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Abstract: Nowadays, data warehousing and online analytical processing (OLAP) are core technologies in business intel-
ligence and therefore have drawn much interest by researchers in the last decade. However, these technologies
have been mainly developed for relational database systems in centralized environments. In other words, these
technologies have not been designed to be applied in scalable systems such as NoSQL databases. Adapting
a data warehousing environment to NoSQL databases introduces several advantages, such as scalability and
flexibility. This paper investigates three physical data warehouse designs to adapt the Star Schema Benchmark
for its use in NoSQL databases. In particular, our main investigation refers to the OLAP query processing
over column-oriented databases using the MapReduce framework. We analyze the impact of distributing at-
tributes among column-families in HBase on the OLAP query performance. Our experiments showed how
processing time of OLAP queries was impacted by a physical data warehouse design regarding the number of
dimensions accessed and the data volume. We conclude that using distinct distributions of attributes among
column-families can improve OLAP query performance in HBase and consequently make the benchmark
more suitable for OLAP over NoSQL databases.

1 INTRODUCTION

The comparison among different systems that manip-
ulate huge volumes of data is crucial for modern in-
formation systems. Performing analysis over mas-
sive volumes of data is a challenge for traditional
data warehousing approaches (Chevalier et al., 2015).
Data warehouses (DWs) are used for data analysis,
in which the data is modeled in a multidimensional
schema according to the cube metaphor and on-line
analytical processing (OLAP) queries are performed
to help the decision-making process. New solutions
for big data management are usually implemented on
distributed environments, which enables horizontal
scalability. Many enterprises use NoSQL (Not only
SQL) database systems to manage data split in de-
centralized environments. With the advent of NoSQL
systems to store and process data, there is a need to
apply systematic techniques for performance compar-
ison, usually conducted by benchmarks.

Benchmarks of DW are tools aimed at answer-
ing the question “Which is the best database system
for OLAP query processing?” (Folkerts et al., 2012).
These questions are answered by functional and per-

formance tests, based on properties of each evaluated
system. Its goal is to quantify the quality and the per-
formance of a system, in order to make a fair com-
parison. There are four main requisites of a bench-
mark (Bog, 2013): relevance, portability, scalability
and simplicity. In the context of DW and decision
support systems, there are three main benchmarks:
TPC-DS (Poess et al., 2002), TPC-H (Moussa, 2012)
and Star Schema Benchmark (SSB) (O’Neil et al.,
2009). However, they fail in, at least, two requi-
sites. First, they were planned to evaluate relational
databases, which can be very different from NoSQL
systems, failing on portability. Second, their data gen-
eration is centralized and limited, impacting the hori-
zontal scalability of huge data volumes.

There has been a significant amount of work
on column-oriented database systems (Abadi et al.,
2008). Studies revealed that this type of data storage
could support analytical workloads with more than an
order of magnitude faster than row-oriented database
systems. The performance improvement is related
to read-only workload, which reduces the number
of I/O operations since most of the queries have to
read only the targeted attributes. Based on the as-
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sumption that, for some specific queries, not all of
the values are required at the same time, the column-
oriented approach is appropriate for deploying a DW.
HBase (George, 2011) is a distributed, persistent and
strictly consistent column-oriented NoSQL database
system. All data stored in HBase is organized in
column-families, as described in Section 2.2. As pro-
posed by Cai et al. (2013), there are an important
feature that impact the performance of HBase’s read
and write operations: the attributes stored in the same
or among different column-families.

In this paper, we propose the analysis of OLAP
query performance over multiple data organization
strategies on HBase. These different strategies refer
to different physical DW designs. The present inves-
tigation consists in implementing and comparing the
performance of OLAP queries over different column-
families arrangements. We also highlight scenarios
based on different report requirements that could ben-
efit from the designs investigated in the paper. Since
a benchmark encompasses the schema and workload
of a DW, we tackle the problem by exploring different
schemas and analyzing the effects on their workloads.

