e-Learning Platform Ranking Method using a Symbolic Approach based on Preference Relations

Soraya Chachoua, Nouredine Tamani, Jamal Malki and Pascal Estraillier L3i Laboratory, University of La Rochelle, Avenue Michel Crépeau, La Rochelle, France

Keywords: e-Learning Platforms, Qualitative Weight and Sum (QWS), Aggregation and Ranking.

Abstract: e-Learning platforms are of a great help in teaching and learning fields given their ability to improve training activity quality. Subsequently, several e-Learning systems have been developed in many domains. The diversity of such platforms in a single field makes it arduous to select the optimal platform in terms of tools and services that meet users' requirements. Therefore, we propose in this paper a ranking approach of e-Learning platforms relying on symbolic values, borrowed from the Qualitative Weight and Sum method (QWS) (Stufflebeam, 1994), preference relations and aggregating operators providing a total order among the considered e-Learning platforms.

1 INTRODUCTION AND MOTIVATION

The past decade has seen tremendous changes in educational and industrial training methods along with the increasing of the number of users having diverse needs and objectives. Indeed, there are a huge number of free and commercial e-Learning systems which have been developed in different areas such as education (Venkataraman and Sivakumar, 2015), language learning (Bañados, 2013), business training (Colace et al., 2006; Ubell, 2000), medicine (Schneider et al., 2015; Hannan, 2013) and public administrations (Stoffregena et al., 2015), etc. which provide online and remote training making user learning tasks more flexible and easier. The multitude of e-learning platforms developed for a single domain (such as in language learning, for instance, we can distinguish tens of e-learning applications and on-line platforms like babel, busuu, duolingo, ef, tell me more, Pimsleur, etc.) makes it difficult to pick the more suitable one according to one's needs and objectives.

The choice of a suitable system in compliance with user's needs and goals based on some criteria is important. Some criteria are mandatory to choose platform but they are insufficient, such as the compatibility of the e-Learning system on hand to certain norms and standards like SCORM¹, QTI², IMS³, etc. These standards ensure a structured learning object creation and e-Learning quality through properties, such as adaptability, sustainability, interoperability and reusability. We refer the reader to (García and Jorge, 2006) for an e-Learning platform evaluation based on the SCORM specification.

Besides, many other evaluation approaches have been proposed such as (Britain and Liber, 2004), in which the framework considers two models. The former addresses the different ways to produce learning processes in an e-Learning system, which has been reused in (Laurillard, 2013), and the latter characterizes the different evaluation criteria of learning models as introduced in (Liber et al., 2000).

Qualitative methods have also been considered for e-Learning systems evaluation; the most commonly used one is Qualitative Weight and Sum, denoted by QWS (Stufflebeam, 1994). It relies on a list of weighted criteria (Graf and List, 2005; Hamtini and Fakhouri, 2012) for the evaluation of e-Learning systems. In practice, it is based on qualitative weight symbols expressing six levels of importance, namely: *E* for *essential*, * for *extremely valuable*, # for *very valuable*, + for *valuable*, | for *marginally valuable*, and 0 for *not valuable*. Hence, e-Learning system's

114

Chachoua, S., Tamani, N., Malki, J. and Estraillier, P.

¹SCORM: Sharable Content Object Reference Model, http://scorm.com

²QTI: Question and Test Interoperability, http://www.ims global.org

³IMS: Instructional Management Systems, http://www.ims global.org

e-Learning Platform Ranking Method using a Symbolic Approach based on Preference Relations

In Proceedings of the 8th International Conference on Computer Supported Education (CSEDU 2016) - Volume 1, pages 114-122 ISBN: 978-989-758-179-3

Copyright (c) 2016 by SCITEPRESS - Science and Technology Publications, Lda. All rights reserved

performance is measured by symbolic weights attached to some criteria as described in (Graf and List, 2005), such that low-weighted criteria cannot overpower high-weighted ones. For instance, if a criterion weighted #, the platform can only be judged # or lesser (+, | or 0) but not * or higher. To obtain a global evaluation for a platform, QWS approach aggregates the symbols attached to criteria through a simple counting, which is finally used to rank the considered e-learning systems. Because of the naive aggregation function used by the approach, the result may be counterintuitive and not clear to explain and justify. For example, let us suppose three e-Learning systems, denoted by e_1 , e_2 , e_3 respectively, for which the aggregation function delivers the results as summarized in Table 1. It is easy to conclude that e_1 is

Table 1: Example of e-Learning system aggregation results.

