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Abstract: An intelligent chair prototype was developed in order to detect and correct the adoption of bad sitting 
postures during long periods of time. A pneumatic system was enclosed in the chair (4 air bladders inside 
the seat pad and 4 in the backrest) to classify 12 standardized sitting postures, with a classification score of 
80.9%. Recently we used algorithmic optimization applied to the existing classification algorithm (based on 
Neural Networks) to split users (using Classification Trees) by their sex and used two different previously 
trained Neural Networks (Male and Female) to get an improved classification of 89.0% when the user was 
identified and 87.1% for unidentified users. In this work we aim to investigate the usage of the 
anthropometric information (height and weight) to further optimize our classification process. Here we use 
four Machine Learning Techniques (Neural Networks, Support Vector Machines, Classification Trees and 
Naive Bayes) to automatically split the users in 2 classes (above and below the specific anthropometric 
median value). Results showed that Classification Trees worked best on automatically separating the body 
characteristics (i.e. Height) with a global optimization of 88.3%. During the classification process, if the 
user is identified, we skip the splitting step, and this optimization increases to 90.2%.

1 INTRODUCTION 

There has been a growing interest in developing 
intelligent chairs capable of detecting a person’s 
sitting posture and alerting that person to improve 
his or her sitting posture. Numerous researchers 
applied sheets of surface-mounted pressure sensors 
placed as if in a 2D array or used statistical 
techniques to find the best way to place singular 
force-sensitive resistors (Zhu et al., 2003; Tan et al., 
2001; Zheng and Morrell, 2010; Mutlu et al., 2007; 
Daian et al., 2007; Goossens et al., 2012). Other 
groups implemented sensing textiles  in the chair 
(Forlizzi et al., 2005). Most of these chairs alert the 
users by using vibrotactile motors or by computer 
pop-ups (Haller et al., n.d.; Schrempf et al., 2011; 
Zheng and Morrell, 2010). Another group used 36 
intelligent pneumatic actuators over sensing plates to 
detect and guide the sitting posture (Faudzi et al., 
2010). 

These intelligent chairs, which have shown the 
capability of monitoring physiological parameters 
(e.g. heart rate) (Griffiths and Saponas, 2014) or 
monitor everyday activities, are starting to be 
implemented in real homes for year-long tests 
(Palumbo et al., 2014) and they are needed because 
our society spends long periods of time in the 
workplace and even at home in the sitting position. 
This sedentary lifestyle has been associated with an 
increased risk of cardiovascular and musculoskeletal 
diseases, although some studies have not been able 
to prove direct and causal correlation between sitting 
time and those disorders (Chau et al., 2010; 
Hartvigsen et al., 2000; Owen et al., 2010; Owen et 
al., 2014; Roffey et al., 2010). Musculoskeletal 
disorders were recognized as one of main causes of 
work-related disability and loss of productivity in 
industrialized countries (Ramdan et al., 2014; 
Punnett and Wegman, 2004), so there is a necessity 
for monitoring and prevention of those health 
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dysfunctions. 
When an individual is sitting, most of the 

bodyweight is supported by the ischial tuberosities, 
the thigh and gluteal muscles, while the rest is 
transferred by the feet and armrests when they are 
present (Pynt et al., 2001). During extended periods 
of sitting, there is a decrease of the lumbar lordosis, 
which has been implicated in increasing the physical 
risk factors related to back, neck and shoulder pain 
(Ariëns et al., 2001; Juul-Kristensen et al., 2004), 
due to anatomical changes and degeneration of 
intervertebral disks and joints, especially the lumbar 
disks (Adams and Hutton, 1986; Kingma et al., 
2000; Billy et al., 2014). If a person is sitting in a so 
called ‘bad posture’ (for example sitting in a leaned 
back position without lumbar support, see Figure 3 
for other examples), the risk of musculoskeletal 
disorders increases (Lis et al., 2007) 

