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Abstract: The combination of sustainable energy generation and transportation is one of the biggest challenges of the 
21st century. In this work, an energy management system is presented which provides energy-management-
as-a-service for electric vehicle fleet operators. Energy production and price forecasts are integrated with 
near real-time telematics data from a shared electric vehicle fleet, to optimize charging profiles for multiple 
charging sites of fleet operators. For this purpose, system architecture and a proper optimization method 
enabling different charging strategies are introduced. The presented system is finally evaluated by real 
world model trails and an optimization benchmark. 

1 INTRODUCTION 

One of the biggest challenges of the 21st century is 
the transition to sustainable transportation and 
energy generation (Chu and Majumdar, 2012). The 
need for ensuring sustainability is not only driven by 
rising fuel cost or the increase of CO2 emissions, but 
also due to economic and political issues. In the field 
of transportation, battery electric vehicles (BEV) and 
plug-in hybrids (PHEV) help to reduce CO2 
emissions as well as fossil fuel dependency. 
Unfortunately, using these vehicle types incurs high 
investment costs, due to the cost of vehicles 
themselves and the cost of charging infrastructure. 
Nevertheless, these cost issues can be mitigated, 
using electric vehicles (EV) in corporate car pools. 
The study presented in (Plötz et al. 2014) calculates 
that the total cost of ownership (TCO) of EVs is 
lower compared to vehicles with internal 
combustion engines (ICE) when used in corporate 
vehicle fleets due to uniform driving profiles. Thus, 
corporate car fleets are a field of high potential for 
electric vehicle usage, especially since the study 
shows that 60 percent of today’s newly registered 
cars are equipped as commercial cars in Germany. 
Furthermore, the German Federal Government 
(German Federal Government 2009) projected a 
market ramp-up of 1 million EVs by the year 2020. 
The project Shared E-Fleet (Ostermann et al. 2014) 

aims to leverage this potential by providing a 
software solution to enable small and medium sized 
enterprises which are not able to operate a sufficient 
amount of EVs economically on their own. The 
solution helps sharing vehicles between companies 
and users, realizing cross-company electric car 
pools. 

Compared to conventional cars, the usage of EVs 
in a corporate shared vehicle fleet imposes unique 
challenges. Besides the limited range of EVs and 
indispensable charging times, concurrent charging of 
EVs might result in power peaks at a common 
charging site that might violate local grid constrains. 
Especially the operation of large fleets will not only 
affect fleet operators but also energy grid operators. 
These must provide the grid with a suitable amount 
of energy during peak times (Clement-Nyns 2010, 
Lopes et al. 2010, Deilami et al. 2011). The grid 
operators fear that uncontrolled integration of a large 
amount of EVs into the distribution grid might have 
a huge impact on the grid stability (Lopes et al. 
2010). One solution is the integration of EV fleets as 
part of the smart grid. In this way, grid operators can 
prevent cost intensive grid expansion given the fact, 
that information and communication technologies 
(ICT) are harnessed to realize coordinated charging 
strategies. On the other hand, fleet operators can 
utilize coordinated charging to prevent demand 
peaks caused by concurrent charging of their vehicle 
fleet and thus enable scheduled charging in order to 
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preferably consume locally generated renewable 
energy as it is produced.  

In order to leverage these capabilities of EV 
fleets, an energy management system (EMS) is 
required which is able to easily integrate with 
various system services and business processes to 
provide dedicated control of the operation. 
Furthermore, it enables coordinated grid to vehicle 
(G2V) charging of EV fleets at multiple locations 
under consideration of local and decentral energy 
production. In the process, forecast services shall be 
used to take into account weather-dependent 
renewable energy production.  

In this work, we present the results of our 
research in a mobility aware intelligent energy 
management aggregator, serving as an EV virtual 
power plant (VPP) as part of the Shared E-Fleet 
architecture. It enables a direct load control of 
intelligent charging stations. Thus, a centralized 
control architecture is introduced, interacting with 
multiple ICT components to apply optimized 
charging schedules, based on real time needs of a 
shared EV fleet.  

This work is structured as follows: Section 2 
gives an overview of relevant related work. Section 
3 introduces the use case of the project Shared E-
Fleet from an energy related viewpoint. Section 4 
describes the architecture of the aggregator. In 
Section 5 the applied energy optimization algorithm 
is outlined. The prototype and evaluation are given 
in Section 5. Finally, Section 6 concludes this work 
and gives an outlook on future work. 