	E	*	#	+		0
<i>e</i> ₁	-	3	4	-	2	\sim
<i>e</i> ₂	-	2	4	-	2	-
<i>e</i> ₃	-	2	8	1	2	-

better than e_2 , since e_1 is better than e_2 on symbol *and both tied the score for the other symbols. But, it is not that easy to say whether e_1 is better than e_3 or not, because even though e_1 performs well on symbol $*, e_3$ is much more better than e_1 on symbols # and +. In the latter case, further analysis has to be conducted to conclude. As some e-learning systems are not comparable, then the approach delivers a pre-order over the evaluated platforms.

To deal with this issue, one can consider the Analytic Hierarchy Process (AHP) method (Hamtini and Fakhouri, 2012). AHP is used to deal with complex decision-making processes. It translates the symbols defined in QWS into values as detailed in Table 2, borrowed from (Stufflebeam, 1994). Thus, AHP captures both subjective and objective values, checks their consistency and reduces bias decision making in testing and evaluating e-Learning systems (Maruthur et al., 2015). The criteria are gathered up by category and sub-category. The results of the feature's category or subcategory evaluation computed by the weight calculation functions are percentages of the form of a real number as described in (Hamtini and Fakhouri, 2012). For example, let us say that the percentage returned for the feature Chat is 14%. Then, according to Table 2, the judgment of this result is between "marginally valuable" and "valuable", but which is it? The percentages returned can be difficult to interpret for comparing e-learning platforms when several attributes have to be dealt with.

As these methods return numerical values or av-

Table 2:	OWS	symbols	translated	into AHP	weights.
	· · · · ·				

	QWS	Weight in AHP
Essential	Ε	5
Extremely valuable	*	4
Very valuable	#	3
Valuable	+	2
Marginally valuable		1
Not valuable	0	0

erages (Graf and List, 2005), which can be less expressive and non-intuitive enough from a user standpoint for system quality assessment and ranking, then we propose in this paper a hybrid approach for system assessment and ranking combining QWS values, symbolic preference relations and formal comparison operators, which have been proved to be total orders allowing the distinction of optimal e-Learning platforms from the user standpoint.

The remainder of the paper is structured as follows. Section 2 details our symbolic-based approach for e-Learning systems evaluation. Section 3 presents an illustrative example of our approach to evaluate and to rank a set of open-source e-Learning systems. Finally, section 4 concludes the paper and introduces some future work.

2 HYBRID E-LEARNING SYSTEM EVALUATION APPROACH

In this section, we detail our approach for e-Learning platform evaluation and ranking relying on symbols borrowed from QWS method and qualitative preference relation and comparison operators. In Subsection 2.1, we introduce our evaluation approach and in Subsection 2.2, we show the use of our approach for e-learning platform ranking.

2.1 Symbolic Approach for e-Learning Platforms Evaluation

We define the evaluation symbols as follows.

Definition 1 (Evaluation Symbols). The evaluation symbols as defined in QWS approach are: E = essential, * = extremely valuable, # = very valuable, + = valuable, | = marginally valuable and 0 = not valuable. We denote by $S = \{E, *, \#, +, |, 0\}$ an ordered set of evaluation symbols.

We define a preference relations more preferred than or equal to, denoted by \succeq , and less preferred

than or equal to, denoted by \leq , over the evaluation symbol set S as follows.

Definition 2 (Preference relations \succeq and \preceq). Let $S = \{E, *, \#, +, |, 0\}$ be an ordered set of evaluation symbols such that:

- Position 1 is for symbol E, denoted by $pos_{\mathcal{S}}(E)$
- Position 2 is for symbol *, denoted by $pos_{S}(*)$
- Position 3 is for symbol #, denoted by $pos_{S}(#)$
- Position 4 is for symbol +, denoted by $pos_{S}(+)$
- Position 5 is for symbol |, denoted by $pos_{\mathcal{S}}(|)$
- Position 6 is for symbol 0, denoted by $pos_{S}(0)$

We define the preference relation *more preferred* than or equal to \succeq over S as follows.

$$\forall (a,b) \in \mathcal{S}^2 : a \succeq b \text{ iff } pos_{\mathcal{S}}(a) \le pos_{\mathcal{S}}(b) \qquad (1)$$

The preference relation *less preferred than or* equal to, denoted \leq , is defined as follows.

$$\forall (a,b) \in \mathcal{S}^2 : a \leq b \text{ iff } pos_{\mathcal{S}}(a) \geq pos_{\mathcal{S}}(b)$$
 (2)

We can easily prove that the preference relation \succeq is a total order.

