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Abstract: Sensitivity analysis methods have been developed for over half a century. However, their application to 
systems biology is a relatively new concept and has not been fully investigated. In this paperwe focus on 
creating parameter rankings based on sloppy/stiff parameter sensitivity analysis, that can be used to find the 
most important parameters and processes (that have the greatest impact on the system output) and 
subsequently can be used to reduce the number of experiments needed to precisely estimate parameters 
values or to indicate molecular targets for new drugs. In order to test the proposed procedure we performed 
sensitivity analysis of the HSF/NF-кB pathway model - a model combining two signaling pathways 
essential for cell survival. 

1 INTRODUCTION 

A biomathematical model is a description of a 
biological system using mathematical language. 
Such models are created to describe processes taking 
place at different levels: from a single cell to the 
entire population. In addition to many tiers of 
biological system, there are also many methods that 
can be used to describe them with mathematical 
language. In this paper we focused on deterministic 
models of so called signaling pathways, described 
by ordinary differential equations. Such models are 
powerful tools that allow us to develop and test 
several hypotheses about complex biological 
systems (Locke et al., 2005, Voit et al., 2006). In the 
literature there is a growing number of high 
dimensional models with a large number of 
parameters. As an example, we used a model 
combining two signaling pathways: HSF and NF-
кB. However, methods for measuring biochemical 
parameters are limited and may introduces 
substantial inaccuracies (Maerkl and Quake, 2007). 
Therefore, each model should be checked with 
respect to its sensitivity to parameter changes. 

The sensitivity analysis is an important tool used 
to determine how the change of parameters influence 

the system behavior. It provides information about 
the most important parameters that have the greatest 
impact on the system output (and as a consequence 
should be determined with the highest accuracy). 
Moreover it gives us information about robustness of 
the systems (Rand, 2008), which helps us validate 
the model. Most of the pathways should be robust 
with respect to changes in parameters in a relatively 
wide range which may represent the differences 
between individual cells, e.g. in the rate of 
biochemical reactions (characterized by different 
parameter values). Sensitivity analysis provides also 
a valuable insight into the importance of particular 
processes. 

Sensitivity analysis methods are used to test 
mathematical models for over half a century. 
However, the methods used e.g. in automatic control 
cannot always be directly used in systems biology, 
and may lead to false conclusions. For this reason it 
is necessary to develop methods which take into 
account the specificity of biological systems and 
experimental data. In this paper we propose a new 
measure of parameter sensitivity. We use one of the 
most common methods used currently in sensitivity 
analysis of signaling pathways, known as 
sloppy/stiff parameter sensitivity analysis 
(Gutenkunst et al., 2007), however our work is 
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focused on creating parameter rankings, that can be 
subsequently used either to reduce the model 
complexity (Kim et al., 2011) or indicate 
prospective molecular targets for new drugs (Marin-
Sanguino et al., 2011). We compared our method of 
creating parameter rankings with the ranking based 
on the areas under curve of sensitivity function.  

2 SLOPPY/STIFF PARAMETER 
SENSITIVITY ANALYSIS 

Let the model be described by the state equation: ݀ݕ௦,݀ݐ = ݂൫ݕ௦,, ,ݑ ൯, (1)ߠ

where ys,c denoting number or concentration of 
molecules of species s in condition c, u is an input 
variable and θ are model parameters. 

The change in model behavior as parameters θ 
varied from their nominal values θ*can be quantified 
by the average squared change in molecular species 
time course (Gutenkunst et al., 2007): ܥሺߠሻ =ഥ 12 ௦ܰ ܰ 1ܶ௦, ∙ 

∙ න ቈݕ௦,ሺߠ, ሻݐ െ ,∗ߠ௦,ሺݕ ௦ߪሻݐ ଶ ்ݐ݀
 , (2)

where Ns and Nc are the total number of species and 
conditions, respectively, Tc is the sampling time and 
σs is the maximum value of species s across the 
conditions considered. 

To analyze model sensitivity to parameter 
variation we considered the Hessian matrix 
corresponding to cost function C(θ). Since 
biochemical parameters very often have different 
units and widely varying scale to eliminate the 
impact of relative changes in parameter values the 
derivatives with respect to logθ are taken: ܪ, = ݀ଶߠ݈݃݀ܥ݈݀ߠ݃, (3)

where j and k denotes j−th and k-th parameter, 
respectively. The Hessian describes the quadratic 
behavior of the cost function C near the point θ*. HC 
can be calculated as (Gutenkunst et al., 2007): ܪ, = 1௦ܰ ܰ 1ܶߪ௦ଶ௦, ∙ 

∙ න ,∗ߠ௦,ሺݕ݀ ߠ݈݃݀	ሻݐ ,∗ߠ௦,ሺݕ݀ ߠ݈݃݀	ሻݐ ்ݐ݀
 . (4)

 

Based on Eq. (4) the sensitivity of the entire 
model (for all species s across all considered 
conditions c) to parameter variation can be 
calculated. However, the sensitivity of individual 
species or sensitivity of the model in specific 
condition could be also examined by taking into 
account only one species or condition. 