2 RELATED WORK 

Considerable research has been contributed already, 
investigating the integration of all kinds of EVs into 
a future smart grid. Since research in this area 
started already when adaption of PHEV began, not 
all work does solely concentrate on BEVs. 
Nevertheless, both types of vehicles do behave the 
same regarding the goal to develop coordination of 
charging and smart grid integration. In (Jansen et al. 
2010), the authors present a modular VPP 
centralized architecture and necessary 
communication protocols to realize coordinated 
charging for a fleet of EVs as part of the EDISON 
project. Similar approaches concerning VPP for EV 
fleets with integration of distributed energy 
resources (DER) were already explicitly investigated 
by (Raab et al. 2011, Vandoorn et al. 2011). In 
literature, two different approaches of integration of 
DER are discussed. Besides VPP which aggregate 

DER units to provide controllability and enable 
market participation, micro grids (MG) aggregate 
local DER to provide a controllable entity that can 
operate in grid-connected and islanded mode 
(Vandoorn et al. 2011). In both concepts, an EV 
fleet acts as controllable battery storage system. 
Beside energy storage systems a MG or VPP can 
also include charging stations or a PV plant. 
Although the MG and the VPP concepts are similar, 
they can be differentiated by seeing a VPP 
aggregator as virtual, software-based aggregation 
and the MG as physical aggregation of DER units. 
In this work, we introduce an approach, not only 
focusing on a central VPP acting as aggregator but a 
multi-station aggregator, being able to provide 
second level control and operate multiple MGs 
independently. Thus, it enables the aggregator to 
consider preferences and local load management 
constraints defined by the respective MG operator. 

The later proposed aggregator is able to perform 
smart charging. With smart charging, charging 
stations are basically provided with predefined 
charging profiles. These profiles have to be followed 
by the battery management systems (BMS) of the 
vehicle. Smart charging has the advantage to enable 
charging stations and subsequently each connected 
EV to defer charging processes to a later point in 
time or directly control the drawn current according 
to a given profile. Smart charging for EV fleets is 
already addressed in previous research. For example, 
in the work of Hu et al. (Hu et al. 2014), 
optimization and control methods are summarized to 
present an overview of this field regarding smart 
charging as part of EV aggregators. The authors in 
(Valogianni et al. 2014) are presenting a 
management system leveraging the battery storage 
capabilities provided by EVs. An extensive review 
of smart charging approaches and architectures is 
presented  in (García-Villalobos et al. 2014). 

Especially the sprawl of distributed energy 
generation, energy storage systems, privately owned 
photovoltaic (PV) power plants, wind power 
generation, or combined heat and power-plants 
(CHP) presents a challenge for future charging 
aggregator systems, making support of smart 
charging necessary. The flexibility of EVs as 
controllable loads to mitigate uncoordinated 
charging impacts was investigated in (Han et al. 
2010, Saker et al. 2011, Sundström and Binding 
2012, Alonso et al. 2014, Valogianni et al. 2014). 
Extensive reviews regarding charge scheduling for 
EVs is given by (García-Villalobos et al. 2014, 
Mukherjee and Gupta, 2014). 

Nonetheless, previous work considered only 
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optimization methods isolated from productive 
systems and not integrated into working prototypes. 
VPP aggregators realizing smart charging as part of 
a smart grid have been presented (Chynoweth et al. 
2014, Lutzenberger et al. 2014, Zuccaro et al. 2014). 
Additionally, various researchers developed multi 
agent systems to accomplish a VPP aggregator 
(Lutzenberger et al. 2014). Although the approach in 
(Mültin et al. 2012) is similar to our approach, we 
provide a hierarchical controlled VPP, monitoring 
and controlling multiple sites as a cloud-based 
solution. As proposed in (Hu et al. 2013, Mukherjee 
and Gupta 2014), we orchestrate a distributed 
service oriented architecture (SOA) as a cloud-based 
solution, enabling the aggregator to react in near 
real-time to the fleet operation. Hence, we develop a 
solution for fleet operators, with the goal to enable 
their fleet to participate in the smart grid, without 
being dependent on solutions provided by a utility 
company, as well as being flexible to scale.  

3 SHARED E-FLEET SCENARIO 

In the research project Shared E-Fleet (SEF) a 
cloud-based solution was investigated which enables 
a car fleet operator to manage and provide a fleet of 
BEV across several companies at one or multiple 
sites. Different works (see (Barth et al. 2000, 
Delucchi and Lipman, 2001, Lee et al. 2005)) 
suggested that increasing the utilization of EV fleets 
for example by increasing trips per day, decreases 
the TCOs and make them more economic than 
combustion engine vehicles regarding short range 
trips. Hence, the SEF IT solution provides a system 
including mandatory functionalities for car fleet 
management like booking, billing and operation, to 
be able to realize a corporate car sharing platform. 
Compared to other already available commercial 
solutions, the SEF solution was intended as an 
extensible, service-based cloud-platform to integrate 
various fleet management services in a highly 
configurable matter, making the operator 
independent of vendor specific solutions (Ostermann 
et al. 2014).  

