
A Constraint-based Approach for Checking Vertical Inconsistencies
between Class and Sequence UML Diagrams

Driss Allaki, Mohamed Dahchour and Abdeslam En-Nouaary
Institut National des Postes et Télécommunications, 2, av ALLal EL Fassi – Madinat AL Irfane, Rabat, Morocco

Keywords: UML, Vertical Inconsistencies, Software Development Process, Constraints, Metamodel.

Abstract: The modern software development processes enable evolving software systems and refining models across
software life cycle. However, these evolution attitudes may lead to some consistency problems among models
at different levels of abstraction. Hence, it is required to discover and detect the potential inconsistencies
occurring in models when developing a system. This paper focuses on checking the vertical consistency of
UML models using an approach based on defining constraints at the meta-level. These constraints are
expressed using EVL (Epsilon Validation Language) to ensure the consistency of models. Representative
examples of constraints for checking vertical inconsistencies between class and sequence diagrams are
proposed to illustrate our contribution.

1 INTRODUCTION

Over the past few years, modeling systems has long
been an essential practice in software development,
since a model is supposed to anticipate the results of
coding. Indeed, a model is an abstract representation
of a system intended for understanding, studying and
documenting the system (Cernosek and Naiburg,
2004). Each member of the project team, from the
user to the developer, uses and enriches the model
differently. Also, the model has the particular
advantage of facilitating traceability of the system,
namely the possibility of starting from one of its
components and monitors its interactions and
relationship with other parts of the model.

To illustrate what a model is, Grady Booch draws
a parallel between a software development and a
building construction. This analogy is appropriate
since the plots plans to construct a building perfectly
reflects the idea of anticipation, design and
documentation of the model. However, we note that
in building modeling, this anticipation does not take
into account the changing needs of users, the starting
hypothesis is that these needs are defined once and for
all. Yet, in many cases, in software development,
these needs change over the project; that is why it is
important to manage change and recognize the need
to continue supporting our models. Then, unlike what
is done in the construction industry, the software

modeling process must be adaptive rather than
predictive.

From this perspective, a software modeling
process defines a sequence of steps, partially ordered,
which contribute to the realization of software or
changing an existing system (Jacobson et al., 1999).
Then, the purpose of a development process is to
produce quality software that meets the changing
needs of the users in predictable time and cost. To this
end, most of modern software modeling processes
adopt iterative and incremental strategies as is the
case in agile context. The iterative approach is based
on the growth and the successive refinement of a
system through multiple iterations, feedback and
cyclical adjustment being the main engines to
converge on a satisfactory system. In the incremental
development, we split the tasks into small parts, plan
them to be developed over time and incorporate them
as soon as they are completed. When agile modeling
is based on some simple principles with common
sense that encourage changing models perspectives if
needed, and motivate creating multiple models
simultaneously.

According to (Huzar et al., 2004), the incremental
and iterative nature of software systems and the agile
and flexible software modeling processes are one of
the main causes of model inconsistencies. An
inconsistency roughly means that overlapping
elements of different model aspects do not match
each other (Allaki et al., 2014). Or in other words, the

Allaki, D., Dahchour, M. and En-Nouaary, A.
A Constraint-based Approach for Checking Vertical Inconsistencies between Class and Sequence UML Diagrams.
In Proceedings of the 18th International Conference on Enterprise Information Systems (ICEIS 2016) - Volume 1, pages 441-447
ISBN: 978-989-758-187-8
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

441

whole system is not represented in an harmonized
way in different views of its model.