The increase in these health disorders supports 
the necessity for their monitoring and prevention, 
leading to the development of chair prototypes that 
identify several sitting positions and then alert or 
correct the adoption of bad postures over extended 
periods. Our first prototype had 4 air bladders placed 
in the seat pad and 4 in the backrest, with pressure 
sensors that measured the internal pressure of the 
bladder. We used Artificial Neural Networks (ANN) 
to classify 11 standard sitting postures, with 70% 
accuracy, and we were able to do a real-time 
classification of 8 postures, with 90% accuracy. This 
prototype had had a rudimentary correction 
algorithm based on Boolean logic (Martins et al., 
2014; Martins et al., 2013).  

The second prototype was built in order to 
overcome the gaps identified in the first prototype, 
mainly the introduction of a vacuum pump to control 
efficiently the air inside the bladders, the design of 
industrially constructed air bladders and the 
reorganization of the communication protocols 
(Pereira et al., 2015). We then revised our 
classification and correction algorithms and 
introduced Fuzzy Logic to the existing ANN 
algorithms, which was able to integrate time spent in 
each posture (recognized by the ANN) and was able 
to identify intermediate postures, other than the 12 
standard ones and correct them based on fuzzy logic 
actuators (Ribeiro et al., 2015). This work precedes 
our previous implementation of algorithmic 
optimization, applied to the second prototype in 
order to improve posture classification performance, 
based on the sex of the users (Ribeiro et al., 2015). It 
continues the trend of classification optimization by 
using the anthropometric information of the users 
(height and weight) to surpass the previous 

classification Accuracy, by testing various 
classification methods to split the users. This study 
was also driven by the discovery that our previous 
classification algorithms (with  leave-one-out 
strategy to train with 49 users and test with the last 
one) had some difficulties in the classification of 
users with weights between 60 and 73 Kg and 
heights between 173 and 190 cm (highlighted in the 
red square in Figure 1). 

 

Figure 1: (A) Classification Performance for each 
participant regarding their Anthropometric Data (Height 
and Weight), based on a Neural Net-work with 3 Layers 
and 15 Neurons. 

2 EXPERIMENTS AND 
METHODS 

2.1 Equipment – Sensors and 
Pneumatic Actuators 

For this work we use the second prototype that was 
previously built, with 8 industrially made 
polyurethane bladders, and with new features that 
were improved from the first prototype, as 
previously mentioned (Pereira et al., 2015). The 
main objective was that the bladders covered and 
distinguished the anatomical areas involved in the 
weight transfer during the seated posture (Pynt et al., 
2001), such as the scapula, the ischial tuberosities, 
the posterior thigh region, the lumbar spine (Martins 
et al., 2014). The air bladders (see Figure 2-A for 
configuration) were placed inside the original 
padding foam (as can be observed in Figure 2-B, the 
chair maintains the original integrity) (Pereira et al., 
2015). All the sensors and the pneumatic circuits 
were integrated in eight small boxes that were 
inserted in the backrest and connected to the lower 
part of the seat pad, which makes all the electronics 
and pneumatic circuit invisible to the user (Pereira et 
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al., 2015). 

 

Figure 2: (A) Air bladder schematic (B) External aspect of 
the chair prototype. 

2.2 Experimental Design - Participants 
and Procedure 

The same dataset is used as in the previous 
optimization work (Ribeiro et al., 2015) (see Table 1 
for the participants information). We split the users 
based on their weight and height (see dashed lines in 
Figure 1). Just as in the previous work protocol, we 
use a value of 5 sec for bladder inflation and also 
asked the subjects to empty their pockets and adjust 
the stool to their popliteal height and to keep their 
hands on their thighs (Ribeiro et al., 2015). 

Table 1: Data of the participants in the experiment, 
namely, Sex, Age, Weight and Height. Note: a Values for 
Average±Standard Deviation and (M/F) corresponds to 
(Male/Female). 