Unlike state of the art solutions, in the SEF use 
case, instead of booking a car, the user books a 
mobility demand by defining the start and end point 
and time of his business trip. Since SEF uses a 
station based car sharing approach, the start and 
endpoint of each mobility demand is always at a 
dedicated station of the SEF system. Certainly, the 
start and end station do not have to be the same. 
Until one hour before the respective beginning of a 

trip, a booking is not explicitly bound to one vehicle. 
Only after reaching this time, it is fixed to a 
dedicated vehicle. A one hour time frame was 
chosen to assure the user a safe operation of the 
system by this feedback and leave a margin in case 
of failure. In this way, the disposition optimization 
management service reschedules journeys in real 
time and reacts to unforeseen issues like delayed 
vehicle returns or unexpected state of charge (SOC) 
at the time of return (Koetter 2015). The latter one is 
especially crucial in EV fleets, since a properly 
predicted SOC influences all succeeding, already 
booked journeys on the same vehicle. Thus, already 
booked trips may be canceled in case of unforeseen 
issues. During the booking process, the disposition 
optimization assesses the current schedule whether 
the user request can be fulfilled even considering a 
suitable buffer in time and SOC, but large deviations 
of the expected SOC or return time can only be 
intercepted by standby vehicles. 
Thus, the platform is constantly aware of the vehicle 
state. During each trip, the vehicles are monitored, 
predicting their estimated return time and their SOC 
based on real-time data from an on-board unit 
(OBU). Future states of the vehicles at the end of a 
journey can be estimated and used for future 
optimization procedures. On return of a vehicle, its 
user has to reconnect the vehicle to the charging 
station, enabling them to recharge for the upcoming 
trip. 

As part of the SEF ecosystem, a service is 
required for managing the charging processes and 
energy demand of the vehicles according to grid 
constrains and operator specification as part of a 
smart grid. Considering that, an energy management 
system  controls the charging of the EVs at the SEF 
charging sites. To perform these tasks, the following 
requirements have to be fulfilled:  

R1. All EVs of the fleet must always be able to 
satisfy the needs of the mobility demand of the user. 
Hence, the EMS is responsible for sufficiently 
charged vehicles according to the journey schedules 
of the disposition management. The schedules for 
the vehicles must contain a predefined start and end 
time as well as a consumption forecast for each 
journey. 

R2. Vehicle disposition schedules may change 
over time. Due to unforeseen influences, vehicles 
may return with different SOC or return late at the 
station. The EMS has to update the charging 
schedules continuously according to the current state 
of the system. 

R3. In order to sufficiently fulfill R1 and R2, an 
algorithm is required which is capable to calculate 
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an optimal charging schedule regarding the 
constrains of the system. Thus, optimal charging 
schedules have to be computed based on different 
charging strategies which are ought to be selected by 
the operator of the respective fleet ensuring R1 and 
R2. 

R4. In order to perform tasks as part of a smart 
grid, the EMS is supposed to be able to monitor and 
control distributed and local energy resources. A 
model is required, describing the involved 
components and their properties to provide 
optimization algorithms with system constraint 
boundaries. 

R5. Especially renewable energy resources are 
dependent on weather conditions. Thus, weather 
conditions have to be considered during charge 
scheduling. A forecasting system has to be 
integrated which provides information about the 
prospected energy production of individual 
components. 

R6. As stated in R1, the state of the complete 
EMS is time dependent. The EMS has to be 
provided with information about the state of all 
relevant system components. The EMS has to store 
these states in order to enable the user to keep track 
of them at a later point in time. 

R7. The EMS must integrate intelligent charging 
stations which are capable of directly controlling the 
output current. This way, pre-calculated charging 
profiles can be applied to the EV. 

R8. Furthermore, various fleet operators with 
multiple fleet charging sites must be able to use and 
integrate their master data management with the 
EMS. 

R9. The EMS must keep track of the current 
energy production and EV charging at the respective 
charging sites and always ensure safe operation of 
the energy system by staying in system boundaries. 

R10. The system must also be able to fulfil non-
functional requirements. Thus, it must be able to 
scale in order to provide services to multiple users. 
Robustness is required to provide services even in 
case of failure. Additionally, the EMS must perform 
well, even with a large amount of managed 
components. 