Property 1. (*Total order properties*). *The preference relations* \succeq *and* \preceq *are a total order.*

Proof. The proof of property 1 is detailed in Appendix A. \Box

Based on the above defined preference relations, we define two comparison operators named prefMin and prefMax, so that it will be possible to compare systems on each criterion describing them. These operators will serve as means to aggregate the evaluations obtained for system criteria.

Definition 3. (*prefMax* and *prefMin* comparison operators). *prefMax* and *prefMin* operators are defined by formulas (3) and (4) respectively.

The function prefMax is defined by the following formula (3).

$$\begin{array}{rccc} \mathcal{S} \times \mathcal{S} & \to & \mathcal{S} \\ (a,b) & \mapsto & max(a,b) = \begin{cases} a & if \ (a \succeq b) \\ b & otherwise. \end{cases}$$
(3)

The function prefMin is defined by the following formula (4).

$$\begin{array}{rccc} \mathcal{S} \times \mathcal{S} & \to & \mathcal{S} \\ (a,b) & \mapsto & \min(a,b) = \begin{cases} a & if \ (a \leq b) \\ b & otherwise. \end{cases}$$
(4)

When we apply the comparison operators prefMax and prefMin over our symbolic set S, we obtain Table 3.

Property 2. (*prefMax properties*). *prefMax is associative, commutative, idempotent, it has E as absorbent element and* 0 *as neutral element.*

Proof. Proofs of *prefMax* properties are detailed in Appendix B. \Box

Property 3. (*prefMin properties*). *prefMin is associative, commutative, idempotent, it has 0 as absorbent element and E as neutral element.*

Proof. Proofs of *prefMin* properties are detailed in Appendix C. \Box

2.2 Using our Comparison Operators to Rank e-Learning Systems

The evaluation of e-Learning platforms is based on categories, each of which defines some criteria as defined in (Atthirawong and MacCarthy, 2002), for example the category *Communication tools*, and their criterion such as *Chat*. Categories and their criteria are summarized in Table 4. The five categories considered in platform evaluation are the following:

- Communication tools
- Software and installation
- Administrative tools and security
- Hardware presentation tools
- Management features

To evaluate each category, we use the comparison operators prefMax and prefMin. But to evaluate a considered e-Learning system, we need the evaluation of the five categories. For that purpose, we define two aggregation operators, called prefMinMaxand prefMaxMin, which are based on our comparison operators.

Definition 4. (*prefMinMax*). Let \mathcal{A} be a matrix of *n* lines and *m* columns of evaluation symbols of \mathcal{S} . We define the minimum guaranteed satisfaction value as follows.

We denote a matrix from \mathcal{A} as:

$$A = (a_{ij})_{\substack{1 \le i \le m \ 1 \le j \le n}}$$
 and $a_{ij} \in S$

We define *prefMinMax* of A as:

$$S^{m \times n} \rightarrow S$$

$$A \mapsto prefMinMax(A) =$$

$$prefMin_{1 \le i \le m}(prefMax_{1 \le j \le n}(a_{ij}))$$
(5)

pref-	- E	*	#	+		0]	pref -	- E	*	Γ
Max								Min			
E	E	E	E	E	E	E]	Ε	E	*	
*	E	*	*	*	*	*]	*	*	*	
#	E	*	#	#	#	#]	#	#	#	
+	E	*	#	+	+	+]	+	+	+	
	E	*	#	+]				
0	E	*	#	+		0]	0	0	0	

Table 3: The operators *prefMax* and *prefMin* table.

pref -	- E	*	#	+		0
Min						
Ε	Ε	*	#	+		0
*	*	*	#	+		0
#	#	#	#	+		0
+	+	+	+	+		0
						0
0	0	0	0	0	0	0

Table 4: Overview of the evaluation hierarchy categories and their criteria.