Participants Information Value Median 
Number of Subjects 

(M/F) 
50 (25/25) - 

Age (years) a 26,4±9,5 - 
Weight (Kg) a 66,8±12,8 67 

Height (cm) a 170,5±9,8 171 

Our experiment consists of two tests, the first 
involved showing a presentation of the postures P1 
to P12 (see Figure 2), each for a duration of 20 
seconds, asking the subject to mimic those postures 
without leaving the chair. In the second we used the 
same presentation, repeating every posture two 
times, but after every 20 seconds we ask the subject 
to leave the chair, take a few steps and sit back. The 
twelve postures (P1 to P12 – see Figure 2) used in 
this experiment represent the most common sitting 
postures found in office settings (Vergara and Page, 
2000; Mutlu et al., 2007; Zheng and Morrell, 2010; 
Martins et al., 2014). 

 

Figure 3: Seated postures classes: (P1) seated upright, 
leaning (P2) forward (P3) back (P4) back with no lumbar 
support (P5) left (P6) right (P7) right leg crossed (P8) right 
leg crossed, left lean (P9) left leg crossed (P10) left leg 
crossed, right lean (P11) left leg over right (P12) right leg 
over left. 

Not all of the 20 sec of acquisition were used (as 
in previous experiments), due to the existence of a 
Transition zone, where the sensor values are not 
stable (Martins et al., 2014; Ribeiro et al., 2015; 
Pereira et al., 2015). We extracted 100 data-points, 
corresponding to 12.5 sec with a sampling of 8 Hz. 
Pressure maps were done, by averaging 20 
acquisitions, obtaining 5 maps so out of the 100 
data-points, for a total of 9000 (50 subjects * 3 
repetitions * 5 pressure maps * 12 postures).. 

This (P1) pressure is used as a baseline by 
subtracting its average from the entire data-points 
(9000 maps). After the calibration, the maps are 
normalized to an interval of [-1, 1] to use as inputs 
for the Posture Classification Algorithm based on 
Artificial Neural Networks (ANNs), based on the 
average pressure values of the P1 posture of each 
subject (Pereira et al., 2015; Martins et al., 2014). To 
create ANNs we use the MATLAB® Neural 
Network Toolbox™. The optimization of the 
Posture Classification is based on using the baseline 
pressure as an input to a Pre-Process Classification 
Algorithm that is going to classify the participants 
according to their anthropometric information.
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2.3 Classification Algorithms 

Here we use four supervised machine learning (ML) 
techniques: Artificial Neural Networks (ANNs), 
Support Vector Machines (SVM), Classification 
Trees (CT) and Naive Bayes (NB) to create a Pre-
Process Classification Algorithm that splits the 
participants based on their anthropometric 
information. These techniques are widely used in 
biomedical applications (Kotsiantis, 2007; Singh et 
al., 2014), are the most reliable in supervised 
learning and can be easily implemented with specific 
libraries (Abeel, 2009) in simple computational 
architectures, such as a single-board computers (e.g. 
Raspberry Pi) or Mobile Devices (smartphones or 
tablets). To train and test each method we use the 
MATLAB® Neural Network Toolbox™ (MNNT) 
and the MATLAB® Statistics Toolbox™ (MST). To 
estimate the performance of each ML technique we 
used the 10-fold cross validation, using the 
‘cvpartition’ function. The results are obtained by 
calculating the Accuracy of the 2 class separation 
problem (below and above the specific 
anthropometric information), as the above the 
Median can be considered the True Positive and the 
Below the Median the True Negative of the test. 

ANN-based algorithms have been shown to be 
useful in many engineering and biomedical 
applications (Paliwal and Kumar, 2009). We already 
use ANNs for the Posture Classification, as they 
showed the ability to handle very well that 
multiclass problem. They also have an advantage of 
being easily exported to mobile applications (using 
the weights and bias matrices). 