4 AGGREGATOR SYSTEM 
ARCHITECTURE 

In the following, we present the architecture of the 
EMS, showing how it is able to provide energy-
management-as-a-service. The system architecture 
of the complete SEF ecosystem for a shared EV fleet 

is described in (Ostermann et al. 2014). The EMS is 
part of this ecosystem. Its system architecture is 
depicted in Figure 1. The EMS is acting as central 
node, integrating all mandatory components to fulfil 
all previously stated requirements. All components 
are integrated by connecting to their web services.  
Through the integration of master data management 
(MDM) services, the EMS can obtain properties of 
all physical system components. Thus, by defining a 
mutual data exchange interface, various MDM 
systems can provide information about the deployed 
EVs, the energy production resources, the charging 
stations and about charging sites of the individual 
fleet operator. 

 

Figure 1: EMS system architecture. 

An interface to a charging station operator (CSO) 
provides the EMS with means to monitor and 
control  charging stations. CSO are business entities, 
owning, managing, maintaining, and operating an 
aggregation of charging stations. Note that EV fleet 
operators can also be CSOs themselves.  In order to 
provide the EMS with real-time state data of the 
vehicles, a external database is interconnected to the 
EMS which stores telematics from vehicles. 
Telematic real-time data of the vehicles might be 
provided by OEMs in near future. However, today 
this data is provided by third-party developers using 
proprietary hardware which is amalgamated in 
separate provider specific databases. 

A forecast provider service supplies the EMS 
with up-to-date and day-ahead energy production 
forecasts. Similarly, the energy grid operator, e.g. 
the transmission system operator (TSO) or 
distribution system operator (DSO), is connected 
with the EMS. Thus, the operator can either request 
the EMS to perform ancillary services on the grid or 
send price signals or dynamic day-ahead price 
curves. By integrating a building energy 
management system, information about locally 
generated energy (e.g. by a photovoltaic power 
plant) and the energy consumption of the building 
can be obtained.  

The software architecture is depicted in Figure 2. 
The EMS is constructed as a multi-tenant platform. 
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In this way, collaboration between different 
customers (EV fleet operators) can be implemented 
instantaneously without the need to 
programmatically extend the platform or integrate 
multiple instances. Additionally, updates and 
maintenance of the platform is more flexible while 
ensuring contracted service-level agreements and 
quality of service without the need for extensive IT 
infrastructure at the customer site (Buyya et al. 
2009). 

Consequently, managing the tenants of the 
platform is a crucial part. A tenant manager is 
responsible for managing all data belonging to its 
respective customer avoiding and handling cross-
access to other customer’s data. All collected data of 
all tenants is stored in one shared database. 
Therefore, each fleet operator can configure the 
setting of its own controllable charging sites.  
 

 

Figure 2: Software architecture of the EMS. 

A frontend visualizes the system state for each 
customer and provides the means to control all 
integrated components. A screenshot of the actual 
frontend of the EMS prototype is depicted in figure 
3 showing the real-time load at a charging site, the 
current energy production and an overview of the 
vehicle states. 

 

Figure 3: Frontend visualization showing the load and 
production parameters and the state of the cars for the 
customer. 

As depicted in Figure 2, each tenant possesses a 
set of the master data of all components in their 
system. Furthermore, each tenant possesses a 
controller which has timed tasks that run multiple 
times a minute to read out the value of the pre-
calculated charging profiles from the charging 
schedule and set the power-output set-point to the 
charging station while minimizing the error between 
production and consumption. 

Here, the association between charging station 
and physically connected vehicle is important. The 
identification of the car which is connected to the 
charging station can be done in several ways. Each  
user is assigned a user-specific token. A token is an 
identification number which uniquely identifies each 
user in the system. In this way, the EV can be 
identified by looking up the vehicle which was used 
by the user who checked in to the charging station. 
During this procedure, the token can either be 
transmitted via a smartphone application or be read 
from a RFID-card in the charging station. 
Unfortunately, current EVs do not transmit any 
unique identification to the charging station. Hence, 
in the SEF project, we used a user identification 
which is transmitted to the charging station for 
authentication with the system via a smartphone 
application. 

During charging, the controller continuously 
measures the power drawn from the connected EV 
and compares it to the pre-calculated profile. Any 
occurring deviation is reduced according to the 
individually selected strategy. This ensures that grid 
limitations and optimization goals are met. 

During each charging session of the EV the 
smart meter values of the charging stations are 
sampled in a 15 minute interval. Using this data, the 
consumption module computes time dependent 
energy costs of each session. This enables the fleet 
operators to use dynamical energy plans of their 
DSO.  

