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Abstract: The use of smartphones for human activity recognition has become popular due to the wide adoption of 
smartphones and their rich sensing features. This article introduces a benchmark dataset, the MobiAct 
dataset, for smartphone-based human activity recognition. It comprises data recorded from the 
accelerometer, gyroscope and orientation sensors of a smartphone for fifty subjects performing nine 
different types of Activities of Daily Living (ADLs) and fifty-four subjects simulating four different types 
of falls. This dataset is used to elaborate an optimized feature selection and classification scheme for the 
recognition of ADLs, using the accelerometer recordings. Special emphasis was placed on the selection of 
the most effective features from feature sets already validated in previously published studies. An important 
qualitative part of this investigation is the implementation of a comparative study for evaluating the 
proposed optimal feature set using both the MobiAct dataset and another popular dataset in the domain. The 
results obtained show a higher classification accuracy than previous reported studies, which exceeds 99% 
for the involved ADLs. 

1 INTRODUCTION 

Human activity recognition is the process of 
identifying and recognizing the activities and goals 
of one or more humans from an observed series of 
actions. In recent years, human activity recognition 
has evoked notable scientific interest due to its 
frequent use in surveillance, home health 
monitoring, human-computer interaction, ubiquitous 
health care, as well as in proactive computing. 
Human activities can be further decomposed as a set 
of basic and complex activities, namely activities of 
daily living (ADLs) and instrumental activities of 
daily living (IADLs). Typical approaches use vision 
sensors, inertial sensors and a combination of both. 
Exploiting the increasing tendency of smartphone 
users, latest reports introduce systems which use 
smartphone sensors to recognize human activities 
(Kwapisz et al., 2011; Siirtola and Röning 2012; 
Khan et al., 2010; Lee and Cho, 2011). 

The aim of this work is to introduce a benchmark 
dataset and to present an optimized system in terms 
of feature selection and classification for recognition 

of ADLs based on smartphone's triaxial 
accelerometer data. The “MobiAct” dataset contains 
records of the accelerometer, gyroscope and 
orientation sensors of a smartphone from fifty 
subjects performing nine different types of ADLs 
and fifty-four subjects performing four different 
types of falls. In order to achieve an optimized 
recognition system, special emphasis was placed on 
the selection of the most effective features from 
feature sets already validated in published studies. 
Furthermore, a comparison study was performed to 
evaluate the proposed optimal feature set with the 
MobiAct dataset, as well as with an additional 
dataset. The results show higher classification 
accuracy than previous reported studies. 

2 RELATED WORK 

As already said, human activity recognition has 
evoked notable scientific interest in recent years. A 
recent study (Bayat et al., 2014) proposes a 
smartphone-based recognition system, in which the 
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application of a low-pass filter and a combination of 
Multilayer Perceptron, LogitBoost and Support 
Vector Machine (SVM) classifiers reached an 
overall accuracy of 91.15% when the smartphone 
was held in the hand of the user. Samples were 
recorded from four volunteers while performing six 
activities: slow and fast running, walking, aerobic 
dance, ascending stairs (“stairs up”) and descending 
stairs (“stairs down”). The sampling rate was set at 
100 Hz while a window of 1.28 seconds with 50% 
overlap was used for feature extraction.   

Anjum and Ilyas (2013) introduced a similar 
approach with ten users performing seven different 
activities which included walking, running, stairs up, 
stairs down, cycling, driving and remaining inactive, 
by carrying the smartphone in various positions. A 
sampling rate of 15 Hz and matching time windows 
of 5 seconds were used. Based on the ranking of the 
information gain, nine features were selected from 
the auto correlation function. For the classification 
process Naϊve Bayes, C4.5 Decision Tree, K-Nearest 
Neighbor and SVM classifiers were tested. The C4.5 
Decision Tree performed better than the other 
classifiers with an accuracy of 95.2%. 