The Classification and Regression Trees (CART) 
methods that are still being widely used in 
biomedical applications (Podgorelec et al., 2002), 
were first presented by Breiman and colleagues  in 
1984 (Breiman et al., 1984). In this work we use the 
fitctree from the MST.  

SVM techniques were first presented to separate 
a binary class problem (Boser et al., 1992) and have 
been applied to Biomedical and Biotechnology 
applications, such as face recognition (Cyran et al., 
2013) or using gene expression to classify different 
cancers (Noble, 2006) and classifying objects such 
mass spectra (Noble, 2003; Cyran et al., 2013), 
proteins (Noble, 2003), DNA sequences (Noble, 
2003). Here we have also binary classification 
problem, so we used the fitcsvm function, present in 
the MST. 

Naive Bayes is a simple and scalable technique 
that has been introduced in the 1950’s and has also 
been used in biomedical applications (Singh et al., 

2014). Here we use the ‘fitcnb’ function, from MST 
and then changed the kernel distributions.  

3 RESULTS AND DISCUSSION 

3.1 Classification Optimization based 
on Anthropometric Information 

3.1.1 Neural Network Optimization 

To search for the optimized parameters of the 
Posture Classification based on Neural Networks, 
we tested various combinations of layers, neurons 
(as can be seen in Table 2), using the ‘tansig’ 
transfer function and the ‘scaled conjugate gradient 
backpropagation’ (SCG) training function (using the 
default parameters), which proved to be the most 
accurate parameters our previous work (Martins et 
al., 2014; Pereira et al., 2015). As can be seen in 
Table 2, the best overall result was with 15 Neurons 
and 1 Layer with an overall classification of 95.8% 
(overall separation of 95.6% for Height and 96.0% 
for Weight). Training with 3 Layers is not shown as 
the results were lower or around 90%. It is noted that 
the 1 layer-15 neurons also had the best results for 
the posture classification algorithm in the first 
prototype. 

Table 2: Results from the Neural Network Optimization. 

Number 
of 

Neurons 
Class 

Above 
the 

Median 

Below 
the 

Median 

Overall 
Class 

Separation 

15 
Height 97.9 93.3 95.6 
Weight 97.6 94.4 96.0 

20 
Height 93.1 91.7 92.4 
Weight 94.9 94.7 94.8 

25 
Height 93.9 96.7 95.3 
Weight 92.8 93.9 93.4 

30 
Height 96.8 94.7 95.7 
Weight 95.7 92.3 94.0 

15/15 
Height 94.4 92.2 93.3 
Weight 96.8 93.3 95.0 

20/20 
Height 93.7 93.0 93.4 
Weight 95.1 95.5 94.8 

25/25 
Height 97.0 92.4 94.7 
Weight 93.9 93.5 93.7 

30/30 
Height 96.1 94.0 95.0 
Weight 95.5 94.7 95.1 

3.1.2 Classification Trees Optimization 

Using the default values from the fitctree function, 
we changed the splitting criterion from the Gini's 
Diversity Index to the Twoing rule (Breiman et al., 
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1984) and then to the calculation of the node 
deviance (Ritschard, 2006). The best score (97.8%) 
were obtained with the Gini Index with an overall 
separation of 97.8% for Height and 97.9% for 
Weight, as seen in Table 3. 

Table 3: Classification Trees Optimization results. 

Splitting 
Criterion 

Class 
Above 

the 
Median 

Below 
the 

Median 

Overall 
Class 

Separation 

Gini 
Height 97.6 98.1 97.8 
Weight 98.9 96.8 97.9 

Twoing 
Height 97.1 97.6 97.3 
Weight 98.4 97.9 98.1 

Deviance 
Height 97.3 98.9 98.1 
Weight 97.1 97.3 97.2 

3.1.3 Support Vector Machine Optimization 

We started the SVM optimization with the default 
parameters. In 'Change 1', we standardized the 
predictors (using the 'Standardize' flag). In 'Change 
2', we changed the 'KernelScale' to automatic, which 
uses heuristic procedure to select the kernel scale 
value.  