These inconsistencies could be the source of many
errors and could therefore invalidate the models and
complicate the whole software development process.
Especially when adopting a Model Driven
Engineering (MDE) approach (Schmidt, 2006). The
Object Management Group vision of MDE is called
Model Driven Architecture (MDA, 2003). MDA
formulates well-established rules and good practices
such as adopting the Unified Modeling Language
(UML, 2015) as a de facto standard for modeling
software systems. UML is defined as a graphical and
textual modeling language composed of multiple
diagrams that unifies both notations and object-
oriented concepts. The concepts transmitted by a
diagram have a precise semantics and are carriers of
meaning. For example, semantics expressed by class
and sequence diagrams makes them the most
complementarily related diagrams containing
meaningful information about both the structure and
the behavior of the system being investigated; which
makes them also the most refined diagrams during all
different software development phases. For this
reason, we consider and focus in this work, on
examples of inconsistencies between these two
diagrams.

In this paper, we first explain, using examples, how
scalable development processes using iterative,
incremental and adaptive methods are behind the
occurrence of vertical (inter-model) inconsistencies (i.e.
inconsistencies arising among UML model diagrams at
different levels of abstraction). After that, we will
describe how our proposed constraint-based
consistency checking proposal works, and we will
propose, thereafter, a set of constraints that deal with the
given examples of vertical inconsistencies between class
and sequence diagrams introduced before.

The rest of the paper is organized as follows.
Section II provides three motivating examples of
vertical inconsistencies between class and sequence
diagrams. Section III presents our constraint-based
approach for checking UML model inconsistencies,
illustrated by examples dealing with the given vertical
inconsistencies, and discussed according to the
advantages and limitations of related works.

2 VERTICAL INCONSISTENCIES
BETWEEN CLASS AND
SEQUENCE DIAGRAMS

The inherent complexity of software systems during

their creation will continue to grow as they are
evolving, either using traditional or agile software
development processes. Indeed, mixing between
iterative, incremental and adaptive strategies affects
models’ consistency by adopting some change
attitudes in different development phases. More
explicitly, these attitudes advocate assuming models’
simplicity, enabling change, using multiple models
and so on. The cited attitudes encourage to not over-
modeling the system in the first steps of development;
which means not depicting additional features in our
models until the system requirements evolve in the
future. This can be done by developing a small model,
or perhaps a high-level model, and evolve it over time
(or simply discard it when no longer need it) in an
incremental manner. Moreover, we have to use
multiple models to develop software, depending on
the exact nature of the software we are developing.
All these attitudes can lead to numerous conflicts in
models across different levels of abstraction. Thus,
vertical inconsistencies can arise as a result.

Being aware of this fact, particular attention
should concern checking this kind of inconsistencies,
as well as others, to undergo changes during a
software life cycle, correct errors, accommodate new
requirements, and so on.

In what follows, we present some motivating
examples from literature that illustrate the conflicts
arising between class and sequence diagrams at
different levels of abstraction.

Hereafter, we consider that the different parts of
the sequence diagrams presented in the following
examples are a refinement, at the instance level, of an
existing sequence diagram defined in a higher level
(specification level). The refinement is used to
present more details on the interaction between the
objects used in these examples. This lead to assume
that the class diagrams are on a higher level of
abstraction than the given sequence diagrams.
Example 1: (Connector Type Incompatibility)

Figure 1: A part of a class diagram (1).

ICEIS 2016 - 18th International Conference on Enterprise Information Systems

442

Figure 2: A part of a sequence diagram (1).

The part of sequence diagram illustrated in figure 2
shows an instance of class “A” sending a new
introduced message “msg” to an instance of class “B”
although there is no direct relationship between the two
classes “A” and “B” in the class diagram of figure 1.

If we consider, for example, an incremental
context, this inconsistency could occur when we are
developing, in the phase of design, a new increment
of the software system. For instance, when adding
new functionalities to the system, in this new under
development increment, we can introduce a new
message that links between two objects of two
existing classes without updating the class diagram by
linking these two classes. Or without editing the
sequence diagram in progress to be sure that all
messages link only between related classes. This kind
of attitudes is common and may appear in an
unnoticed way in the context of refining the design of
the system being developed following an incremental
strategy.
Example 2: (Dangling Operation)

Figure 3: A part of a class diagram (2).