1.1 Motivating Scenarios

Let a DW storing data related to a shopping corpora-
tion represented by the multidimensional data cube.
This company is interested in reporting the quantity
sold per product per filial per day. OLAP queries is-
sued against this DW depend on the business perspec-
tives of interest. Therefore, we introduce two rep-
resentative scenarios that motivate the investigations
carried out in this paper, as follows:

Scenario 1: The shopping corporation is inter-
ested in reporting the daily profit, based on the total
of products sold in that day. With this information,
the corporation can determine the total income of
each month. Other possibility is that the enterprise is
focused on the daily profit to perform infrastructure
investments. In this scenario, the most frequent
OLAP queries access only one dimension of the
data cube. We call these queries as one-dimensional
queries.

Scenario 2: The corporation is interested in ana-
lyzing the amount of units sold of each product over
time. More specifically, it is focused on reporting the
quantity sold of each product in the last month, or the
quantity sold of each product in each filial. In this
scenario, the most used queries involve two or more
dimensions of the data cube. We call these queries as
two-dimensional and three-dimensional queries.

1.2 Contributions

The relevance of our paper is to point out appropriate
data organization designs to enhance the performance
of OLAP queries in a column-based NoSQL database
for different DW enterprise scenarios. We investigate
the influence of physical design of the DW schema
so that databases administrators can optimize the per-
formance of OLAP queries on distributed column-
oriented NoSQL database systems. This paper intro-
duces the contributions described as follows:
1. It proposes a new physical DW design, called

FactDate, aimed to improve the performance of
one-dimensional queries.

2. It analyses three physical DW designs, each one
providing better performance results according to
a given scenario. This analysis includes a scala-
bility performance evaluation.

3. It extends the SSB workload by proposing two
new OLAP queries, which are used to investigate
two-dimensional queries.

The remaining part of this paper is organized as fol-
lows. Section 2 summarizes the background, Sec-
tion 3 reviews related work, Section 4 describes the
physical DW designs, including the proposed Fact-
Date design, Section 5 details the queries proposed
for SSB, Section 6 addresses the experimental tests,
and Section 7 concludes the paper.

2 BACKGROUND

2.1 Data Warehouse and OLAP

Business Intelligence (BI) can be defined as a set
of technologies and mechanisms to efficiently extract
useful business information from large volumes of
data. Nowadays, DWs are inserted in many business
information technology applications, enabling the ef-
fectively utilization and analysis of information for
business planning and decision making (Ciferri et al.,
2013). A DW stores data used for analytical tasks to
support decision making, such as information about
sales, customers and profit. DWs are typically related
to the day-to-day company’s operations, and can con-
tain millions and even billions of business records.

Following the cube metaphor described in Sec-
tion 1.1, the DW provides a multidimensional orga-
nization of data. When a DW is implemented in re-
lational databases, this organization is usually struc-
tured as a star schema, where the fact table stores
the measures of the business events and the dimen-
sion tables, related to the fact tables, contain the con-
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text of these measures (Kimball and Ross, 2013). Star
schemas provide better query performance by reduc-
ing the number of join operations.

While a DW is considered one of the most used in-
frastructure for BI systems, OLAP can be interpreted
as a front-end analyzing tool. OLAP encompasses
complex queries that frequently aggregate and con-
solidate measures of the fact table, including dimen-
sions perspectives. An example of an OLAP query is:
“How many products were sold by brand and by store
in the last year?”, where the measure is the quantity
of items sold and the dimensions are brand, stores and
date, respectively. In this context, the word analytical
refers to extracting information from the DW that is
useful to the decision making process, focusing on the
analyses of the day-to-day company’s operations.

2.2 Column-oriented NoSQL Databases

Column-oriented databases store their data grouped
by columns, where the values of each column are con-
tiguously stored on disk. This orientation differs from
the row-oriented databases, which store each row en-
tirely and contiguously on disk (George, 2011). As
stated in Section 1, an advantage of column-oriented
organization is the need of reading only the required
attributes of the query, which is the case for OLAP.
In a column-oriented database, inserting a tuple re-
quires to write each attribute value of the record sep-
arately, raising the number of I/O operations. How-
ever, column-oriented storage can improve the perfor-
mance of queries that access only a subset of columns
from a wide table. This occurs because unrequired at-
tributes are not read, reducing the I/O consumption of
read-intensive workloads, such as OLAP queries.