In 'Change 1+2' we combined both flags, which 
gave the best overall classification of 78.2% (overall 
separation of 73.1% for Height and 83.2% for 
Weight). In 'Change 3', we changed the 'Box 
Constraint' flag to 10 and 0.1 (default is 1), along 
with the flags from 'Change 1+2' (see Table 4 for all 
Classification Accuracies). 

Table 4: Support Vector Machine Optimization results. 

Parameter 
change 

Class 
Above 

the 
Median 

Below 
the 

Median 

Overall 
Class 

Separation 

Default 
Height 66.7 50.2 58.5 
Weight 60.5 69.1 64,8 

Change 1 
Height 76.8 65.9 71.3 
Weight 76.3 88.3 82.3 

Change 2 
Height 79.2 63.5 71.3 
Weight 80.3 85.6 80.3 

Change 
1+2 

Height 80.2 66.1 73.1 
Weight 83.1 88.3 83.2 

Change 3 
(10) 

Height 78.4 65.1 71.7 
Weight 75.7 88.5 82.1 

Change 3 
(0.1) 

Height 80.0 61.9 70.9 
Weight 73.6 81.3 77.5 

3.1.4 Naïve Bayes Optimization 

Employing the the ‘fitcnb’ function, we started with 
the default parameters, and adapted the data 
distribution from 'normal' to 'kernel' with 4 possible 

kernels: 'normal', 'box', 'epanechnikov' and 'triangle'. 
The best results (see Table 5) was obtained with 

a 'normal' kernel, with a global score of 79.8% 
(78.9% for Height and 80.7% for Weight). 

Table 5: Naïve Bayes Optimization results. 

Parameter 
change 

Class 
Above 

the 
Median 

Below 
the 

Median 

Overall 
Class 

Separation 

Default 
Height 52.3 71.7 62.0 
Weight 54.1 78.4 66.3 

Kernel 
normal 

Height 72.5 85.3 78.9 
Weight 72.8 88.5 80.7 

Kernel 
box 

Height 72.8 85.9 79.3 
Weight 67.2 86.9 77.1 

Kernel 
epanech- 

nikov 

Height 73.1 84.3 78.7 

Weight 66.7 86.4 76.5 

Kernel 
triangle 

Height 72.3 81.9 77.1 
Weight 65.6 84.3 74.9 

3.2 Sitting Posture Classification based 
on Neural Networks 

After doing the class separation (above and below 
the median height and weight), we now rely on 
using Neural Networks to classify the 12 standard 
Sitting Postures.  

The chosen parameters were based on the best 
results obtained in the previous experiments (Pereira 
et al., 2015; Martins et al., 2014), so we also fixed 
the SCG algorithm training function and ‘tansig’ for 
the transfer functions and tested the Number of 
Neurons (15 and 30) and the amount of Layers (1, 2 
or 3).  

Table 6 shows the obtained results, the best 
result was with 15 Neurons and 1 Layer with an 
overall classification of 90.0% (overall separation of 
90.2% for height and 89.8% for weight).  

This simpler configuration is also advantageous 
to use, especially in real-time classification, to avoid 
the overfitting problem (Martins et al., 2014). 
Overtraining of the Algorithms was avoided by 
using the ‘cvpartition’ (with 10-fold option), which 
then test’s with 10% of the data and trains with 90%, 
and repeats this process 10 times and averages the 
results. Although there are a lot of parameters that 
could have been used for each of the previous 
machine learning algorithm, as we expressed in the 
previous sections, we wanted to use a simple 
approach to the classification process, because we 
want to export the Algorithms to a small single-
board computer (e.g. Raspberry Pi) or to a mobile 
application.  
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Table 6: Results for Posture Classification based on 
Neural Networks. 