Category	Co	omn to	nuni ols	icati	on	Software & Installation			to	Administrative tools and Security					Hardware Presentation tools			Management features							
Criterion	Chat	Forum	Mail	Video conference	Calendar	Downloading	Installation	Assistance	Documentation	Courses administration	Tracking progress	Online registration	Learning path creation	Report	Learning path organisation	Test evaluation	Security	Announcements	Learning Objects	Exercices	Content import	Multi course management	Multi user management	Evaluation management	User Group

Definition 5. (*prefMaxMin*). We define the maximum possible satisfaction value of $S^{m \times n}$ as *prefMaxMin*:

$$S^{m \times n} \xrightarrow{A} S$$

$$i \mapsto prefMaxMin(A) = prefMax_{1 \le i \le m}(prefMin_{1 \le j \le n}(a_{ij}))$$
(6)

The *prefMinMax* operator computes the least optimistic value amongst the criteria, whereas *prefMaxMin* operator computes the greatest pessimistic value amongst the criteria.

3 ILLUSTRATIVE EXAMPLE

We apply our e-Learning systems evaluation approach to a set of nine open-source e-Learning enumerated below, and which have been tested and compared their (Lebrun et al., 2008),(Reiter et al., 2006) (Dogbe Semanou et al., 2007) (Laforcade and Oubahssi, 2014).

- 1. Claroline: version 1.9.2, http://www.claroline.net
- 2. Dokeos: version 2.1.1, http://www.dokeos.com/fr
- 3. eFront: version 3.6.11, http://www.efrontlearning.net
- 4. ILIAS: version 4.1.3, http://www.ilias.de

- 5. Open ELMS: version 7, http://www.openelms.org
- 6. Ganesha: version 4.5, http://www.ganesha.fr
- 7. Olat: version 7.2.1, http://www.olat.org
- 8. AnaXagora: version 3.5, http://www.anaxagora.tudor.lu
- 9. Sakai: version 10.4, https://sakaiproject.org

Table 5: prefMin and prefMax results for CommunicationTools category.

Category	Co	mmu to	e f Min	fMax			
Criterion	chat	Forum	Mail	Conference Video	Calendar	bud	bre
Claroline	#	#	+	#	+	+	#
Dokeos	*	+	+	*	*	+	*
eFront		#	#	+	+		#
ILIAS	#	+	+	0	+	0	#
Open ELMS	0	0	*	0	0	0	*
Ganesha	#	#	+	0	0	0	#
Olat	*	*	*	0	*	0	*
AnaXagora	#	#	#	0	+	0	#
Sakai	*	#	*	*	#	#	*

Category	Communication tools	Software & Installation	Administrative tools and Security	Hardware presentation tools	Management features	prafMarMin
Platform	prefMin	prefMin	prefMin	prefMin	prefMin	prejmaxmin
Claroline	+	+	+	#	+	#
Dokeos	+			#	+	#
eFront		#				#
ILIAS	0			0		
Open ELMS	0			0	0	
Ganesha	0		+	0	#	#
Olat	0			0		
AnaXagora	0			0		
Sakai	#			0		#

Table 6: Results of *prefMaxMin* computation over the set of e-learning platform.

	Table 7: Results of <i>prefMinMax</i> computation over the set of e-learning platform.									
=		mmunication tools	tware & Installation	ministrative tools and Security	rdware presentation tools	nagement features	CATIONS			
	Category	C0	Sof	Ρq	Haı	Ma	nre f MinMax			
-	Category Platforms	B prefMax	prefMax	prefMax	B <i>prefMax</i>	B prefMax	prefMinMax			
-	Category Platforms Claroline	DprefMax#	prefMax *	prefMax *	Image: second systemprefMax*	PrefMax #	- prefMinMax #			
-	Category Platforms Claroline Dokeos	0 prefMax # *	S prefMax * #	prefMax * E	Image: mail of the second system prefMax * *	PrefMax # E	- prefMinMax # #			
-	Category Platforms Claroline Dokeos eFront	0 prefMax # * #	5 <i>prefMax</i> * # *	prefMax * E *	Image: region of the second se	W <i>prefMax</i> # <i>E</i> +	- prefMinMax # # +			
-	Category Platforms Claroline Dokeos eFront ILIAS	0 prefMax # # #	50 <i>prefMax</i> * # * +	prefMax * E * #	Image: region of the second	eW <i>prefMax</i> # <i>E</i> + +	- prefMinMax # # + +			
-	Category Platforms Claroline Dokeos eFront ILIAS Open ELMS	0 prefMax # # # #	5 <i>prefMax</i> * # * + +	prefMax * E * # *	Image: region of the second system prefMax * * + # *	eW <i>prefMax</i> # E + + #	- prefMinMax # # + + + +			
-	Category Platforms Claroline Dokeos eFront ILIAS Open ELMS Ganesha	0 prefMax # # # # # # #	50 <i>prefMax</i> * # + + + +	PrefMax * E * # * E E E E E E	Image: regional system prefMax * * + # * # #	eW <i>prefMax</i> # E + + # #	- prefMinMax # # + + + + +			
-	Category Platforms Claroline Dokeos eFront ILIAS Open ELMS Ganesha Olat	0 prefMax # # # # # # # # #	S prefMax * # + + + + + #	PrefMax * E * # E * # E * E *	Image: regional system prefMax * * + # * # * * *	eW <i>prefMax</i> # E + + # # *	- prefMinMax # # + + + + + + + #			
-	Category Platforms Claroline Dokeos eFront ILIAS Open ELMS Ganesha Olat AnaXagora	0 prefMax # # # # # # # # #	S prefMax * # + + + + + + + + + + + + + + + +	PrefMax * E * # E * E * * * * * * * * *	Image: reg fmax prefMax * * + # * # * # * # # # # # # # #	ew <i>prefMax</i> # E + + # # * *	- prefMinMax # # + + + + + + # +			