A charging schedule holds the charging profile 
for each EV in the system. It is calculated based on 
the EV disposition schedule. As soon as the 
disposition schedule is updated by any entity, the 
charging schedule is updated subsequently. For 
planning the charging schedule, it is assumed that a 
vehicle is connected to the charging station as soon 
as it returns from its trip. Connecting the vehicle is 
mandatory for each user. In case of a missing, but 
expected connection, the user is notified. As a 
consequence, the time between the end of a 
proceeding and the start of an upcoming trip is 
considered available for charging. Only if a user 
explicitly wishes to charge in the meantime, during 

SMARTGREENS 2016 - 5th International Conference on Smart Cities and Green ICT Systems

344



an ongoing booking, this request is taken into 
account in the charging optimization. The charging 
optimization is performed by the optimizer.  Based 
on the selected charging strategy, the optimizer 
schedules and performs an optimization calculation 
which is described in detail in the next section. 
Through this architecture a multi-tenant, flexible and 
scalable EMS aggregator is realized connecting 
multiple sites respectively integrating multiple self-
sufficient micro grid into one control unit. 

5 CHARGING PROFILE 
OPTIMIZATION 

The central component of the EMS is the 
optimization module. Controlling the charging 
processes of a fleet of EVs requires the system to 
continuously update the charging schedule based on 
the current system state. Two distinctive events 
trigger the optimization of the charging plan. Since 
the EMS does not plan the disposition of the fleet, it 
has to react to changes of the disposition schedule. 
Hence, an event is sent by the disposition optimizer, 
notifying the EMS about the updated or changed 
disposition schedule. Even without disposition 
changes, the charging schedule is periodically 
updated in constant intervals by the EMS. Thus, it is 
always able to react to the actual state of the system. 
In this way, deviations of the expected SOC can be 
taken into account. A task manager triggers an 
optimization every 15 minutes if the schedule has 
not changed in the preceding 5 minutes. On this 
way, the optimization process has enough time to 
perform a complete iteration before the next start is 
triggered. 

Especially for larger fleets, a fast optimization 
process is mandatory, since the amount of vehicles 
in the fleet have an impact on the computation time. 
This can be reached for example by reducing the 
complexity of the optimization problem to speed up 
computation time. Different authors already found 
out that linearization of the charging processes 
respectively the battery behavior of EVs is sufficient 
for coordinated smart charging. Nonlinear 
approximation of the charging behavior does not 
justify the increase in computation time (Sundstr. 
2010; Hu et al., 2013). Because of that, we followed 
the recommendation and chose linear programs (LP) 
(Rardin, 1997) to perform optimized charging 
profiles for EV charging. Thus, we picked a LP to 
describe the constrains of the system at hand and 
solve the objective function considering a 

specifically selected charging strategy. For the 
algorithm we discretized the time into timeslot 
intervals of 15 minutes. Hence, a day of 24 hours 
has 96 individual timeslots. We designed the 
objective function of our LP in order to minimize 
cost. 

Based on the selected strategy the cost vector can 
either be a time dependent energy price or the 
amount of CO2 emission produced by a certain 
energy source when used for charging. Thus, an 
economic or ecologic charging strategy can be 
realized by adjusting the cost vector appropriately. 
This way, the optimizer is capable of calculating the 
optimal amount of power used at a designated 
timeslot under consideration of the time dependent 
cost of a specific energy source. Therefore, the 
objective function of our LP looks as follows:  

min  ܿ௩,,௧

௩ୀ ೡ;ୀ;௧ୀ

௩ୀଵ; ୀଵ; ௧ୀଵ

 (1)

Here, ݒ describes the index for the vehicle and ݊௩ is 
the maximum number of vehicles available to 
optimize. Furthermore, ݃ describes the index of the 
energy source and ݊ the maximal number of energy 
sources available to use. Each timeslot is denoted by 
the index ݐ, whith ݊௧ being the number of total 
timeslots and by that the total timespan to be 
optimized. Following, the parameter ܿ௩,,௧ is defined 
as 

ܿ௩,,௧ ൌ ܿ,௧ ∗ ௩,,௧ ∗ 0.25, (2)

where parameter ܿ௩,,௧		߳	Թ from equation 2 being 
the cost of the energy charged into a EV v,  using 
energy source g at timeslot t. The parameter to be 
optimized by the solver will be the output power  
 Թ.  With the objective function given, the	߳	௩,,௧
following constrains are limiting the solution space. 
First, the sum of the allocated power for charging all 
vehicles using an energy source at timeslot t being 
denoted as ,௧	must be lower or equal to the 
forecasted amount of power for this respective  
timeslot ,		߳	Թ : 

