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Abstract: Continuous and on the fly heat monitoring in industries like manufacturing and chemical is of compelling 
research nowadays. The recent advancement in IR thermal sensors unfold the possibilities to fuse the 
thermal information with other low cost sensor (like optical camera) to perform area or volumetric heat 
measurement of any heated object. Recent development of affordable handheld mobile thermal sensor as a 
smart-phone attachment by FLIR encouraged the researcher to develop thermal monitoring system as smart-
phone application. In pursuit of this goal we present a light weight system with a combination of optical and 
thermal sensors to create a thermal dense 3D model along with area/volume measurement of the heated 
zones using smart-phone. Our proposed pipeline captures RGB and thermal images simultaneously using 
FLIR thermal attachment. Estimates the poses for RGB and depth images, 3D models are generated by 
tracking the features from RGB images. Back-projection is used to colour the 3D points to represent both in 
RGB as well as an estimated surface temperature. The final output of the system is the detected hot region 
with area/volumetric measurement. Experimental results demonstrate that the cost effective system is 
capable to measure hot areas accurately and usable in everyday life. 

1 INTRODUCTION 

Unobtrusive heat measurement and monitoring is 
well accepted in manufacturing, chemical, 
automobile, construction industries. Conventional 
industrial thermal cameras are still not in affordable 
range for everyday life usage. Conventional 
thermography for energy measurement and non-
invasive assessments relies on 2D thermal images, 
which have significant limitations like lack of 
information on the shape and geometry or location 
of the object of interest in the scene. So there is 
growing interest on representing the environment in 
3D which also integrates the temperature 
information. The combined information will help to 
detect the object of interest and volumetric 
measurement precisely. Autonomous solution is in 
high demand in the market, especially in industries 
like manufacturing and chemical and also systems 
which are usable in everyday life. FLIR lunched an 
affordable thermal sensor (FLIR, 2014) as smart-
phone attachment which manifolds the possibility of 
monitoring and verification of heated region using 
such hand held mobile low cost sensors. 

We present a cost effective 3D thermal mapping 
system in contrast of conventional thermal camera 
without compromising much of qualitative measure. 
The system is capable of area or volumetric 
measurement of heat in a continuous and non-
invasive way. The proposed system is consists of a 
hand held smart-phone and a FLIR thermal 
attachment. FLIR thermal attachment for smart-
phone is features enrich product within affordable 
price compare to costly conventional thermal 
sensors. FLIR thermal attachment comes with 
160x120 thermal resolutions which are further 
scaled up to VGA resolution using FLIR MSX 
technology (FLIR, 2014) and it is capable to detect 
temperatures between -20°C to 120°C with a 
resolution of 0.1°C. Conventional thermal sensors 
are more on to measure the heat accurately in a 2D 
space. The proposed system is capable of generating 
dense 3D model with thermal annotation for the 
purpose of further processing and measurement 
volumetric heat on the fly for everyday usage. The 
system can be consider as a trade-off with more 
accurate thermal camera where volumetric heat 
measurement is more important compare to the 
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accuracy of thermal measurement for example 
sludge-heel formation inside in an oil tank. The 
proposed system is sub set of much bigger concept 
presented by P. Deshpande et al., (2015). 

The major contributions are: 
 Designing a hand-held light weight system for 

continuous monitoring and measurement of 
heated zone for everyday usage which can be 
extend for various industries like oil refinery, 
automobile industries etc. 

 Creating smart-phone application for thermal 
measurement using FLIR thermal attachment. 

 Finding out the heated regions automatically and 
measurement of heat area or volume accurately 
in 3 dimensions. 

Our entire framework exploits several state-of-the-
art algorithms for generating dense 3D environment 
using IMU sensors. We present experimental results, 
which prove that proposed system can be utilized in 
wide range of scenarios. We also evaluate the 
accuracy of the reconstruction by comparing with 
the ground truth. 

2 STATE OF THE ART 

Several studies are performed to explore the 
potential of 3D thermal mapping and volumetric 
inspection. The studies are mostly focused on 
monitoring building power consumption. 

ThermalMapper (Borrmann et al., 2012) is a 
well-known project which uses a terrestrial laser 
scanner and thermal infrared camera on a wheel 
robot. The thermal data is kept on projecting onto 
the 3D model as soon as it is generated by laser 
scanner. The final result from ThermalMapper is a 
dense 3D point cloud which can be visualized in 
both RGB and thermal. Volumetric heat 
measurement and analysis is not part of the 
presented system. There is significant cost and 
mobility difference between the presented systems 
with our proposed system due to the usage of a light 
weight (approximately 78 grams) low cost FLIR 
attachment with smart-phone.  