Zheng et al. (2014) proposed a two-phase method 
to achieve recognition of four different types of 
activities (sitting, standing, walking and running) 
using tri-axial acceleration data from a Samsung 
galaxy SIII smartphone. Five subjects performed the 
activities with the phone placed loosely in a pocket. 
Records of two minutes were used for the training 
phase while for the testing phase data from 
continuous records of several days were used. A 
sampling rate of 100 Hz was used. In order to achieve 
noise reduction, the authors deployed Independent 
Components Analysis, specifically the fastICA 
algorithm, in combination with the wavelet transform 
for feature extraction. For the classification, a Support 
Vector Machine was employed using the WEKA 
toolkit.  A maximum accuracy of 98.78% was 
reported for a leave-one-out validation. 

Based on tri-axial accelerometer data of a 
smartphone, Buber and Guvensan (2014) developed 
a recognition system for the following activities: 
walking, jogging, jumping, stairs up, stairs down, 
sitting, standing and biking. Five volunteers 
performed those activities with the smartphone 
placed in the front pocket of their trousers. The 
sampling rate was set at 20 Hz and a 10 second 
moving window was used for feature extraction. The 
evaluation was performed with two feature selection 
algorithms (OneRAttributeEval and ReliefF 
AttributeEval) and six classification algorithms (J48, 
K-Star, Bayes Net, Naïve Bayes, Random Forest, 

and k-NN) using 10-fold cross-validation. The 
authors resulted in a combination of 15 features with 
k-NN to perform best at a recognition rate of 94%.  

Fan et al. (2013) studied three different decision 
tree models based on a) the activity performed by the 
user and the position of the smartphone (vector), b) 
only the position and c) only the activity. Fifteen users 
performed five kinds of activities: stationary, walking, 
running, stairs up and stairs down with the smartphone 
placed into a carrying bag, a trouser pocket or in the 
hand. Ten-second samples of accelerometer data were 
recorded for each different kind of activity and position 
of smartphone. The authors concluded that the model 
based only on the activity outperformed the other two 
with an accuracy of 88.32%. 

In another study (Siirtola and Roning, 2013), 
accelerometer data from a smartphone were 
recorded with a sampling frequency of 40Hz while 
seven volunteers were performing five different 
activities: walking, running, cycling, driving a car, 
and sitting/standing. In each recording, four 
smartphones were placed in various positions, 
namely, trousers’ front pocket, jacket’s pocket, at 
backpack, at brachium and one was held at the ear 
only when it was physically allowed. For feature 
extraction a sliding window of 7.5 seconds with 25% 
overlap in an online (on device) application and one 
with 50% overlap in an offline application, were 
used. Classification was achieved using five 
classifiers based on quadratic discriminant analysis 
arranged in a three stage decision tree topology. 
Average recognition rate of almost 98.9% was 
reported in the offline and 90% in the online system. 

Exploiting the accelerometer sensor of a 
smartphone (Dernbach et al. 2012) developed a 
system for recognizing simple (biking, stairs up, 
driving, lying, running, sitting, standing and 
walking) and complex (cooking, cleaning etc.) 
activities performed by ten participants. The 
sampling frequency was set at 80 Hz maximum 
although variations in the sampling rate were 
reported. Multiple windows sizes of 1, 2, 4, 8 and 16 
seconds with 50% overlap were used. The placement 
of the smartphone, in terms of position and 
orientation, was left at each user’s will. Although 
complex activities were classified with an accuracy 
of 50%, simple activities were classified with 93% 
accuracy with a Multilayer Perceptron and a window 
size of 2 seconds. 

Saputri et al. (2014) proposed a system for 
activity recognition in which twenty-seven subjects 
performed six types of activities, namely, walking, 
jogging, running, stairs up, stairs down and hopping. 
The  smartphone  was  placed  in  the   front   trouser 
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Table 1: Overview of the methodology and results followed by the related studies. 

Study No of 
subjects Activities1 Sampling 

Frequency
Window 

size/overlap 
No of 

Features 
Smartphone 

position Algorithms2 Performance

(Bayat et 
al., 2014) 4 

RUN, SWL 
FWL, 

ADN, STU, 
STN 

100Hz 1.28s/50% 18 hand of the 
user 

J48, K-
Star, BN, 
NB, RF, 

kNN 

MLP & LB 
&SVM: 
91,15% 

Accuracy 

(Anjum 
and Ilyas, 

2013) 
10 

RUN, STN, 
STU, BIK, 
STC, DRI, 

INA 

15Hz 5s 9* various 
positions 

NB, C4.5, 
KNN, 
SVM 

C4.5: 
95.2%. 