The part of sequence diagram illustrated in figure 4
represents an instance of class “C” sending a new
introduced message “msg” to an instance of class

Figure 4: A part of a sequence diagram (2).

“D”. However, the message “msg” refers to an
operation in class diagram illustrated by figure 3 that
does not belong to the class “D” attached to the
receiving event of the message in sequence diagram.

When adapting models, for example in an agile
software development process, it is common to
change design, or part of it, due to the change of initial
requirements. This change may lead to some
inconsistencies that concern the behavioral aspect of
the model. For instance, during these design changes,
some operations in the class diagram may not be
moved to another class, or sometimes may not be
removed from the model. And then, these operations
can be referred in a wrong way in the other diagrams;
like the case of the dangling operation presented
before.
Example 3: (Navigation Incompatibility)

Figure 5: A part of a class diagram (3).

In the part of sequence diagram illustrated in
figure 6, a message is sent from a sender object “E”
to a receiver object “F” in opposition to the navigation
direction of the association between the two
corresponding classes “E” and “F” in the class
diagram represented in figure 5.
If rearrangements are carried out on an existing part of
the system, the example of navigation incompatibility

A Constraint-based Approach for Checking Vertical Inconsistencies between Class and Sequence UML Diagrams

443

Figure 6: A part of a sequence diagram (3).

could occur. For example, when adopting an iterative
strategy in the development process, we develop the
least possible before the system is submitted to
evaluation. And then, we can neglect, in the first
iterations, some details in design; such as the
navigation direction of the association between
classes. But when refining the model, such
information could be added, and then it becomes
crucial to adopt the other parts of the model to these
changes. Then, for instance, sending a message
between two objects without taking into
consideration the navigation direction of the
association linking between their respective classes is
not allowed.

As pointed before, different types of
inconsistencies can be encountered in UML models.
In this paper, we focus on vertical inconsistencies.
The taxonomy presented in (Allaki et al., 2015)
proposes more examples and more details about a
comprehensive classification of inconsistencies.

3 OUR PROPOSED
CONSTRAINT BASED
APPROACH

In this section, we present the approach we used for
checking the consistency of UML models. Our
technique is based on formal constraints defined at
the metamodel of UML. These constraints are
implemented using EVL (Epsilon Validation
Language, 2015) by matching related diagrams’
features at the metamodel level.

3.1 An Overview of our Approach

Our EVL constraint-based approach matches UML
meta-elements to ensure models’ consistency. In our
context, the constraints added at the meta-level
describe different conditions that UML models have

to satisfy to be considered consistent. These
conditions concern, syntactically and semantically,
the homogeneity, the complementarity and the
compatibility of the UML diagrams’ elements. Then,
checking inconsistencies will be based on detecting
violations of consistency according to these
constraints. Since the consistency constraints are
defined at the UML metamodel level, they have the
advantage of being independent from any specific
implementation platform and so they can be applied
generically to all UML models since any UML model
inherits all the specifications, including constraints,
from its metamodel.

Note that these constraints will be enabled once
the modeler explicitly asks the validation of his model
and not during modeling. Thus, some “fake
inconsistencies” such as incompleteness or anomalies
that are intentionally produced when the model is
under construction, could be avoided.

Figure 7: Constraints in UML metamodel level.

On the other hand, recall that UML design models
are typically expressed as a large collection of
interdependent and partially overlapping UML
diagrams. These diagrams relate to different aspects
of the system, and are somehow related to each other,
as some of their elements have matching links. These
links are expressed by the different meta-associations
between meta-classes in the UML metamodel.

Our solution exploits these facts to check
inconsistencies that can arise between multiple views
of the model, even if they are at different levels of
abstraction. The key idea behind our approach is a
matching between meta-classes by establishing the
right links when defining a consistency constraint at
UML metamodel. The definition of such constraints
is basically done by first, choosing the right meta-
classes involved in the constraint, and then, by
determining the way these meta-classes are linked.