An example of column-oriented NoSQL database
is HBase, which provides access to each tuple using
unique keys called rownum. These keys are stored
lexicographically. For each attribute of each tuple,
HBase stores a cell structure with the following for-
mat: <rownum, cf, column, timestamp, value>. To
retrieve an attribute value, it is required to inform
the rownum, cf (column-family) and column fields.
Column-families group columns that are stored con-
tinuously on disk, in the same file, whose structure
is denominated HFile. If a query processes attributes
from different column-families, the needed HFiles are
joined to reconstruct the query result.

To perform OLAP queries over distributed data,
the HBase tables can be used as input to the MapRe-
duce or the Spark frameworks, which are designed
for parallel processing of massive datasets (Doulk-
eridis and Nørvåg, 2014). Companies can implement
their own queries using these frameworks, or can in-

tegrate HBase with some SQL layers, such as Hive
and Phoenix. Hive (Thusoo et al., 2010) is a SQL
layer that models an infrastructure of DW, allowing
queries to be expressed with a SQL-like language
called HiveQL. Phoenix, on the other hand, offers an-
other SQL interface, boosting HBase performance.

2.3 Benchmarking Technique

A benchmarking technique aims to measure perfor-
mance of an information system and compare it with
others. This evaluation consists of performing a set of
well-defined tests in order to empirically measure the
system’s functionality and performance. Moreover,
the benchmark must contain a set of operations based
on the workload scenario that is going to be tested.
Regarding SQL statements, the OLAP query process-
ing can be classified as a read-only workload, focused
on select transactions (Bog, 2013).

Regarding benchmarks for DWs, they should en-
compass four main steps (Floratou et al., 2014): (i)
schema and workload; (ii) data generation; (iii) met-
rics; and (iv) validation. In step (i), two issues must be
tackled. First, a schema that models a typical applica-
tion in the domain area of the DW. For the workload,
it refers to operations on this schema, represented by
OLAP queries with respect to variations of the selec-
tivity. In step (ii), the benchmark defines rules to gen-
erate synthetic or real data for the schema, allowing
data volumes variations and respecting the selectiv-
ity of the workload. In step (iii), some quantitative
and qualitative metrics are defined for the benchmark,
to report important aspects of the system. Finally, in
step (iv), metrics are collected after the workload is
applied on the generated data. These metrics are com-
pared to others reported by others databases systems.

3 RELATED WORK

The Star Schema Benchmark (SSB) (O’Neil et al.,
2009) is an extension of the TPC-H (Poess and Floyd,
2000), which is designed to measure the performance
of analytical queries over database products in sup-
port to typical data warehousing applications. SSB
implements a genuine star schema, which previous
work (Kimball and Ross, 2013; O’Neil et al., 2009)
argued that this kind of schema can better repre-
sent real-world scenarios. The central fact table of
SSB is LineOrder, which contains information about
sales transactions of a retailer, and this information is
stored as different types of measures, like profit, units
sold and revenue. Also, SSB defines four dimension
tables: Date, Customer, Supplier and Part. The SSB
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workload is composed of 13 OLAP queries organized
in four classes that provide not only functional cover-
age but also variations of selectivity and hierarchical
level used. The main limitation of SSB is the restric-
tion to relational OLAP environments. Further, it also
defines queries applied over one, three or four dimen-
sion tables, lacking of two-dimensional queries.

The Columnar NoSQL Star Schema Benchmark
(CNSSB) (Dehdouh et al., 2014) extends SSB by
proposing a benchmark adapted to measure the per-
formance of columnar NoSQL DWs. It defines a
schema composed of only one table with several
columns, i.e. it denormalizes the SBB’s star schema
by joining the fact table (LineOrder) with the dimen-
sions tables. The attributes of the schema are grouped
in column-families (CFs) related to their original di-
mension. Although this adaptation has an intuitive
semantic, the physical design of the schema can in-
fluence query performance, and therefore this schema
may not be the only one recommended.