(Zheng et 
al., 2014) 5 SIT, STD, 

WAL, RUN 100Hz - ICA + 
Wavelet 

freely in 
pocket SVM 98.78% 

(Buber 
and 

Guvensan
, 2014) 

5 

WAL, 
JOG, STN, 
STU, SIT, 
JUM, BIK 

20Hz 10s 15 
front 

pocket 
 

J48, K-
Star, BN, 
NB, RF, 

kNN 

k-NN: 94% 

(Fan et 
al., 2013) 15 

STC, 
WAL, 
RUN, 

STU,STN 

- 10s 10* 

bag, 
trouser 

pocket & 
hands 

ID3 DC 80.29% 

(Siirtola 
and 

Roning, 
2013) 

7 

WAL, 
RUN, BIK, 

DRI, 
SIT/STD 

40Hz 

7.5s/25% 
online app 
7.5s/50% 

offline app 

76 

5 
smartphone
s :  various 

position 

DC & 
QDA 

90% online 
98.9% 
offline 

(Dernbac
h et al., 
2012) 

10 

BIK, STU, 
DRI, LAY, 
RUN, SIT, 
STD WAL. 

80Hz 1,2,4,8,16/50
% 6 

user’s 
choice 

(position & 
orientation) 

MLP, NB, 
BN, DT, 
B-FT, K-

star 

MLP: 93% 
2s window 

(Saputri 
et al., 
2014) 

27 
WAL, RUN, 
STN,STU, 

HOP 
50Hz 2s 21 front 

pocket ANN 93% 

1 WAL: Walking, JOG: Jogging, STN: Stairs down, STU: Stairs up, SIT: Sitting, STD: Standing, RUN: Running, BIK: Biking, LAY: 
Laying down, STC: Static, ADN: Aerobic dancing, HOP: Hopping, DRI: Driving, INA: Inactivity. 

2 J48: Weka implementation of C4.5 Decision Tree, LR: Logistic Regression, MLP: Multilayer Perceptron, kNN: k-Nearest Neighbors, 
SMO: Sequential Minimal Optimization, NB: Naïve Bayes, SVM: Support Vector Machines, RF: Random Forest, DT: Decision Table, B-
FT: Best-First Tree 

* Feature set includes that number of features but is not limited to. 
 
pocket using a sampling rate of 50 Hz. In the feature 
extraction process, the window size was set at 2 
seconds, while feature selection was performed 
using a self-devised three-staged genetic algorithm. 
The use of an Artificial Neural Network produced 
93% accuracy in the activity recognition.  

The above non-exhaustive review on ADLs 
recognition systems using smartphone embedded 
inertial sensors reveals that several research studies 
have already been published, reporting acceptable 
results while employing various different data 
processing and analysis approaches. However, there 
is an inherent weakness of conducting objective 
comparisons between different implementations, 
because of the heterogeneity of the acquired raw 
data, as shown in Table 1. The issue of 
differentiation in smartphone positions, sampling 
frequency and the kinds of activities addressed, 
along with the relatively small number of subject 

recordings is addressed in the following work with 
the use of the developed MobiAct dataset. 

3 THE MOBIACT DATASET  

3.1 Dataset Description  

MobiAct is a publicly available dataset (available for 
download from www.bmi.teicrete.gr) which includes 
data from a smartphone when participants are 
performing different types of activities and a range 
of falls. It is based on the previously released 
MobiFall dataset (Vavoulas et al. 2014), which was 
initially created with fall detection in mind. The fact 
that MobiFall included various activities of daily 
living made it also suitable for research in human 
activity recognition. In its current version, and with 
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a more generic name, MobiAct is introduced for the 
first time in the context of this study. 