ICEIS 2016 - 18th International Conference on Enterprise Information Systems

444

3.2 Examples of EVL Constraints

In what follows, we produce, for each given example
in (Section 2), the UML meta-classes concerned by
the inconsistency and the associated constraint
expressed in EVL.

EVL (Epsilon Validation Language) is a task-
specific language of the general model management
language Epsilon (Epsilon, 2015). EVL is a language
dedicated to validate models. In their simplest form,
constraints expressed in EVL are quite similar to
OCL constraints. However, unlike OCL, EVL
supports dependencies between constraints (e.g. if
constraint A fails, do not evaluate constraint B),
supports user interaction (specifies customizable
error messages and quick fixes for failed constraints),
supports all the usual programming constructs and the
convenient first-order logic OCL operations and so on
(Kolovos et al., 2015).

All EVL features are suitably integrated in Eclipse
Modeling, the CASE tool we used to implement our
approach.

Example 1: (Connector Type Incompatibility)
The involved inconsistency elements from the UML
metamodel are shown in the following figure.

Figure 8: Involved elements from the UML metamodel in
the Connector Type Incompatibility inconsistency.

The EVL constraint that checks this inconsistency
is presented as follows:

context Connector {

constraint ConnectorTypeIncompatibility {

check : self.type.memberEnd.type =

self.end.definingEnd.type

 message : "A model contains a connector"
+ self.name + "for which the type of the
connectable elements that are attached to the
ends of the connector don't conform to the type
of the association ends of the association that
types the connector"

}
}

In this example, we choose the meta-class
Connector as a context of the EVL constraint. We
make sure if the types of the connectable elements
that the ends of the connector are attached conform to
the types of the association ends of the association
that types the connector. And if this inconsistency
appears, a message explaining the situation is
displayed.

Example 2: (Dangling Operation)
The part of UML metamodel containing the adequate
meta-classes involved in this inconsistency is shown
in figure 9.

Figure 9: Involved elements from the UML metamodel in
the Dangling Operation inconsistency.

In this example, we consider for clarity reasons
the simplest instance of the Dangling Operation in
which we have just one operation in the class. The
EVL constraint that checks and fixes this
inconsistency is presented as follows:

context Message {

constraint DanglingOperation{

check : self.signature =
self.receivedEvent.covered.represents.type.Ow
nedOperation.signature

 message : "A sequence diagram contains a
message" + self.name + " which refers to an
operation that does not belong to the class
attached to the receiving event of the message"

fix { title : "add an operation to the
class"

 do { var op = new Operation;
 op.name=

self.name;Class.ownedOperation.first().conten
ts.add(op);

 }
 }
}
}

To deal with the Dangling Operation
inconsistency, we choose for the corresponding
constraint, the meta-class Message as a context. The

A Constraint-based Approach for Checking Vertical Inconsistencies between Class and Sequence UML Diagrams

445

objective then is to compare the signature of the
Operation referenced by the Message with the
signature of the Operation belonging to the Class
attached to the receiving event of the Message in the
Sequence diagram. If the two signatures are different,
the inconsistency occurs and therefore a useful
message is displayed with a proposition of fixing the
inconsistency by creating a new operation to the
corresponding class.

Example 3: (Navigation Incompatibility)
The involved meta-classes of this inconsistency are
shown in figure 10.

Figure 10: Involved elements from the UML metamodel in
the Navigation Incompatibility inconsistency.

The EVL constraint that checks the simplest form
of this inconsistency is presented as follows:

context Message {

constraint NavigationIncompatibility{

check :
self.receivedEvent.covered.represents.type

= self.connector.type.navigableOwnedEnd.type

 message : "A sequence diagram contains a
message" + self.name + "of which calling
direction does not match the navigation
constraint on the corresponding association"

}
}

The context chosen for the Navigation
Incompatibility constraint is the meta-class Message.
By defining this constraint, we aim to compare the
calling direction of the message if it matches the
navigation constraint on the corresponding
association. An explanatory message is displayed if
the inconsistency arises.