The Hessian matrix is positive, definite and 
symmetric, so it has real eigenvalues λ and 
eigenvectors v. Analyzing HC corresponds to 
approximating the surfaces illustrating deviations 
from nominal system response. The surface is Np-
dimensional ellipsoids, where Np is the number of 
parameters in the model. The principal axes of the 
ellipsoids are the eigenvectors of HC, and the width 
di of the ellipsoids along each principal axis is 
proportional to one over the square root of the 
corresponding eigenvalue λi (Gutenkunst et al., 
2007): ݀ = 1ඥߣ	. (5)

 
Figure 1: An example of ellipse illustrating deviations 
from nominal system response for a simple model with 
two parameters θ1 and θ2. d1 and d2 denotes the width of 
the ellipse along each principal axis, corresponding to 
eigenvalues λ1 and λ2 respectively, while v1 and v2 denotes 
the eigenvectors defining the position of the ellipse. 

The narrowest axes are called “stiff”, and the 
broadest axes “sloppy”. The meaning of eigenvalues 
and eigenvectors of HC is illustrated on a simple 
example, where Hessian describes an ellipse in the 
θ1/θ2 parameter space (Figure 1). 

The relative widths d1 and d2, shown in the 
Figure 1, allow us to identify “sloppy” and “stiff” 
principal axis of the ellipse. However, the degree to 
which the principal axes of the ellipsoids are aligned 
to the bare parameter axes is also important. It can 
be estimated by comparing the ellipsoids 
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intersections Ii with each bare parameter axis i, 
calculated as: ܫ = ඨ ,ܪ1 , (6)

and projections Pi onto each bare parameter axis i, 
calculated as: 

ܲ = ට൫݅݊ݒ . (7)	ఞమ൯,ܪ

If Ii / Pi = 1, then one of the principal axes of the 
ellipsoids lies along bare parameter direction i, 
however in biological systems this occurs very 
rarely. More often the ellipses are skewed from 
single parameter directions (Gutenkunst et al., 
2007). 

Although Ii / Pi ratio provides some useful 
information, it does not link the skewing rate with 
the width of particular principal axes of the 
ellipsoids, which is also very important because it 
would help us to identify the most significant 
parameters in the model. To relate these width 
(corresponding to “sloppy” and “stiff” principal 
axes) with specified parameter changes we propose 
another index, which is used to create the parameters 
ranking. The index is defined for the j-th parameter 
as:  ݎ =ฬݒ,݀ ฬ  (8)

where the sum is calculated over all principal axes, 
di is the width of the ellipsoid along i-th principal 
axis, and vj,i is the element of the i-th eigenvector 
corresponding to the j-th parameter. 

3 SENSITIVITY ANALYSIS OF 
THE HSF/NF-КB PATHWAYS 
MODEL 

In order to test the applicability of the procedure 
described above we performed sensitivity analysis of 
the HSF/NF-кB pathway model, which described in 
(Smieja et al., 2015). The model combines two 
signaling pathways essential for cell survival.  

NF-κB is a family of transcription factors that 
regulate the transcription of hundreds of genes, 
including genes that determine cell fate. It has been 
proved that NF-κB can play an antiapoptotic role in 
cancer cells, e.g. via activation of anti-apoptotic 
genes (Cataldi et al., 2003). Upregulation of the NF- 
κB pathway is frequently  observed  in  cancer  cells, 
which contributes to their resistance to the 
anticancer treatment (Hayden and Ghosh, 2012; 

Perkins, 2012). Therefore inhibition of NF-κB 
pathway may constitute one of the goals in 
anticancer therapies. Experimental results show that 
heat shock induces such inhibition in cancer cells 
(Janus et al., 2011). However, the precise 
mechanisms of interactions between HSF and NF-
κB pathways are not fully understood yet. 
Development of a combined mathematical model of 
these pathways and its subsequent computational 
analysis should help to develop the most efficient 
anticancer therapy protocols. 

 
Figure 2: The eigenvalues (a) and I/P (b) spectrum of the 
HSF/NF-кB pathways model. 