It encompasses four different types of falls and 
nine different ADLs from a total of 57 subjects with 
more than 2500 trials, all captured with a smartphone. 
The activities of daily living were selected based on 
the following criteria: a) Activities which are fall-like 
were firstly included. These include sequences where 
the subject usually stays motionless at the end, in 
different positions, such as sitting on a chair or 
stepping in and out of a car; b) Activities which are 
sudden or rapid and are similar to falls, like jumping 
and jogging; c) The most common everyday activities 
like walking, standing, ascending and descending 
stairs (“stairs up” and “stairs down”). These activities 
were included from the start of the effort, since our 
ultimate objective has been to extend our work 
towards recognition of not only falls, but also 
complex everyday activities and, eventually, 
behaviours. Moreover, the fact that such activities are 
included is an advantage concerning human activity 
recognition (HAR) in general. As a result, MobiAct is 
suitable investigating both fall detection and HAR. 
Table 2 and Table 3 summarize all captured activities 
(and activity codes), their present trial counts, 
durations and a short description for each activity. 

3.2 Dataset Acquisition Details 

All activities related to the design of the acquisition 
protocol and the acquisition of the MobiAct dataset 
itself were performed at the Technological 
Educational Institute of Crete. Data were recorded 
from the accelerometer, gyroscope and orientation 
sensors of a Samsung Galaxy S3 smartphone with 
the LSM330DLC inertial module (3D accelerometer 

and gyroscope). The orientation sensor is software-
based and derives its data from the accelerometer 
and the geomagnetic field sensor. The gyroscope 
was calibrated prior to the recordings using the 
device’s integrated tool. For the data acquisition, an 
Android application has been developed for the 
recording of raw data for the acceleration, the 
angular velocity and orientation (Vavoulas et al. 
2013). In order to achieve the highest sampling rate 
possible the parameter “SENSOR_DELAY 
FASTEST” was enabled. Finally, each sample was 
stored along with its timestamp in nanoseconds. 

The techniques applied in the majority of 
published studies focusing on smartphone-based 
activity recognition, require the smartphone to be 
rigidly placed on the human body and with a specific 
orientation. For this purpose a strap is frequently 
used. In contrast to this and in an attempt to simulate 
every-day usage of mobile phones, our device was 
located in a trousers’ pocket freely chosen by the 
subject in any random orientation. For the falls, the 
subjects used the pocket on the opposite side of the 
direction of the fall to protect the device from 
damage. For the simulation of falls a relatively hard 
mattress of 5 cm in thickness was employed to 
dampen the fall (Vavoulas et al. 2014). 

3.3 Dataset Participants 

For the generation of the MobiAct dataset 57 
subjects (42 men and 15 women) were recorded 
while performing the predefined activities.  The   
subjects’ age spanned between 20 and 47 years 
(average: 26), the height ranged from 160 cm to 189 
cm (average: 175), and the weight varied from 50 kg 
to 120 kg (average: 76).  50 subjects completed

Table 2: Falls recorded in the MobiAct dataset. 

Code Activity Trials Duration Description 
FOL Forward-lying 3 10s Fall Forward from standing, use of hands to dampen fall 
FKL Front-knees-lying 3 10s Fall forward from standing, first impact on knees 
SDL Sideward-lying 3 10s Fall sideward from standing, bending legs 
BSC Back-sitting-chair 3 10s Fall backward while trying to sit on a chair 

Table 3: Activities of Daily Living recorded in the MobiAct dataset. 

Code Activity Trials Duration Description 
STD Standing 1 5m Standing with subtle movements 
WAL Walking 1 5m Normal walking 
JOG Jogging 3 30s Jogging 
JUM Jumping 3 30s Continuous jumping 
STU Stairs up 6 10s Stairs up (10 stairs) 
STN Stairs down 6 10s Stairs down (10 stairs) 
SCH Sit chair 6 6s Sitting on a chair 
CSI Car step in 6 6s Step in a car 
CSO Car step out 6 6s Step out of a car 
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successfully all ADLs and 54 subjects completed all 
falls. In total 10 trials had to be removed from the 
dataset due to errors in acquisition.  

4 METHODS  

4.1 Datasets for Comparison and 
Evaluation 

Our intention for generating MobiAct was to enable 
testing and benchmarking between various methods 
for human activity recognition with smartphones. As 
a result a comparison to other existing and publically 
available datasets is of significant value. The most 
suitable such public dataset is the WISDM dataset 
(Kwapisz et al., 2011). Both WISDM and MobiAct 
datasets include a large set of the same ADLs, 
namely walking, jogging, stairs up, stairs down, 
sitting and standing, in a common file format. 
Moreover, the position of the mobile device is 
equally treated in both datasets since it is up to each 
subject to freely select the orientation it will be 
placed into the pocket. 

