dependences of electrode potentials on electrolyte 
concentrations in various solutions revealed that our 
selected signal processing and amplification method 
is adequate to obtain readable data.  
Considering analytical and technical features of 
the biosensor designs, it seems that benefits of the 
amperometric sensor hold the edge over choosing the 
latter in designing the commercial analyser. Together 
with electrolyte electrodes, such multi-parameter 
point-of-care blood and dialysis fluid analyser would 
help in better outcomes and hemodialysis procedure 
corrections for patients diagnosed with various stage 
renal failures. 
ACKNOWLEDGEMENTS 
This work has been supported by Lithuanian Agency 
for Science, Innovation and Technology Project E! 
8835, National Academy of Sciences of Ukraine and 
STCU project No. 6052. 
REFERENCES 
Ahuja, T., Kumar, D., Singh, N., Biradar, A. M., Rajesh, 
2011. Potentiometric urea biosensor based on multi-
walled carbon nanotubes (MWCNTs)/silica composite 
material.  Materials Science and Engineering: C, vol. 
31, pp. 90-94. 
Boubriak, O. A., Soldatkin, A. P., Starodub, N. F., 
Sandrovsky, A. K., El'skaya, A. K., 1995. 
Determination of urea in blood serum by a urease 
biosensor based on an ion-sensitive field-effect 
transistor. Sensors and Actuators B: Chemical, vol. 27, 
pp. 429-431. 
Carter, E. L., Flugga, N., Boer, J. L., Mulrooney, S. B., 
Hausinger, R. P., 2009. Interplay of metal ions and 
urease. Metallomics, vol. 1, pp. 207-221. 
Chen, K., Liu, D., Nie, L., Yao, S., 1994. Determination of 
urea in urine using a conductivity cell with surface 
acoustic wave resonator-based measurement circuit. 
Talanta, vol. 41, pp. 2195-2200. 
Dhawan, G., Sumana, G., Malhotra, B. D., 2009. Recent 
developments in urea biosensors. Biochemical 
Engineering Journal, vol. 44, pp. 42-52. 
Iseki, K., Uehara, H., Nishime, K., Tokuyama, K., 
Yoshihara, K., Kinjo, K., Shiohira, Y., Fukiyama, K., 
1996. Impact of the initial levels of laboratory variables 
on survival in chronic dialysis patients. American 
Journal of Kidney Diseases, vol. 28, pp. 541-548. 
Kulys, J. , Gurevičienė, V., Laurinavičius, V., Jonuška, A. 
V., 1986. Urease sensors based on differential antimony 
electrodes. Biosensors, vol. 2, pp. 35-44. 
Kuralay, F., Özyörük, H., Yıldız, A., 2005. Potentiometric 
enzyme electrode for urea determination using 
immobilized urease in poly(vinylferrocenium) film. 
Sensors and Actuators B: Chemical, vol.109, pp. 194-
199. 
Laurinavicius, V., Razumiene, J., Gureviciene, V., 2013. 
Bioelectrochemical Conversion of Urea on Carbon 
Black Electrode and Application. Sensors Journal, 
IEEE, vol. 13, pp. 2208-2213. 
Liu, D., Meyerhoff, M. E., Goldberg, H. D., Brown, R. B., 
1993. Potentiometric ion- and bioselective electrodes 
based on asymmetric polyurethane membranes. 
Analytica Chimica Acta, vol. 274, pp. 37-46. 
Maduell, F., Moreso, F., Pons, M., Ramos, R., Mora-Macià, 
J., Carreras, J., Soler, J., Torres, F., Campistol, J. M., 
Martinez-Castelao, A., 2013. High-Efficiency 
Postdilution Online Hemodiafiltration Reduces All-
Cause Mortality in Hemodialysis Patients. Journal of 
the American Society of Nephrology, vol. 24, pp. 487-
497. 
Marchenko, S. V., Kucherenko, I. S., Hereshko, A. N., 
Panasiuk, I. V., Soldatkin, O. O., El'skaya, A. V., 
Soldatkin, A. P., 2015. Application of potentiometric 
biosensor based on recombinant urease for urea 
determination in blood serum and hemodialyzate. 
Sensors and Actuators B: Chemical, vol. 207, Part B, 
981-986. 
Mc Causland, F. R., Brunelli, S. M., Waikar, S. S., 2012. 
Dialysate sodium, serum sodium and mortality in 
maintenance hemodialysis. Nephrology Dialysis 
Transplantation, vol. 27, pp. 1613-1618. 
Much, W. E., Wilcox, C. S., 1982. Disorders of body fluids, 
sodium and potassium in chronic renal failure. The 
American Journal of Medicine, vol. 72, pp. 536-550. 
Nolph, K. D., Sorkin, M. I., Moore, H., 1980. 
Autoregulation of Sodium and Potassium Removal 
During Continuous Ambulatory Peritoneal Dialysis. 
ASAIO Journal, vol. 26, pp. 334-338. 
Parfrey, P. S., Foley, R. N., 1999. The Clinical 
Epidemiology of Cardiac Disease in Chronic Renal 
Failure. Journal of the American Society of Nephrology, 
vol. 10, pp. 1606-1615. 
Patton, C. J., Crouch, S. R., 1977. Spectrophotometric and 
kinetics investigation of the Berthelot reaction for the 
determination of ammonia. Analytical Chemistry, vol. 
49, pp. 464-469. 
Pavluchenko, A. S., Kukla, A. L., Goltvianskyi, Y. V., 
Soldatkin, O. O., Arkhypova, V. M, Dzyadevych, S. V., 
Soldatkin, A. P., 2011. Investigation of Stability of the 
pH-Sensitive Field-Effect Transistor Characteristics. 
Sensor Letters, vol. 9, pp. 2392-2396. 
Ramirez, G., Brueggemeyer, C. D., Newton, J. L., 1984. 
Cardiac Arrhythmias on Hemodialysis in Chronic 
Renal Failure Patients. Nephron, vol. 36, pp. 212-218. 
Razumiene, J., Sakinyte, I., Barkauskas, J., Baronas, R., 
2015, Nano-structured carbon materials for improved 
biosensing applications. Applied Surface Science, vol. 
334, pp. 185-191. 
Sangodkar, H., Sukeerthi, S., Srinivasa, R. S., Lal, R., 
Contractor, A. Q., 1996. A Biosensor Array Based on 
Polyaniline. Analytical Chemistry, vol. 68, pp. 779-783. 
Sheliakina, M., Arkhypova, V., Soldatkin, O., Saiapina, O., 
Akata, B., Dzyadevych, S., 2014. Urease-based ISFET