Number 
of 

Neurons 
Class 

Above 
the 

Median 

Below 
the 

Median 

Overall 
Separation 

15 
Height 90.5% 89.9% 90.2% 
Weight 89.8% 89.7% 89.8% 

30 
Height 87.9% 88.3% 88.1% 
Weight 86.9% 87.3% 87.1% 

15/15 
Height 89.5% 87.2% 88.4% 
Weight 87.9% 90.0% 89.0% 

30/30 
Height 89.8% 86.4% 88.1% 
Weight 87.7% 90.6% 89.2% 

15/15/15 
Height 89.0% 90.4% 89.7% 
Weight 88.2% 89.2% 88.7% 

30/30/30 
Height 89.2% 88.6% 88.9% 
Weight 87.8% 89.3% 88.5% 

4 CONCLUSIONS AND FUTURE 
WORK 

In prior works, we developed two intelligent sensing 
chair prototypes. The first one was developed to 
classify 11 standardized sitting postures using 8 
pneumatic bladders connected to pressure sensors 
(Martins et al., 2014). The second solved the 
identified limitations of the first one (using a 
vacuum pump to control the deflation of the 
bladders, the design of industrially built bladders 
and the use of simple computational architectures) 
and had a classification score of 80.9% of 12 
standard sitting postures . This work aimed to 
demonstrate how we could optimize this 
classification based on the identification of the user, 
and split them by their anthropometric information 
(above or below the median height and weight), with 
each class having their specific ANN for Posture 
classification.  

The workflow of the classification optimization 
process is shown in Figure 4. This process starts 
with the user sitting on the chair prototype and the 
pressure sensor acquisition. If the user is identified 
in the computer interface, we just directly select the 
specific Neural Network for Posture Classification, 
based on the anthropometric features. If the user is 
not identified, we need to detect which Neural 
Network should be used, by using the best Pre-
Process Algorithm. The workflow then continues 
with the Calibration and Data processing, finalizing 
with the Posture Classification Process based on the 
specific ANN. 

The Best Pre-Process Algorithm (Classification 
Trees with the Gini Index) for our specific problem, 

gave an automatic separation score (97.8%), with an 
overall separation of 97.8% for Height and 97.9% 
for Weight.  

Results showed that the best result for the 
Posture Classification (using the ANN) was obtained 
with Layer of 15 Neurons with an overall 
classification of 90.2% for height and 89.8% for 
weight, which translates into an overall optimization 
of 9.3% (with the height) from the previously 
reported result of 80.9% score for 12 standard sitting 
postures (Pereira et al., 2015) and a 1.2% increase 
over the previous optimization (using the sex of the 
user) (Ribeiro et al., 2015) when the user is 
identified with their anthropometric information.  

Combining the automatic separation (when the 
user is not identified), we use a pre-process 
classification (based on Decision Trees) to 
determine the specific Anthropometric Neural 
Network, so by multiplying each specific result we 
get an overall classification optimization of 88.3% 
for the Height and 87.8% for the Weight, resulting in 
an overall optimization of 7.4% over the normal 
Posture Classification Algorithm and an increase of 
1.2% over the previous optimization process.  

Although using the Height optimization gave the 
best results, we believe that combining all three 
factors (Height, Weight and Sex) into a very 
personalized Classification Algorithm will be our 
best option to get scores higher than 90% and 
optimize the sitting posture process, which will only 
be achieved by increasing the participant’s database.  

 

Figure 4: Workflow of the Posture Classification 
Optimization Process. 

The prototype is still undergoing a series of 
operational trials in an office environment to 
evaluate the classification algorithms to get realistic 
statistical data from of daily postural habits. The 
correct classification of different sitting postures is 
necessary for the implementation of the posture 
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correction algorithms that hopefully will have a 
societal impact of reducing the common back and 
neck disorders. 
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