Related to the performance evaluation of colum-
nar NoSQL, the work of Cai et al. (2013) measures
the HBase performance by using two physical DW
designs: (i) only one column-family with multiple
columns; and (ii) multiple column-families, where
every column-family has only one column. In case
(i), reading one row means reading the data of all
columns, even if the user does not need them. As
a consequence, queries using only a few attributes
should consume more I/O and bandwidth. On the
other hand, in case (ii), the user needs to read the
data separately from each CF and combine them to
rebuild the row. When the user request data from a
fixed set of columns, storing these specific columns
in the same CF should provide a better processing
performance than splitting them into several different
CFs. The experiments only performed generic read
and write operations, without evaluating any aspect
of query processing, selectivity, and DW schema.

Another extension of SSB to column-oriented
NoSQL databases is proposed by Dehdouh et al.
(2015). They introduce three approaches to adapt
SSB to HBase, called NLA-SSB, DLA-SSB, and
DLA-CF-SSB. NLA-SSB refers to the normalized ap-
proach of SSB, while DLA-SSB and DLA-CF-SSB
join the fact and the dimension tables. While DLA-
SSB groups all dimensions in the same CF, DLA-
CF-SSB stores each dimension in a distinct CF, such
as CNSSB (Dehdouh et al., 2014). They observed
that both DLA-SSB and DLA-CF-SSB did not impact
query performance when accessing attributes from
different dimensions. However, the experiments only
processed a fixed data volume, not analyzing the be-
havior of query processing as data grow. They also

did not evaluate the performance of all SSB’s queries,
which vary the selectivity and perform aggregations
based on real-case enterprise scenarios.

In this section, we addressed the limitations of
SSB, and its adaptations, to analyze different physical
DW designs on NoSQL databases. In this paper, we
tackle these issues by measuring the impact of the CF
organization on OLAP queries, considering different
data volumes. Further, we propose two new types of
queries, which are very important because they allow
the investigation of two-dimensional queries.

4 PROPOSED INVESTIGATION

We propose an investigation of the physical DW de-
sign on HBase column-oriented NoSQL database, by
considering different strategies to arrange attributes
into column-families (CFs). Our investigation is mo-
tivated by the fact that, as presented in Section 2.2,
each CF on HBase is stored in a separated HFile,
such that when a query accesses data from two or
more CFs, it must read each HFile and join them by
the rownum field to rebuild the tuple. However, rec-
ommendations of HBase state that joining more than
two CFs leads to a low performance. As a conse-
quence, it is important to analyze the attribute dis-
tribution over CFs regarding the OLAP query con-
text. Depending on the analysis, specifically the num-
ber of dimensions aggregated, distinct distributions
can benefit or degenerate query performance. Fur-
ther, different enterprise scenarios may benefit from
different physical DW designs. As described in Sec-
tion 1.1, our work focuses on two enterprise sce-
narios. Figure 1 depicts the three-level architecture
for NoSQL column-oriented databases adopted in our
work, showing the adaptations for the physical level
regarding distributed NoSQL systems.

By adopting this denormalization, we argue that,
at the physical level, the database administrator can
decide among three DW designs, as follows:

• Physically organize all attributes in the same CF,
as proposed by Cai et al. (2013) and presented as
DLA-SSB (Dehdouh et al., 2015). We call this
schema as SameCF.

• Store each dimension in different CFs, re-
garding CNSSB (Dehdouh et al., 2014) and
DLA-CF-SSB (Dehdouh et al., 2015). We call
this schema as CNSSB.

• Group some of the more frequently used dimen-
sions to the fact table, which represents the new
strategy proposed in this paper. We joined dimen-
sion Date and call this schema as FactDate.
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Figure 1: Three-level DW architecture for NoSQL column-
oriented databases, with specific adaptations on the physical
level that are analyzed in this paper.