Each criterion takes a symbolic value from the set S based on users opinions community. To obtain the evaluation of each criterion, we have carried out sur-

veys in our university involving under-graduated students (small group of 10 students), who have tested each e-learning platform during a training session (2

Table 8: E-Learning platform's features evaluation.

hours). We are aware that the process is subjective and a different panel of students or users can express different opinions about the e-Learning platforms. We recall that this data collection aims at illustrating the use of our approach. The values obtained for each criterion in its category are summarized in Table 8. The application of our approach on the set of considered systems is performed as follows.

- 1. for each category in Table 4 we calculate values of *prefMin* and *prefMax* for all functionalities based on Definition 3. In Table 5, we display the results obtained by applying our approach on the category "Communication Tools" for our considered set of e-learning platforms.
- 2. for all categories in Table 8 we calculate values of *prefMaxMin* and *prefMinMax*. Results of both calculus are displayed in Table 6 and 7 respectively.

According to Table 6, we obtain the following ranking over the set of e-learning system considered.

- 1. Claroline, Dokeos, eFront, Ganesha and Sakai.
- 2. Ilias, Open ELMS, Olat and AnaXagora.

According to Table 7, we obtain the following ranking over the set of e-learning system considered.

- 1. Sakai
- 2. Claroline, Dokeos and Olat
- 3. eFront, ILIAS, Open ELMS, Ganesha and AnaXagora

Finally, users can make a choice based on either *prefMaxMin* or *prefMinMax* operators or can combine the result returned by both. For instance, in our illustrative example, Claroline, Dokeos, eFront, Ganesha and Sakai are all optimal platforms according to *prefMaxMin* operator, whereas Sakai is the optimal one according to *prefMinMax* operator. But, we can notice that Sakai performs better since it is optimal according to both operators.

4 CONCLUSION AND FUTURE WORK

In this paper, we have presented an e-Learning systems evaluation approach based on a symbolic set of value, a total order preference relation and comparison operators. To describe e-Learning system, we have used categories, each of which defines some criterion of well-known properties of these systems. We apply our approach on a set of open source e-Learning systems for which you have gathered through small surveys their evaluation on the considered criteria. The proposed approach assesses the quality of an e-Learning system amongst a set of e-Learning platforms by considering a maximum possible satisfaction and/or a minimum guaranteed satisfaction. Once this value is obtained, it becomes easy to rank the set of e-learning systems considered from the most to the least satisfactory, and to deliver to the user the one or several optimal systems.

Our approach brings a solution to the problem of choosing a system according to well-defined criteria. It is still to perform a larger survey to obtain values as accurate as possible for the criteria. It is also worthy to consider user profiles when performing surveys in such a way that we obtain different values for different profiles. A profile can be defined over a population of users based on their interests and training objectives.

