the best method among the other mod-
els.  

Table 1: Overall comparative analysis. 

State-space Number of agents 
3 5 10 

100 16.5% 68.7% 36.9% 
250 49.4% 30.9% 32.6% 
400 44.2% 41.1% 38.2% 

The overall improvement achieved by the Hybrid 
Method, considering all tested number of agents and 
state-spaces, reaches the order of 40%. 

4 CONCLUSIONS AND 
DISCUSSIONS 

This article designs a hybrid method to improve co-
ordination in multi-agent systems from the combina-
tion of interaction models presented in a previous 
work. In sequential decision problems an agent in-
teracts repeatedly in the environment and tries to 
optimize its performance based on the rewards re-
ceived. Thus, it is difficult to determine the best ac-
tions in each situation because a specific decision 
may have a prolonged effect, due to the influence on 
future actions. The proposed hybrid method is able 
to take the agent to an acceleration in the conver-
gence of their action policy, overcoming the particu-
larities found in the interaction models presented in 
(Ribeiro et al., 2008). The political of these models 
may have different characteristics in environments 
with different configurations, causing the agent fails 
to converge at certain cycles of learning. Thus, the 
hybrid method of coordination uses the best features 
of interaction models (summarized in Subsection 
2.3.1). The hybrid method policies outweigh the 
policy of each model, assisting in the exchange of 
best rewards to form a good overall action policy. 
This is possible because the hybrid method can es-
timate the best rewards acquired through learning, 

discovering an arrangement with the best ribs found 
in partial action policies for each model. 

Accumulate rewards generated by different ac-
tion policies is an alternative to support an adaptive 
agent in search of good action policies. Experiments 
with the hybrid method show that even with a higher 
computational cost, the results are satisfactory, since 
the approach improves convergence in terms of the 
Q-learning algorithm standard. The complexity in-
troduced using n agents is around O(n × m), which is 
equal to O(m) since n is a small constant and O(m) is 
the complexity of the RL algorithm used as baseline.   

Despite the satisfactory results, additional exper-
iments are needed to answer some open questions. 
For example, the use of algorithms with different 
paradigms could be used to explore the states with 
the highest congestion regions? We observed that in 
these regions the rewards of states are smaller. A 
reinforcement learning algorithms system with dif-
ferent paradigms was proposed in (Ribeiro and En-
embreck, 2013), where the results seem to be en-
couraging. It is intended also use different methods 
of learning to analyze situations such as: (i) explore 
the most distant states the goal, where exploration is 
less intense and; (ii) use a heuristic function, which a 
priori could accelerate the convergence of algo-
rithms, where a heuristic policy indicate the choice 
of the action taken and, therefore, limit the agent of 
the search space. It is intended to further evaluate 
the method in dynamic environments and with 
greater variations states. 

4.1 Real-world Applications 

The hybrid model proposed in this paper has been 
tested in scenarios in which it was possible to con-
trol all the environmental variables. In many real-
world problems, you cannot always control the fac-
tors that affect the system, such as external variables 
to the environment. With the promising results of the 
hybrid model presented in this article, we started to 
adapt this model to a real case to support the daily 
decisions of the poultry farmer. In this problem, the 
agent of the system is used to generate action poli-
cies, in order to control the set of factors in the daily 
activities, such as food-meat conversion, amount of 
food to be consumed, time to rest, weight gain, com-
fort temperature, water and energy to be consumed, 
etc. The main role of the agent is to perform a set of 
actions to consider aspects such as productivity and 
profitability without compromising bird welfare. 
Initial results show that, for the decision-taking pro-
cess in poultry farming, our model is sound, advan-
tageous and can substantially improve the agent ac-
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tions in comparison with equivalent decision when 
taken by a human specialist. In the moment, we are 
evaluating the performance of the agent when han-
dling specific management situations; checking the 
performance of the algorithm to process variations 
of scenario; and changing the set of attributes used 
to generate the rules, which can make them less sus-
ceptible to influence. Such statements are objects of 
study for future research. 
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