First, we implement the CNSSB, which was pro-
posed by Dehdouh et al. (2014) and described in
Section 3. Despite the fact that CNSSB is a user un-
derstandable organization, any OLAP query that in-
volves at least one dimension of the DW will need
to process two CFs, one for the fact’s attributes and
one for the aggregated dimensions. Our second im-
plementation refers to the SameCF design and con-
sists in storing all the attributes in a single CF, based
on the DLA-CF-SSB (Dehdouh et al., 2015) and on
the work of Cai et al. (2013). This configuration aims
to improve the performance of OLAP queries that an-
alyze a greater number of dimensions, such as Sce-
nario 2 (Section 1.1). Although minimizing the quan-
tity of CFs is a good approach, the organization may
decrease the performance of OLAP analysis that uses
just a small set of attributes and dimensions.

Finally, we propose a new physical DW imple-
mentation, called the FactDate design, which repre-
sents an intermediary solution between CNSSB and
SameCF, combining the LineOrder and Date tables.
This design is aimed at improving the performance
of OLAP queries that use both the fact table and the
dimension table Date, as most of analytical queries
relate their measures to time. This physical de-
sign can improve query performance for queries that
use both CFs as those described in Scenario 1, i.e.
one-dimensional queries. It can also benefit two-
dimensional queries, where one of the dimensions
used is the dimension Date, by decreasing the total
number of CFs processed in the query.

5 PROPOSED QUERIES

Another contribution of this paper is the proposal of
two new queries to be added to the SSB workload.
The need for those queries is to test OLAP aggre-
gations over two dimensions since the SSB work-
load lacks this type of query. Therefore, the pro-

posed queries are two-dimensional queries. To elab-
orate queries for a data warehousing benchmark, first
we need to determine and vary the selectivity of the
queries. The predicates used by OLAP queries de-
fined in SSB have an uniform distribution. Through
the cardinality of the attributes, we can define new
queries with specific selectivities, similar to the other
queries defined by SSB, however performing a two-
dimensional analysis. Table 1 defines the cardinality
of the predicates used in the proposed queries.

Table 1: Attribute’s cardinality of the proposed queries.

attribute value attribute value
d_year 7 l_quantity 50

d_yearmonthnum 84 p_category 25

The first proposed query, named Qnew1 (Fig-
ure 2), calculates the maximum and minimum rev-
enue, for a given product’s category and year,
grouped by product’s brand. The predicates of
this query are defined over the attributes d_year,
p_category and lo_quantity, whose combined selec-
tivity is 1

7 × 1
25 × 25

50 = 2.85×10−3. This value is sim-
ilar by the same order of magnitude to the queries
defined by SSB using other quantities of dimensions,
like Q2.2 (1.60×10−3) and Q3.2 (1.37×10−3).

SELECT p_brand1, max(lo_revenue),
min(lo_revenue)

FROM lineorder, dates, part
WHERE lo_orderdate = d_datekey

AND lo_partkey = p_partkey
AND d_year = 1993
AND p_category = 'MFGR#11'
AND lo_quantity < 25

GROUP BY p_brand1 ORDER BY p_brand1;

Figure 2: The two-dimensional proposed query Qnew1.

The second proposed query is based on a drill-
down operation over the date hierarchy, changing the
analysis from year to month (i.e. attributes d_year to
d_yearmonthnum). This new query, called Qnew2,
calculates the maximum and minimum revenue for
a given product’s category and a month of a year,
grouped by product’s brand. The selectivity of this
query is 2.38×10−4, because of the cardinality of the
predicate over the attribute d_yearmonthnum. Also,
this query has the selectivity near to the SSB’s queries
Q1.2 (6.49×10−4) and Q2.3 (2×10−4).

The two new queries are used in the performance
evaluation to test the designs detailed in Section 4.