Other freely available datasets, such as the 
DALIAC dataset (Leutheuser et al., 2013) and the 
UCI dataset (Anguita et al., 2012) could not be used 
for comparison since they differ significantly in 
terms of the recorded ADLs and the data acquisition 
conditions, which should be overlapping as much as 
possible among all the datasets under consideration. 
For example, the DALIAC dataset uses multiple 
accelerometer nodes statically placed on the human 
body. It does not use smartphone-based inertial 
sensors and therefore it is not suitable for the study 
at hand. The UCI data were recorded with a specific 
position for the smartphone (waist mounted). In 
addition, the UCI dataset does not include the 
jogging activity, which is part of both MobiAct and 
WISDM datasets, but instead includes the lying 
down activity, which is not part of MobiAct and 
WISDM. Apart from these differences, significant 
differences in the data format prevented the 
utilization of the UCI dataset. 

4.2 Pre-processing 

In order to extract features from the two selected 
datasets a common file format and sampling rate for 
both must be achieved. Following MobiAct’s file 
format, the WISDIM raw data file was split into 
smaller files based on the subject’s ID and activity. 
Linear interpolation and subsampling was applied on 

the MobiAct data in order to achieve a 20Hz sampling 
frequency which is what is used for the production of 
the WISDM dataset. 20Hz as a sampling frequency is 
also reported by Shoaib et al. (2015) as being suitable 
for the recognition of ADLs from inertial sensors. In 
MobiAct, the duration of some types of activities was 
smaller than 10 sec, which is the time window for 
feature extraction that the WISDM study uses 
(Kwapisz et al., 2011). To achieve a minimum of 10 
sec trial duration especially in trials of stairs up, stairs 
down and sitting on chair the last sample of each file 
in question was padded. 

4.3 Reproduction of the WISDM Study 

An important qualitative part of this investigation is 
the validation of the feature extraction techniques 
through the reproduction of a published 
computational pipeline and the comparison of the 
results. For this purpose the reported study (Kwapisz 
et al., 2011) was selected, which uses the WISDM 
dataset. Our hypothesis is that, if the results of the 
reproduction of the WISDM study are 
approximately the same as the published results, 
then the feature set defined could be used for a 
comparison to other feature sets, such as the one 
reported by Vavoulas et al. (2014).  

The results from the reproduction of the WISDM 
study are presented in Table 4. In general the 
reproduced and the reported results have the same 
behaviour in both studies. Some minor deviations 
may be due to slight differences in the windowing 
and feature extraction methodology, since, as 
previously mentioned, we had to split the WISDM 
data into smaller files.  

4.4 Feature Extraction & Feature Sets 

In attempting to estimate with the parameters for an 
optimal computational and analysis pipeline, it is 
obvious that the selection of a respective optimal 
feature set is of paramount importance. To construct 
this feature set, a combination of features from the 
study using the precursor of MobiAct (Vavoulas et 
al. 2014) and the WISDM study (Kwapisz et al., 
2011) were used.  

4.4.1 Feature Set A (FSA) 

This feature set consists of 68 features based on the 
reported work in (Vavoulas et al. 2014). For most of 
the features a value was extracted for each of the 
three axes (x, y, z). In detail, the following features 
were computed within each time window: 
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 21 features in total from: Mean, median, 
standard deviation, skew, kurtosis, minimum 
and maximum of each axis (x, y, z) of the 
acceleration. 

 1 feature from: The slope SL defined as: ܵܮ = ට(݉ܽݔ௫ −	݉݅݊௫)ଶ + ௬ݔܽ݉) −	݉݅݊௬)ଶ + ௭ݔܽ݉) − ݉݅݊௭ )ଶ (1)

 4 features from: Mean, standard deviation, 
skew and kurtosis of the tilt angle TAi between 
the gravitational vector and the y-axis (ssince 
the orientation of the smartphone was not 
predefined it is expected that the negative y-
axis will not be always pointing towards the 
vertical direction). The tilt angle is defined as: ܶܣ௜ = sinିଵ ቆ ௜ଶݔ௜ඥݕ + ௜ଶݕ + ௜ଶቇ (2)ݖ

where x, y and z is the acceleration in the 
respective axis. 