So far, numerous models of NF-κB pathway 
have been developed, whereas much fewer models 
of HSF pathway have been published. The model 
proposed in our work was based on the previously 
published ones, which described either NF-кB 
(Lipniacki et al., 2004) or HSF (Szymanska and 
Zylicz, 2009) pathways separately. In order to 
incorporate crosstalk between HSF and NF-κB 
pathways, they had to be modified: nuclear and 
cytoplasmic levels of proteins and complexes had to 
be separated and constitutive and inducible HSPs 
were described by separate variables. The 
interactions between the HSF and NF-κB pathways 
take into account creation HSP:IKK complexes, 
temperature-dependent inactivation of proteins 
located upstream of IKK activation and inhibition of 
NF-κB import to the nucleus under heat shock 
condition. The reactions taken into account are 
summarized in the Table 1. 

We    checked    the   sensitivity   of   the   system 
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following the procedure described in the previous 
chapter. We have chosen nuclear NF-кB as one of 
the state variables to illustrate applicability of the 
method. The eigenvalues and I/P spectrum is plotted 
on Figure 2, while parameter ranking based on index 
rj (Eq. (8)) is shown on Figure 3. To compare the 
results with other commonly used procedure, a 
parameter ranking based on area under curve of 
sensitivity functions is show on Figure 4. Due to 
high number of parameters the horizontal axes 
contains only numbers corresponding to the 
parameters listed in Table 2. 

In both presented rankings the position of most 
parameters is comparable. However there are some 
significant differences, e.g. in parameters 37 and 45, 
corresponding to the ratio of cytoplasmic to nuclear 
volume (kv) and IkBa mRNA degradation rate (c3a), 

respectively. The parameter kv is indicated as the 
most important by the sloppy/stiff method, while in 
the ranking based on sensitivity function parameter 
c3a seems to be more important. To check which of 
these two parameters has greater influence on the 
system response, we performed three simulations: 1) 
for nominal parameter values, 2) for parameter kv 
increased by 30% and 3) for parameter c3a increased 
by 30%. The results of these three simulations are 
shown in Figure 5. By comparing these three time 
courses, we can see that parameter kv significantly 
increases the maximum concentration of free nuclear 
NF-κB and in this term the ranking based on 
sloppy/stiff method seems to be more reliable. 
However, changing the parameter c3a results in phase 
shift in system response, what in  biological systems 
can also be very important. 

Table 1: Reaction list for the HSF/NF-кB pathways model (Smieja et al., 2015). 

NF-кB subsystem HSF subsystem 
IKKn ⎯⎯→⎯ degk Ø 

IKKn ⎯⎯⎯⎯ →⎯ 1nTRAF2,TNF, IKKa 
IKKa ⎯⎯⎯⎯ →⎯ 2nTNF,A20, IKKi 

IKKa ⎯→⎯ 3n IKKi 

IKKa ⎯⎯→⎯ degk Ø 

IKKi ⎯⎯→⎯ degk Ø 
NF-κBnuc ⎯→⎯ 1c NF-κBnuc + A20t 

A20t ⎯→⎯ 4c A20t + A20 
A20 ⎯→⎯ 5c Ø 
A20t ⎯→⎯ 3c Ø 

IKKa + IκBα ⎯→⎯ 2a IKKa:IκBα 
IKKa:IκBα ⎯→⎯ d3k IKKa 

IκBα ⎯→⎯ 5ac Ø 
IκBαt ⎯→⎯ 3ac Ø 

NF-κB + IκBα ⎯→⎯ 1a NF-κB:IκBα 
NF-κB:IκBα ⎯→⎯ 6ac Ø 

IKKa + NF-κB:IκBα ⎯→⎯ 3a IKKa:NF-κB:IκBα 
IKKa:NF-κB:IκBα ⎯→⎯ d4k IKKa + NF-κB 

NF-κB ⎯⎯ →⎯ 1v ,k i NF-κBnuc 

NF-κBnuc + IκBαnuc ⎯→⎯ 1a NF-κBnuc:IκBαnuc 
NF-κBnuc:IκBαnuc ⎯→⎯ 2ae NF-κB:IκBα 

NF-κBnuc ⎯→⎯ 1ac NF-κBnuc + IκBαt 
IκBαt ⎯→⎯ 4ac IκBαt + IκBα 

IκBα ⎯⎯ →⎯ 1v ,k i IκBαnuc 

IκBαnuc ⎯→⎯ 1ae IκBα 

Prot ⎯⎯ →⎯ 5k T, mfProt 
mfProt + HSPcons ⎯→⎯ 1k HSPcons:mfProt 
mfProt + HSPind ⎯→⎯ 1k HSPind:mfProt 
HSPcons:mfProt ⎯⎯ →⎯ −1k a, HSPcons + Prot 
HSPind:mfProt ⎯⎯ →⎯ −1k a, HSPind + Prot 
HSPcons + HSF ⎯→⎯ 3k HSPcons:HSF 
HSPind + HSF ⎯→⎯ 2k HSPind:HSF 
HSPind:HSF ⎯→⎯ -2k HSPind + HSF 