,௧ ൌ  ௩,,௧
௩ୀଵ,…,ೡ

 (3)

,௧  , (4)

Vehicles can only be charged while connected to a 
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charging station. Thus, by using a vector modelling 
the connection of the EV to the charging stations, 
the charged energy up to the trip k subsequent to a 
charging session, can be defined to: 

்,௩ܧ ൌ ௩,ܧ 	  ௩,௧ ∗ 	݀௩,௧,
௧ୀଵ…்

െ  ିଵܧ
ୀଵ…ೖ

, 
(5)

்,௩ܧ   (6)ܧ

்,௩ܧ  ௫,௩ (7)ܧ

where ܧ௩,்	is the total amount of energy charged for 
EV v, ܧ௫,௩ the maximum amount energy which 
can be charged into the battery of EV v. 
Further, ݀௩,௧, describes the parameter, denoting each 
timeslot t in which the EV v is connected to a 
charging station up to the beginning of trip k. The 
parameter ݀௩,௧	describes the state of the connection 
with ݀௩,௧ ൌ 1 as connected and ݀௩,௧ ൌ 0 as not 
connected to the charging station. Equation 5 
ensures that the sum of the energy charged up to the 
start of trip k plus the initial SOC of the EV ܧ௩, has 
to be at least the size of ܧ, the amount of energy 
required for  trip k. Equation 7 ensures on the other 
side, that the charged amount of energy does not 
exceed the battery capacity of the respective EV. In 
addition, assume ௩,௧ being the sum of the energy 
charged at timeslot t: 

௩,௧ ൌ  ,௩,௧
ୀଵ,…,

 (8)

At any time, the amount of energy ௩,௧ drawn from 
the charging station should neither exceed its 
maximal power output capabilities nor the maximal 
input power of the respective EV v, letting the 
maximal power output be set to ௫,௩,௧. 

௩,௧  ௫,௩,௧ (9)

Additionally, charging has always to be limited to 
the times the EV is physically connected to the 
charging station. From this follows: 

௩,௧ ൌ ௩,௧ ∗ ݀௩,௧ (10)

If the vehicle is not connected the parameter ௩,௧ at 
this timeslot has to be zero.   

If these constrains can be satisfied, the optimizer 
calculates the best fitting charging profile for the 

vehicles. Note, that the problem space of the 
described LP scales linearly with the amount of 
regarded EV, energy sources and days. Computation 
time scales linearly with the size of the problem 
space. Both can be reduced by either simplifying the 
constrains to only focus on one single energy source 
making the sum of all forecasts the maximum 
available power or by reducing the amount of 
regarded timeslots by decreasing computation range 
or increasing slot duration. 

In the Shared E-Fleet project, we focused on two 
strategies for charging plan generation. We 
differentiated between economic and ecologic 
charging. Based on price forecasts only time 
intervals will be considered for charging which are 
ultimately required for charging the car to a specific 
SOC necessary to perform a journey or which offer 
considerably lower prices in comparison to another 
time of day. With an ecologic strategy the algorithm 
is supposed to charge the EVs mainly at times of the 
day when renewable energy is generated. 
Subsequently of the computation, the set points for 
the maximum allowed output power is transformed 
in a charging profile and stored as a charging 
schedule. Based on the chosen strategy, different 
charge profile schedules may emerge from the 
calculations. After having stored the charging profile 
for each vehicle, it is possible to calculate an 
estimation for the SOC of each EV at a specific 
point in time based on current system state. Thus, it 
can be validated if the computed charging profiles 
are able to perform all booked trips sufficiently. 

6 PROTOTYPE AND 
EVALUATION 

Based on the proposed system architecture, we 
developed a multi-tenant web application using Java 
as a framework system. Hence, it was possible to 
evaluate the previously introduced architecture and 
algorithms as part of two model trials at two 
charging site locations. As parts of this system we 
integrated intelligent AC Level 2 charging stations at 
each location with a capable maximum power output 
of 22kW with our EMS. However, the here applied 
EVs, four BMW i3, which were selected due to 
overall project requirements, were only capable to 
draw a maximum power of 4.6 kW. The vehicles 
were equipped with specifically developed 
telematics units, sending data to a real-time data 
pool. This way, data is read out from the vehicles’ 
CAN-Bus. The collected data included among others 
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the SOC, position, and estimated range. Data was 
continuously sent to the data pool in five minute 
intervals via a GSM module. The charging stations 
were connected through a proprietary manufacturer 
specific interface. This enabled the EMS to set the 
maximum power output, as the acquired charging 
stations were only supporting Open Charging Point 
Protocol (OCPP) version 1.5 (Open Charge Alliance 
2015). At the time of purchase, OCPP version 2.0 
which supports power output set-point specification 
had neither been finalized nor been implemented in 
the hardware by any manufacturer. 