 11 features from: Mean, standard deviation, 
minimum, maximum, difference between 
maximum and minimum, entropy of the energy 
in 10 equal sized blocks, short time energy, 
spectral centroid, spectral roll off, zero crossing 
rate and spectral flux from the magnitude of the 
acceleration vector. 

 31 additional features were calculated from the 
absolute signals of the accelerometer, including 
mean, median, standard deviation, skew, 
kurtosis, minimum, maximum and slope. 

4.4.2 Feature Set B (FSB) 

A total of 43 features were generated in accordance 
to the WISDM study reported by Kwapisz, Weiss 
and Moore (2011) as variants of six basic features. 
For each of the three axes, the average acceleration, 

standard deviation, average absolute difference, time 
between peaks and binned distribution (x10 bins) 
were calculated in addition to the average resultant 
acceleration as a single feature.  

4.4.3 Optimal Feature Set (OFS) 

Following elaborate experimentation (totally 70 
different experimental setting) in which a) various 
combinations of window size (10, 5, 2 sec) and 
overlap (0%, 50%, 80%) were tested, b) features 
were removed or added into the feature vector based 
on observations of the achieved accuracy, and c) 
different classifiers were employed, such as IBk, 
J48, Logistic regression, Multilayer Perceptron and 
LMT (from the WEKA’s algorithm set), an optimal 
feature set, in our view, has been produced. All 
experiments were conducted using 10-fold cross-
validation. Specifically, the two feature sets (FSA 
and FSB), obtained using a time window of 5 sec 
and 80% overlap, were at first combined to form one 
new feature set. Subsequently weak features, 
identified through a trial-and-error approach, were 
taken out in an iterative process until the best overall 
accuracy for both datasets (MobiAct and WISDM) 
was obtained. A total number of 64 features were 
thus retained to form the optimal feature set. The 
features excluded from FSA were kurtosis for the x, 
y and z axes and spectral centroid. The features 
excluded from FSB were: time between peaks, 
binned distribution and average absolute difference. 
The optimal feature set was also calculated by using 
a 10s window and no overlap as defined in the 
WISDM study for a final comparison to their results, 
as shown in Table 4.  
  

Table 4: Classification results (% accuracy) in comparison to the WISDM published results (10s window size, no overlap). 

Activity 
Published Results Reproduced Results (FSB) Results using the optimal 

feature set (OFS) 

J48 Logistic Multilayer 
Perceptron J48 Logistic Multilayer 

Perceptron J48 Logistic Multilayer 
Perceptron 

Walking 89.9 93.6 91.7 90.8 93.8 95.3 99.4 98.3 99.8 
Jogging 96.5 98.0 98.3 98.5 98.6 99.0 99.1 99.4 99.6 
Upstairs 59.3 27.5 61.5 65.5 53.2 79.3 85.2 79.5 92.5 

Downstairs 55.5 12.3 44.3 55.6 49.7 69.4 87.4 77.4 91.5 
Sitting 95.7 92.2 95.0 97.0 94.1 94.6 97.0 97.5 98.0 

Standing 93.3 87.0 91.9 97.0 94.6 90.4 99.4 97.0 99.4 
Overall 85.1 78.1 91.7 88.3 87.5 92.4 96.7 94.9 98.2 
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Table 5: Classification results using the optimal feature set (5s window size, 80% overlap). 