3.3 Discussion

Over the past few years, ensuring consistency in
UML models has been a priority investigation for
researchers and practitioners in software engineering.
As a result, several approaches have been devised to
deal with this issue. These approaches can be

classified into two categories, namely
transformation-based techniques and constraint-
based techniques.
Transformation-based techniques, for example but
not limited to (Hanzala and Porres, 2015); (Miloudi
et al., 2011), (Straeten et al., 2007) and (Yao and
Shatz, 2006) are founded on detecting
inconsistencies, after transforming semi-formal UML
models to a formal language, using inference
mechanisms of that language.

These methods provide us with solid
mathematical foundation, proof and tools and add
more precision to UML models by avoiding
ambiguities when handling inconsistencies in these
models.

On the other side, constraint-based techniques,
such as (Przigoda et al., 2016), (Kalibatiene et al.,
2013), (Sapna and Mohanty, 2007), (Egyed, 2007)
and so on, detect inconsistencies in accordance to the
formal constraints defined at the metamodel level.

These methods are extensible, by giving the
possibility to include new checks for new arising
inconsistencies. Also, unlike transformation
techniques, they preserve all the information
expressed in the UML models; and make the model
more expressive through the constraints defined at the
metamodel.

However, most of the existing constraint-based
proposals generally deal with static aspects of the
UML models and are limited to checking
inconsistencies in a single diagram, which
compromise their efficiency.

Giving the pros and cons of the existing
inconsistency checking methods, our proposed
constraint-based solution overcomes some of these
limitations since it is conceived to ensure the quality
and the usefulness of the proposal. Our proposal is
easily automated (implemented using Eclipse
Modeling). Moreover, EVL, the language used to
write constraints, provides much helpful functionality
such as the support of quick fixes and the
customizable error messages. This can motivate
industrial development communities to use it, unlike
most of the existing formal techniques that are hard
to automate and require a strong mathematical
background to apply them. Furthermore, the
constraint-based nature of our proposal supports
extension mechanisms to deal with any new arising
inconsistency. In addition to that, our proposal was
designed to be complete in terms of coverage of both
potential inconsistencies and the UML diagrams
commonly used such as the class, sequence, activity,
statechart diagrams and so on; which make it a simple
and practical consistency checking proposal.

ICEIS 2016 - 18th International Conference on Enterprise Information Systems

446

4 CONCLUSIONS

We tried through this paper to deal with the case of
the vertical inconsistencies caused by the refinement
of the model. Models are generally refined because of
the iterative, incremental and adaptive nature of the
modern software development processes.

We explained how our constraint-based
consistency checking proposal treats this type of
inconsistencies. Our approach adds constraints at the
metamodel level by matching the common concepts
among the UML diagrams. These constraints, written
using the Epsilon Validation Language, automatically
help detecting and fixing inconsistencies. To illustrate
our approach, we have considered examples of
constraints that check vertical inconsistencies arising
between class and sequence diagrams.

On the other hand, our proposal is characterized
by its ease of automation (implemented using Eclipse
Modeling), ability to be extended and completeness
of covering all the potential inconsistencies that can
affect all the commonly used UML diagrams.

As a future work, we intend to develop a
consistency checking process that regroups the best-
practices of detecting and handling UML model
inconsistencies and that focuses on defining the
different steps needed to well behave with the
detected inconsistencies. We will apply this on a case
study that contains patterns involving a set of tricky
examples of inconsistencies and that covers a larger
number of expressive UML diagrams. We will also
provide further discussion about the experimental
results with the Eclipse tool and its performance.

REFERENCES

Cernosek, G., Naiburg, E., 2004. The Value of Modeling.A
technical discussion of software modeling. (IBM).

Jacobson, I., Booch, G., Rumbaugh, J., 1999. Software
Development Process, An Imprint of Addison Wesley
Longman, Inc.