REFERENCES

- Atthirawong, W. and MacCarthy, B. (2002). An application of the analytical hierarchy process to international location decision-making. In Gregory, Mike, Proceedings of The 7th Annual Cambridge International Manufacturing Symposium: Restructuring Global Manufacturing, Cambridge, England: University of Cambridge, pages 1–18.
- Bañados, E. (2013). A blended-learning pedagogical model for teaching and learning eff successfully through an online interactive multimedia environment. *Calico Journal*, 23(3):533–550.
- Britain, S. and Liber, O. (2004). A framework for pedagogical evaluation of virtual learning environments.
- Colace, F., Santo, M. D., and Pietrosanto, A. (2006). Evaluation models for e-learning platform: an ahp approach.
- Dogbe Semanou, D. A. K., Durand, A., Leproust, M., and Vanderstichel, H. (2007). Etude comparative de plates-formes de formation à distance. *le cadre du Projet*@ 2L Octobre.
- García, F. B. and Jorge, A. H. (2006). Evaluating e-learning platforms through scorm specifications. In *IADIS Virtual Multi Conference on Computer Science and Information Systems (MCCSIS 2006), IADIS.*
- Graf, S. and List, B. (2005). An evaluation of open source elearning platforms stressing adaptation issues. In *Proceedings of the 5th IEEE International Conference on Advanced Learning Technologies*, ICALT'05, pages 163–165. IEEE Computer press.
- Hamtini, T. M. and Fakhouri, H. N. (2012). Evaluation of open-source e-learning platforms based on the qualitative weight and sum approach and analytic hierarchy process. Technical report, Retrieved 2013/05/21 from http://www. iiis. org/CDs2012/CD2012SCI/IMSCI_2012/PapersPdf/E A418WG. pdf.

- Hannan, T. M. (2013). Politique-en-pratique pour la polyarthrite rhumatoide: étude randomisée d'essai et la cohorte controlée de e-learning visant une meilleure gestion de la physiothérapie.
- Laforcade, C. P. and Oubahssi, L. (2014). Étude comparative de plates- tude comparative de plates- formes de formation à distance.
- Laurillard, D. (2013). Rethinking university teaching: A conversational framework for the effective use of learning technologies. Routledge.
- Lebrun, M., Docq, F., Smidts, D., et al. (2008). Claroline, une plate-forme denseignement et dapprentissage pour stimuler le développement pédagogique des enseignants et la qualité des enseignements: premières approches. In *Colloque de lAIPU*, *Montpellier*.
- Liber, O., Olivier, B., and Britain, S. (2000). The toomol project: supporting a personalised and conversational approach to learning. *Computers & Education*, 34(3):327–333.
- Maruthur, N. M., Joy, S. M., Dolan, J. G., Shihab, H. M., and Singh, S. (2015). Use of the analytic hierarchy process for medication decision-making in type 2 diabetes. *PloS one*, 10(5).
- Reiter, S., Kohlbecker, J., and Watrinet, M.-L. (2006). Anaxagora: a step forward in e-learning. In ECEL2006-5th European Conference on elearning: ECEL2006, page 291. Academic Conferences Limited.
- Schneider, A., Albers, P., and Mattheis, V. M. (2015). E-Learning en urologie: Mise en oeuvre de l'apprentissage et l'enseignement Platform CASUS -Avez patients virtuels conduire a une amélioration des résultats d'apprentissage d'une étude randomisée chez les étudiants, volume Volume 94. Karger AG, Basel.
- Stoffregena, J., Pawlowski, J. M., and Pirkkalainen, H. (2015). A barrier framework for open e-learning in public administrations.
- Stufflebeam, D. L. (1994). Empowerment evaluation, objectivist evaluation, and evaluation standards: Where the future of evaluation should not go and where it needs to go. *Evaluation practice*, 15(3):321–338.
- Ubell, R. (2000). *Engineers turn to E-Learning*, volume Volume 37. IEEE Spectrum.
- Venkataraman, S. and Sivakumar, S. (2015). Engaging students in group based learning through e-learning techniques in higher education system. *International Journal of Emerging Trends in Science and Technology*, 2(01).

Appendix

A Proof of Property 1 Total Order

We only prove hereinafter the property for the preference relation \succeq . The proof of the property

for the preference relation \leq is similar to the one of \geq .

Proof 1. (\succeq is total order) The preference relation \succeq is a total order iff:

- 1. \succeq is reflexive
- 2. \succeq is antisymmetric
- 3. \succeq is transitive
- Relation ≽ is reflexive iff ∀a ∈ S : a ≿ a. Therefore, a ≿ a iff pos_S(a) ≤ pos_S(a) which is verified for the comparison operator ≤ since ≤ is reflexive. Then ≿ is reflexive.
- 2. Relation \succeq is antisymmetric iff $\forall a, b \in S : a = b$. Then:

 $a \succeq b \land b \succeq a \text{ iff } pos_{\mathcal{S}}(a) \le pos_{\mathcal{S}}(b) \land pos_{\mathcal{S}}(b) \le pos_{\mathcal{S}}(a)$ which is verified for \le since \le is anti-symmetric.