6 PERFORMANCE EVALUATION

In this section, we present the performance evaluation
for the three implemented physical designs, CNSSB,
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SameCF and FactDate, regarding the execution of the
queries of the SSB workload and the queries proposed
in Section 5. We also investigate the impact of the
data volume scalability. The tests were performed us-
ing the following configuration setup:

Hardware: A cluster composed of 4 nodes, each
node having a quad-core CPU at 3.0 Ghz (i5-3330),
16 GB RAM, 1 TB SATA disk (7200 RPM) and 1
Gb/s network. One node acts only as a dispatcher (na-
menode) and the other three as workers (datanodes).

Software: All machines run CentOS (version
7.0). Storage and query processing were performed
using HBase (version 0.98.13), Hadoop (version
2.4.1) and ZooKeeper for data partitioning in HBase.

We used the SSB’s data generator to generate the
dataset, in which the tables were joined into a sin-
gle denormalized CSV file. This file was first loaded
in HBase through conversion to HFile format and
then equally distributed among the datanodes using
MapReduce jobs. Table 2 details, for each Scale Fac-
tor (SF), the size of the generated file and the size of
the same data after loading it in HBase. Because of
the HBase’s cell structure, the size of the database is
greater than the CSV file size. Each query was imple-
mented using Java (version 1.8) and executed at least
five times to collect the average elapsed time.

Table 2: Data volumes used in the experiments.

Scale Factor (SF)
10 20 40 80

CSV (GB) 28 55 109 218
FactDate (GB) 58.4 116.9 233.9 468.2

CNSSB (GB) 58.5 117 234.2 469.9
SameCF (GB) 57.9 115.8 231.8 464.0

6.1 Analyzing the Physical Designs

This experiment evaluates the query processing for
the three schemas described in Section 4 using SFs
with values of 10 and 20 (Table 2). We organize
our discussions considering two aspects: low-
dimensional analysis and high-dimensional analysis.

Analysis of Low-dimensional Queries
Regarding Scenario 1, we evaluated OLAP queries in-
volving a few number of dimensions, i.e. we eval-
uated one and two-dimensional queries. The one-
dimensional queries were adapted versions of the SSB
query workload. These queries, named Q1.1, Q1.2
and Q1.3, depend only on the dimension Date and
on the fact table. Their differences consist in the
predicates involved, which provided different values
of selectivity. The two-dimensional queries were the
Qnew1 and Qnew2 proposed in Section 5.

Figure 3 depicts the obtained performance re-
sults. Figures 3(a) and 3(c) show that the proposed
FactDate outperforms the other designs for one-
dimensional queries. FactDate improved the overall
performance from 25% to 33% regarding its best
competitor, CNSSB. This behavior is justified by
the fact that our proposed design processes only one
CF, while CNSSB processes two CFs to perform the
same query. When comparing the SameCF and the
FactDate designs, SameCF contains flatter HFiles
because it stores attributes for all dimensions. As a
consequence, the one-dimensional query processing
requires more time due to larger HFiles. Figures 3(b)
and 3(d) illustrate that CNSSB demanded more
time to process queries Qnew1 and Qnew2, as it
requires accessing three CFs to process them. Also,
our proposed FactDate design still outperformed
the other designs because it uses only two CFs.
Compared to its best competitor, SameCF, FactDate
improved query performance from 6% to 14%.

Analysis of High-dimensional Queries

The second part of our analysis evaluated three and
four-dimensional queries, which were adapted ver-
sions of the SSB workload. These queries are re-
lated to Scenario 2, and adapted from SSB’s work-
load. The three-dimensional queries are named Q2.1
to Q3.4, and the four-dimensional queries, Q4.1, Q4.2
and Q4.3, accessed all four dimensions of the schema.

Figure 4 depicts the obtained processing elapsed
time. Here, we noticed that processing more than
two CFs in the same query provided significant per-
formance losses regarding the FactDate and CNSSB
designs. When a query needs to process three or
more CFs, the overhead for rebuilding a tuple sharply
increased execution time. Figures 4(a) and 4(b)
illustrate that SameCF provided the better perfor-
mance results. They also show that this behavior was
maintained when the data volume was increased by
two times. Regarding the three-dimensional queries,
SameCF improved the overall performance from 14%
to 38% when compared to its best competitor, Fact-
Date. Furthermore, when we added more dimensions
to the query, the processing time for CNSSB and Fact-
Date increased. They become unsuitable for Scenario
2, as depicted in Figures 4(c) and 4(d). Regarding the
four-dimensional queries, the improvement provided
by SameCF over FactDate ranged from 47% to 54%.