Additionally, we monitored a PV power plant at 
one of the locations continuously as a reference for 
locally generated energy. Although it was not 
physically connected to the charging stations due to 
regulatory issues, the obtained data served as real 
time data to model the behavior of a real PV plant. 
In addition to the real time data of the PV plant, we 
connected a production forecast system called 
PVCast (Klein 2013). PVCast is a commercial 
service, which predicts the generated power of a 
given PV power plant, based on previously 
measured data and increases its accuracy by new 
measurements. Master data of charging stations, 
vehicles and charging sites is provided by services 
of the SEF system. As part of the SEF system, a 
dynamic disposition management reschedules the 
vehicles according to the vehicle SOC states. In the 
prototype, the disposition management is connected 
with the EMS and triggers it as soon as the schedule 
is changed. With every trigger, it transmits the 
complete disposition of the vehicles including the 
start and end time of each trip, the distance and the 
expected consumption. 

With all services connected to the EMS, new 
charging schedules are created as soon as the 
disposition schedule changes. Unforeseen changes in 
the states of the vehicles are mitigated by 
periodically conducted optimizations taking into 
account the holistic system state. Through that, 
requirements R1 and R2 are fulfilled. Applying the 
previously presented LP different charging strategies 
are possible, fulfilling the requirement R3. 
Furthermore, the integration of a building energy 
management provides the EMS with data about the 
connected electric power system components. 
Therefore, R4 is fulfilled. Requirement R5 is 
fulfilled by introducing a forecast system providing 
the EMS with day-ahead energy production 
information. Through the integration of a database, 
storing the states of all integrated components and a 
frontend, history data is always accessible fulfilling 
R6. In the prototype, intelligent charging stations 

were integrated and direct load control was possible. 
By this, requirement R7 is fulfilled. The requirement 
R8 is fulfilled by using a tenant manager in the 
software architecture to support different MDM 
clients. Furthermore, the tenant manager enables the 
EMS to be dynamically scalable fulfilling R10. 
However, the model trails could not be used to fully 
evaluate all requirements. Due to real time operation 
and its prototypic state, the system was not running 
without interruption. Additional to that, not all EVs 
were available at the same time because of 
maintenance reasons. Because of that, a synthetic 
scenario was created, using a fleet of 30 EVs This 
scenario is similar to the situation at our institute 
campus, if all vehicles with ICE were replaced with 
BEV. Furthermore each of the EVs has its own 
charging station. In this way, the vehicle will always 
have the ability to charge . It is assumed that the EV 
as well the charging stations are homogenous. For 
the sake of the project context, the charging 
characteristic of a BMW i3 was used to model the 
charging behavior. That means that each vehicle has 
a battery capacity of 18.8 kWh which is useable for 
storing energy. The average power consumption of 
the vehicles is assumed to be 12.3 kW per 100 km 
distance. Making each car able to reach a total range 
of approx. 147 km. Each vehicle can charge a 
maximum power of up to 4.6 kW. That would 
require the transformer to handle a maximum 
concurrent peak power demand of 138 kW. To 
simulate coordinated charging, the maximum usable 
power is limited to 100 kW. Any additionally 
required power can be provided by a physically 
connected PV power plant at the charging site where 
the charging stations are setup. For the evaluation, 
the grid as well as the PV power plant serve as 
energy source, supplying the charging station and by 
this the connected EVs, to always provide energy 
when needed. To present the results of the 
optimization algorithm appropriately, three different 
disposition schedules are applied to the fleet. Each 
profile is applied to a third of the fleet. If EVs were 
charged concurrently in this condition, they would 
exceed the given local maximum power. The 
consumption of each trip is assumed to be linear 
according to the EV’s average consumption per 
distance. The three profiles are listed in Table 1. 

In this evaluation, optimizations regarding an 
ecologic and an economic strategy are conducted. 
Each result is compared with dumb charging. Dumb 
charging means that the vehicles are charged directly 
after plugging in the cable of the vehicles into the 
charging station. The charging session is then 
performed as long as  the EV  is  connected  and  not 
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Table 1: Applied disposition schedule profile types. 