Huzar, Z., Kuzniarz, L., Reggio, G., Sourrouille, J.L., 2004.
Consistency problems in UML based software
development. In UML Modeling Languages and
Applications, «UML» 2004 Satellite Activities, Lisbon,
Portugal, October 11-15, 2004, Revised Selected
Papers. LNCS, vol. 3297, pp. 1-12.

Allaki, D., Dahchour, M., En-nouaary, A, 2014. A New
Taxonomy of Inconsistencies in UML Models:
Towards Better MDE. In the Proceedings of the 9th
International Conference on Intelligent Systems:
Theories and Applications, (SITA’14), May 2014,
Rabat, Morocco, pp.121-127.

Allaki, D., Dahchour, M., En-nouaary, A, 2015. A New
Taxonomy of Inconsistencies in UML Models with
their Detection Methods for better MDE. In
International Journal of Computer Science and
Applications, Technomathematics Research
Foundation, Vol.12, No.1, pp.48–65.

Schmidt, D, 2006. Guest editor’s introduction: Model-
Driven Engineering. In IEEE Computer Society,
February 2006, Volume 39, No. 2, pp. 25-31.

MDA Guide Version 1.0.1, <http://www.omg.org/mda>,
2003. (Last accessed November 2015).

Unified Modeling Language: Superstructure. Version 2.5,
<http://www.omg.org/spec/UML/2.5/>, 2015. (Last
accessed November 2015).

Epsilon Validation Language, 2015. <http://www.eclipse.
org/epsilon/doc/evl/>, (Last accessed November 2015).

Epsilon, 2015. <http://www.eclipse.org/epsilon/doc/>,
(Last accessed November 2015).

Kolovos, D., Rose, L., Domínguez, A.G., Paige, R., 2015.
The epsilon book. February 4, 2015.

Hanzala, A. K., Porres, I., 2015. Consistency of UML class,
object and statechart diagrams using Ontology
Reasoners. In Journal of Visual Languages &
Computing.Volume 26, February 2015, pp. 42–65.

Miloudi, K. E., Amrani, Y. E., Ettouhami, A. 2011. An
Automated Translation of UML Class Diagrams into a
Formal Specification to Detect UML Inconsistencies.
In The Sixth International Conference on Software
Engineering Advances, ICSEA 2011, Barcelona, Spain,
pp. 432–438.

Straeten, R.V. D., Jonckers, V., Mens, T. 2007.A Formal
Approach to Model refactoring and Model refinement.
In Software and System Modeling, Volume 6, Number
2, June 2007, pp. 139–162.

Yao, S., Shatz, S. M., 2006. Consistency Checking of UML
dynamic models based on Petri Net techniques. In 15th
International Conference on Computing (CIC 2006),
November 21-24, 2006, Mexico City, Mexico, pp. 289–
297.

Przigoda, N., Wille, R., Drechsler, R., 2016. Analyzing
Inconsistencies in UML/OCL Models. In Journal of
Circuits, Systems and Computers, Volume 25, Issue 03,
March 2016.

Kalibatiene, D., Vasilecas, O., Dubauskaite, R.,
2013.Ensuring Consistency in Different IS Models –
UML Case Study. In Baltic Journal of Modern
Computing, Volume 1, No. 1-2, 2013, pp. 63-76.

Sapna, P. G., Mohanty, H., 2007. Ensuring consistency in
relational repository of UML models. In 10th
International Conference in Information Technology,
ICIT 2007, Roukela, India, 17-20 December 2007, pp.
217–222.

Egyed, A., 2007. Fixing inconsistencies in UML design
models. In 29th International Conference on Software
Engineering (ICSE 2007), Minneapolis, MN, USA,
May 20-26, 2007, pp. 292-301.

A Constraint-based Approach for Checking Vertical Inconsistencies between Class and Sequence UML Diagrams

447