Dataset/Classifier: MobiAct/IBk MobiAct/J48 WISDM/IBk WISDM/J48 
Activity TPRate FPRate TPRate FPRate TPRate FPRate TPRate FPRate 
Walking 1.000 0.000 1.000 0.000 1.000 0.000 0.998 0.002 
Jogging 1.000 0.000 1.000 0.000 0.999 0.000 0.998 0.001 
Upstairs 0.993 0.001 0.930 0.004 0.992 0.001 0.939 0.006 

Downstairs 0.982 0.000 0.921 0.003 0.991 0.001 0.937 0.007 
Sitting 1.000 0.000 0.999 0.000 0.999 0.000 0.996 0.000 

Standing 1.000 0.000 1.000 0.000 0.999 0.000 0.996 0.000 
Accuracy: 99.88 % 99.30 % 99.79 % 98.63 % 

 
4.5 Classifiers 

The classifiers selected for the final testing of the 
optimal feature set were the IBk (with 1 nearest 
neighbor), the J48 decision tree, Logistic regression 
and Multilayer perceptron, included in WEKA (Hall 
et al. 2009) with default parameters. The first two 
produced the best overall results, whilst the 
remaining two were used for a comparison to the 
WISDM study since they were also reported there. 

5 RESULTS  

The experimental results obtained using the optimal 
feature set are shown in Table 5. It is worth noticing 
that with both classifiers the overall accuracy is 
close to 99% for both datasets. The best accuracy for 
the MobiAct dataset is obtained with the IBk 
classifier. IBk generally appears to have a relative 
better performance with 94% accuracy, a fact that 
has already been reported elsewhere (Buber and 
Guvensan, 2014). Also, IBk performs better than J48 
for the WISDM dataset as well. The weakness in 
accurately recognizing activities which produce 
similar signals, such as stairs up and stairs down, is 
noticeable with J48. Nevertheless, IBk recognizes 
these activities effectively. An additional noticeable 
point is that IBk performs slightly better in 
classifying the walking activity, which has been 
observed to be often misclassified as a stairs up or 
stairs down activity. 

Considering the comparison of the results when 
using FSB (reproduced results) and OFS with the 
WISDM dataset, for all the classifiers used, OFS 
outperforms FSB (Table 4). A possible explanation 
to this may be the higher number of features used in 
OFS. This finding is in line with related published 
evidence. As reported by Siitrola and Roning (2013), 
accuracy of 98.9% achieved with the use of a large 
feature set (75 features). 

6 CONCLUSIONS 

The study’s objective was to estimate an optimal 
computational and analysis pipeline which 
accurately recognizes ADLs exploiting an extensive 
dataset of motion data collected from a smartphone. 
As a result of this investigation a set of 64 features 
that proved to perform best with two datasets was 
extracted. These features were the outcome of many 
tests, through a trial and error process that removed 
weak features such as kurtosis and spectral centroid. 
It is noticeable that absolute values of kurtosis in all 
three axes improve the performance of classification 
and hence were included in the final optimal feature 
set. The spectral centroid is the key feature, which 
affects the results of activity recognition negatively. 
The stairs up and stairs down activities exhibit the 
worst accuracy among all those performed in the 
tests. This observation is also seen in other reports 
and may be related with the random device 
orientation or the dynamic and temporal resolution 
of the accelerometer sensor. 

The best overall accuracy of 99.88% is achieved 
when using the IBk classification algorithm on the 
MobiAct dataset in combination with the optimal 
feature set mentioned above. This is the best 
reported classification result to date, when 
comparing with the most recent studies presented in 
Table 1. This result is the outcome of a 10-fold 
cross-validation which is a very common evaluation 
approach in the related studies, although we expect 
to decrease when using a leave-one-out cross-
validation, which is a more realistic scenario. It is 
the intention of the authors to advance into such 
validation scenarios in the near future. For the above 
results a sampling rate of 20Hz, a window size of 5 
seconds and an overlap of 80% have been used. 
These values are proposed as the optimal for this 
experimental setup. The usage of two independent 
datasets ensures robustness of the results, always 
within the limits of each dataset. 
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Finally, the experimental results obtained 
indicate that the MobiAct can be considered as a 
benchmark dataset since it includes a relatively large 
number of records and a wide range of activities in 
an easy to manage data format. Furthermore, since 
the placement of the smartphone is freely chosen by 
the subject in any random orientation we believe that 
it represents real life conditions as close as possible. 

The next step towards developing a real-life 
application requires that a) orientation data is used in 
a more efficient manner and b) assessment and 
optimization of power consumption (battery usage) 
requirements for the feature extraction and 
classification algorithms, is thoroughly studied. 
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