Both analysis show strong indications about how
different enterprise scenarios can require distinct
physical DW designs to efficiently attend the most
frequent queries. On our next experiment, we analyze
how this behavior is related to data volume.
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Figure 3: Processing elapsed time for low-dimensional queries, which are related to Scenario 1.
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(d) Four-dimensional
queries with SF = 20.

Figure 4: Processing elapsed time for high-dimensional
queries, which are related to Scenario 2.

6.2 Scalability Evaluation

Here, we evaluate query performance, according to
the designs described in Section 4, analyzing their be-
havior as the data volume increases. In this experi-
ment, we used SFs = 10, 20, 40 and 80 (Table 2).

Figure 5 depicts the average processing time for
the one-dimensional queries. We can observe that
the query performance against SameCF was highly
degenerated and produced higher processing times
when compared to the other designs. The main dif-
ference between FactDate and CNSSB was related to
the quantity of CFs, where the queries against Fact-
Date only accessed one CF while the queries against
CNSSB accessed two CFs. Regarding FactDate, we
observed that reducing the quantity and size of the

CFs related to the most frequent queries improved
query performance, but if all the dimensions were
joined in the same CF, the performance dropped sub-
stantially. Further, FactDate boosted the performance
by 20% on average when compared to CNSBB.
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Figure 5: Processing time of one-dimensional queries.

Figure 6 depicts the average processing time for
the two-dimensional queries. The three designs
showed a similar behavior when processing these
queries. However, the proposed FactDate design
slightly outperformed the other designs as it pro-
cessed only two CFs for the two-dimensional queries,
while CNSSB design processed three CFs. Compar-
ing FactDate to SameCF, we observed that FactDate
deals with two small CFs while SameCF processes
only one large CF. Therefore, when two small CFs
were joined, FactDate still outperformed the overhead
of processing one flatter HFile. This improvement
varied from 6% to 11% as the data volume increased.
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Figure 6: Processing time of two-dimensional queries.

Figure 7(a) shows the average processing time
for the three-dimensional queries. For two or more
CFs, query performance presents an opposite behav-
ior when compared to the results depicted in Figures 5
and 6. We can observe that grouping all attributes
in the same CF boosted the performance of SameCF
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over FactDate from 21% to 31% as the data volume
increased. Moreover, Figure 7(b) depicts that this
improvement, on four-dimensional queries, is up to
54%. We can conclude that, when it comes to pro-
cessing three or four CFs, FactDate and CNSSB are
not suitable for Scenario 2.
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Figure 7: Processing time of high-dimensional queries.

7 CONCLUSIONS

In this paper, we analyze three physical DW designs,
called CNSSB, SameCF, and FactDate. We consider
two different enterprise scenarios, determining OLAP
queries with different numbers of dimensions. We ob-
serve how the attribute arrangement over CFs accord-
ing to these designs influences OLAP query perfor-
mance. The results of our experiments showed that
storing all data in one CF provided better performance
for high-dimensional queries. In this scenario, the
SameCF was the most appropriated to be deployed.
On the other hand, storing dimensions in different
CFs benefited low-dimensional queries. In this sce-
nario, the FactDate and the CNSSB were more appro-
priated. Further, when processing one-dimensional
queries that required data from the dimension Date,
the FactDate design provided the best performance
results. Since data warehousing is characterized by
mostly read-only operations, this organization in CFs
is an important issue to take into account when com-
paring NoSQL column-oriented databases.

By using this guideline, the company is able to
provide a schema physical design that best suits the
most frequent OLAP queries issued against its data
warehousing application. Regarding benchmarks, we
can conclude that their workload must model different
physical designs in order to provide a more accurate
evaluation focused on the company interests.
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