Then \succeq is antisymmetric.

3. \succeq is transitive iff $\forall a, b, c \in S : a \succeq b \land b \succeq c \Rightarrow a \succeq c$. As $a \succeq b \land b \succeq c$ then $pos_S(a) \le pos_S(b) \land pos_S(b) \le pos_S(c)$. Therefore, $pos_S(a) \le pos_S(c) \le pos_S(c)$ since \le is transitive. That means that $a \succeq c$ and \succeq is transitive.

B Proof of *prefMax* **Properties**

Proof 2. (*prefMax* properties).

1. prefMax is associative on S: $\forall a, b, c \in S$, then: prefMax(prefMax(a,b),c) = prefMax(a, prefMax(b,c)). We denote by I the left term PrefMax(PrefMax(a,b),c) and by II the right term PrefMax(a, PrefMax(b,c)). Table 9 shows results of evaluation of the left and the right terms, which are identical. Therefore prefMax is associative.

	Ι	II
$a \succeq b \land a \succeq c$	а	$\Rightarrow a \succeq prefMax(b,c) \Rightarrow II = a$
$a \succeq b \land c \succeq a$	С	\Rightarrow <i>c</i> \succeq <i>b</i> (transivity)
		$prefMax(b,c) = c \Rightarrow II = c$
		since $c \succeq a$
$b \succeq a \land b \succeq c$	b	$prefMax(b,c) = b \Rightarrow II = b$
		since $b \succeq a$
$b \succeq a \land c \succeq b$	С	$prefMax(b,c) = c \land c \succeq a$
		$(transitivity) \Rightarrow II = c$

Table 9: The formula results.

2. prefMax is commutative iff $\forall a, b \in S$: prefMax(a,b) = prefMax(b,a). From table 3, the prefMax matrix is symmetric so prefMax is commutative.

- 3. prefMax is idempotent iff $\forall a \in S$: prefMax(a,a) = a. From the main diagonal of table 3, we conclude that prefMax is idempotent.
- 4. *prefMax* has 0 as neutral element iff ∀a ∈ S : *prefMax*(a,0) = a.
 Table 3 shows that *prefMax* has 0 as neutral element.
- 5. prefMax has E as absorbent element iff ∀a ∈ S : prefMax(a,E) = E.
 Table 3 also shows that prefMax has E as absorbent element.

C Proof of *prefMin* **Properties**

Proof 3. (prefMin properties)

1. prefMin is associative on S: $\forall a,b,c \in S$: prefMin(prefMin(a,b),c) = prefMin(a, prefMin(b,c)). We denote by I the left term PrefMin(PrefMin(a,b),c) and by II the right term PrefMin(a, PrefMin(b,c)). Table 10 shows results of evaluation of the left and the right terms, which are identical. Therefore prefMin is associative.

SCIE	JTE	AND NECH
$a \succeq b \land b \succeq c$	С	$\Rightarrow a \succeq prefMin(b,c) \Rightarrow II = c$
		since $a \succeq c$
$a \succeq b \land c \succeq b$	b	$\Rightarrow a \succeq prefMin(b,c) \Rightarrow II = b$
		since $a \succeq b$
$b \succeq a \land a \succeq c$	С	$\Rightarrow b \succeq c$ (transivity)
		$prefMin(b,c) = c \Rightarrow II = c$
		since $a \succeq c$
$b \succeq a \land c \succeq a$	а	<i>a</i> is the smallest symbol
		between a, b and c, so $II = a$

Table 10: The formula results.

- 2. prefMin is commutative iff $\forall a, b \in S$: prefMin(a,b) = prefMin(b,a). From table 3, the prefMax matrix is symmetric so prefMin is commutative.
- 3. prefMin is idempotent iff $\forall a \in S$: prefMin(a,a) = a. From the main diagonal of table 3, we conclude that prefMin is idempotent.
- 4. *prefMin* has E as neutral element iff ∀a ∈ S : *prefMin*(a,0) = a.
 Table 3 shows that *prefMin* has E as neutral element.

prefMin has 0 as absorbent element iff ∀a ∈ S : *prefMin(a,E) = E*. Table 3 also shows that *prefMin* has 0 as absorbent element.