HSPcons:HSF + mfProt ⎯→⎯ -3k HSPcons:mfProt + HSF 
3HSF ⎯→⎯ 4k  HSF3 

HSF3 + HSPind ⎯→⎯ -4k HSPind:HSF + 2 HSF 
HSPind ⎯→⎯ d2k  Ø 

HSPmRNA ⎯→⎯ d1k  Ø 
HSF3 ⎯→⎯ trk HSF3 + mRNA 

HSPmRNA ⎯→⎯ tlk HSPmRNA + HSPind 

HSFcons + IKKa ⎯→⎯ 6k HSPcons:IKK 
HSFind + IKKa ⎯→⎯ 6k HSPind:IKK 

HSPcons:IKK ⎯→⎯ -6k HSPcons + IKKn 
HSPind:IKK ⎯→⎯ -6k HSPind + IKKn 

TRAF ⎯⎯⎯ →⎯ TRAF5k T,  mf TRAF 
mf TRAF2 + HSPcons ⎯⎯ →⎯ TRAF1k HSPcons:mf TRAF2 
mf TRAF2 + HSPind ⎯⎯ →⎯ TRAF1k HSPind:mf TRAF2 
HSPcons:mf TRAF2 ⎯⎯⎯ →⎯ − TRAF1k a, HSPcons + TRAF2 
HSPind:mf TRAF2 ⎯⎯⎯ →⎯ − TRAF1k a, HSPind + TRAF2 

HSF3 cyt ⎯⎯ →⎯ 1iv  t,k  HSF3 nuc 

HSF3 nuc ⎯→⎯ 1et  HSF3 cyt 
HSPcons,cyt ⎯⎯ →⎯ 2iv  t,k HSPcons,nuc 

HSPcons,nuc ⎯→⎯ 2et HSPcons,cyt 
HSPind,cyt ⎯⎯ →⎯ 3iv  t,k HSPind,nuc 

HSPind,nuc ⎯→⎯ 3et HSPind,cyt 
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Figure 3: Parameter ranking based on sloppy/stiff method. 

 
Figure 4: Parameter ranking based on sensitivity functions. 

Table 2: List of parameters in the HSF/NF-кB pathways 
model (Smieja et al., 2015). 

No. Name No. Name No. Name 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 

k1 

k-1 

k1TRAF 

k-1TRAF 

k2 

k-2 

k3 

k-3 

k4 

k-4 

k5 
k5TRAF 

k6 
k-6 

ktr 

ktl 

a 
kd1 

19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 

kd2 
t1i 
t1e 
t2i 
t2e 
t3i 
t3e 
t4 
n1 
n2 
n3 
a1 
a2 
a3 
kd3 
kd4 

kprod 
 

36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 

kdeg 
kv 
c1 
c2 
c3 
c4 
c5 
c1a 
c2a 
c3a 
c4a 
c5a 
c6a 
i1 
i1a 
e1a 
e2a 

It should be noted that contrary to standard 
rankings based on sensitivity function, the proposed 
ranking reflects the influence of parameter changes 
on the system output, not only in the case when a 
single parameter is varied but also when it changes 
together with other ones. However, computational 
complexity is the same as for calculating sensitivity 

functions. The variance-based approaches (e.g. 
Sobol, 2001), would require much more 
computational power. 

 
Figure 5: The comparison of three simulation runs:1) for 
nominal parameter values (dotted line), 2) for parameter kv 

increased by 30% (gray line) and 3) for parameter c3a 
increased by 30% (black line). 

4 CONCLUSIONS 

Parameters rankings are a useful tool that allows us 
to indicate parameters that are most important for 
the dynamics of a given pathway. In this paper we 
presented a new method for creating the parameters 
ranking based on the popular sloppy/stiff parameter 
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sensitivity analysis. Taking into account the example 
presented in this work we showed that the method 
can provide valuable information about the most 
important parameters that have the greatest impact 
on the system output.  

Moreover, the work shows that the parameters 
rankings for the same model may vary depending on 
the applied methodologies. Various parameters 
rankings may be sensitive to various changes in 
response (e.g. quantitative or qualitative changes). 
For this reason the choice of sensitivity analysis 
method must be adapted to the purpose of research 
and the type of model we investigate. Furthermore it 
is a good practice to examine the sensitivity of the 
system using various methods and compare the 
results. 
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