Profile 
Number 

Start 
Time End Time 

Distance  
[km] 

Consumption 
[kW] 

1 
05:30:00 14:10:00 65 8,00

17:30:00 18:30:00 85 10,46

21:00:00 23:30:00 45 5,54

2 
07:30:00 11:30:00 75 9,23

14:45:00 16:00:00 30 3,69

18:00:00 22:30:00 100 12,30

3 
05:30:00 09:30:00 55 6,77

15:00:00 18:30:00 30 3,69
 

fully charged. If not directly controlled by the 
charging station itself, concurrent charging of the 
vehicles would lead to stress on the transformer at 
the site which might even lead to an overload or 
fatal hardware failure. An production forecast is 
created using a forecast given by PVCast with an 
adjusted peak power of 40 kW. Additionally, an off-
peak tariff is assumed. In the peak time, between 6 
am and 8 pm, the energy costs 11 cent/kWh, 
whereas in the off-peak time at the rest of the day, 
energy costs 7 cent/kWh. The cost of using solar 
energy is set to be 9 cent/kWh for the whole 
regarded time period and hence being cheaper than 
the energy from the grid in the peak time period. 
Each optimization is performed considering a time 
span of 24 hours, resulting in a total time span of 96 
timeslots. Each vehicle is supposed to be completely 
empty at the start of the day. As a solver, the solver 
of the free Apache Commons Library (The Apache 
Software Foundation 2016) was used. The result of 
the economic strategy is depicted in Figure 4.  

 

Figure 4: Comparison of optimization results of economic 
charging strategy and dumb charging. 

Figure 4 compares dumb charging with economic 
charging. In the applied scenario, the concurrent 
charging is limited by the local load constrain to the 
maximum power limitation of 100 kW. Only as 

much energy is charged as is required to conduct the 
trips. All charging operation is only performed 
during the morning hours of the day, due to the low 
energy costs. With dumb charging, the fleet would 
be charged two additional times during the day. 
With a smart charging strategy, this is not necessary. 
Since in case of the economic and the ecologic 
strategy, only the trip demand is charged, 64% of the 
energy can be saved compared to dumb charging 
and thus being more energy efficient. Regarding the 
energy cost, in the economic scenario, 30% of the 
energy cost could be saved. In Figure 5, the results 
of optimization with the ecologic optimization 
strategy are depicted. 

 

Figure 5: Comparison of optimization results of ecologic 
charging strategy and dumb charging. 

In Figure 5, it can be observed, that charging in the 
morning is deferred and continued in the afternoon, 
when solar energy is available. Thus, CO2 emission 
is mitigated by using renewable energy instead of 
energy from the grid. With the ecologic strategy, it’s 
possible to save even 76% of CO2 emission by not 
immediately start charging the EVs and by deferring 
the charging sessions into times of renewable energy 
production. This synthetic evaluation shows, that 
local grid constrains are not exceeded, and thus 
requirement R9 is always fulfilled. Furthermore, 
requirement R5 is satisfied by taking into account 
the production forecast of the PV power plant with 
the ecologic evaluation. 
By fulfilling all requirements, a fully functional 
framework is created, serving as EMS and being 
able to perform smart charging as part of an 
intelligent energy management service. 

7 CONCLUSION AND OUTLOOK 

In this work, we introduced the architecture of a 
cloud-based EMS, serving as a scalable and flexible 
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system to monitor and control the charging of a fleet 
of EVs. It enables fleet operators to integrate their 
energy components and a fleet of EV into an EMS, 
providing them with the means to systematically 
improve the usage of these components. For this, we 
included an optimizer to calculate charging profiles 
for an EV fleet, in order to exploit energy production 
forecasts and dynamic price tariffs. The evaluation 
showed that optimization of the charging profile 
delivered charging profiles which sufficiently served 
the mobility demands of the user, kept the 
boundaries of the energy system and minimize costs. 
By this, the here presented aggregator can 
accomplish primary objectives of energy 
management systems like increasing energy 
efficiency, reduction of the energy used for charging 
and maximization of profits by minimization of 
costs. (Barney et al. 2008) 

In the future, we plan to extent this approach to 
completely control different micro grids in islanded 
mode operation resulting in a smart micro grid. By 
providing this framework for a cloud-based and 
flexible EMS, we plan to integrate more energy 
components, further investigating cloud-based 
hierarchical control. Thus, enabling the combination 
of free floating EV fleets with multiple micro grid 
controls to provide ancillary services and to 
maximize profits and simultaneously stabilizing the 
grid. As a consequence, we will conduct further 
research to decrease runtime of optimization 
processes in order to tackle a growing amount of 
optimization parameters. Especially interesting is the 
coordination of EMS optimization and disposition 
planning considering different charging sites and 
energy-aware routing of vehicles. 
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