In a recent work Vidas et al., (2013) represent a 
3D thermal mapping to monitor building interiors 
using Microsoft Kinect (Microsoft, 2010) and a 
thermal camera. In computer vision and robotics, the 
use of RGBD cameras like Microsoft Kinect 
facilitates the development of techniques for highly-
detailed and spatially-extended reconstructions 
(Meilland and Comport, 2013; Whelan et al., 2013). 
Such costly and bulky coupled sensors are capable 

of reconstructing in real-time (Newcombe et al., 
2011), but the use of structured light pattern make 
the product usage limited within indoor environment 
and short range measurements. The presented 
system is limited to present 3 dimensional 
environments with surface temperature annotation 
and automatic heat measurement and analysis is out 
of scope. The dimension, weight and operating 
environment are the main drawbacks for kinect to be 
used as a hand-held low cost system. Though active 
depth sensors have many advantages, there are 
certain scenario where passive RGB cameras are 
preferred due to its low power consumption, outdoor 
capable and form factor. This has motivated many 
researchers to investigate methods for 3D 
reconstruction using only passive cameras. So, the 
stereo approaches are still very popular. There are 
approaches where binocular vision is used for 3D 
reconstruction in indoor environment for navigation 
(Krishnan and Kollipara, 2014). The growing 
interest of dense reconstruction gave attention in 
multi-view stereo technique (Seitz et al., 2006; 
Furukawa et al., 2010) where the computational 
complexity prevents them to be used as low cost and 
light weight system. 

In a recent work (Pradeep et al., 2013) has 
described a methodology for marker less tracking 
and 3D reconstruction in scenes of smaller size 
using RGB camera sensor. It tracks and re-localizes 
the camera pose and allows for high quality 3D 
model reconstruction using a webcam. (Pizzoli et al., 
2014) proposed a solution by adapting a 
probabilistic approach in which depth map is 
computed by combining Bayesian estimation and 
convex optimization techniques. These 
implementations are limited to a small scene 
reconstruction. These kind of system paired with 
another thermal camera would generate a clumsy 
setup and mobility of the entire system would be 
restricted. 

In another work Saha et al., (2014) has presented 
a system where smart-phone is used as capture 
device and the entire reconstruction is performed in 
a backend system. The mobility of the system is 
main drawback for everyday usage. 

Industrial thermal cameras are capable of 
measuring the temperature accurately from a 
specified distance and few costly cameras provide 
dimension of the heated regions in 2 dimensions 
with a user guided way. FLIR smart-phone thermal 
attachment is also providing information in 2 
dimensional spaces. Volumetric measurements are 
limited due to 2 dimensions. The cost of thermal 
cameras is another metric which restrict these 
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products to be used only in industrial segment. FLIR 
smart-phone thermal attachment brings the 
opportunity to be used as house hold product for 
everyday life usage due to the enormous cost 
reduction, increase mobility for small dimensions 
and weight and finally user friendly instead of 
expensive or bulky thermal systems. Automatic 
Volumetric measurement requires the heat analysis 
on 3 dimensions, so there are limitations in state of 
the art for an autonomous affordable system which 
is capable of area or volumetric measurement of any 
heated regions in everyday life. We present a smart-
phone based framework along with an implemented 
application for the gap as discussed. 

3 FRAMEWORK DESCRIPTION 

The block diagram of the entire system is illustrated 
in figure 1. 

3.1 Data Acquisition 

We used hand held smart-phone with FLIR thermal 
attachment for entire data collection and processing. 
Data collection starts from certain position 
(according to requirement and camera field of view) 
and we take this as origin of world coordinate 
system for entire data collection and calculation. To 
collect data, we use our two apps in parallel. One 
app handles the entire image capturing called 
OptoThermalFLIR App and another app called i-
POSE handles the task of recording the IMU data 
with timestamp. 

OptoThermalFLIR app captures optical and 
thermal image simultaneously at each point and 
saves with timestamp. i-POSE app runs  in 
background and records the IMU data 
(accelerometer, magnetometer and gyroscope are 
used) with timestamp at 200Hz. The timestamp 
information helps us to map image frame with 
position from where image has taken. The auto 
capture of images is controlled using accelerometer 
sensor. The noisy accelerometer data alone is 
capable enough to determine the motion status of the 
phone coarsely. The image capture is triggered only 
if the smart-phone is detected in stationery condition 
to avoid motion blur in images. Captured images and 
pose information are further used for 3D thermal 
mapping. 

3.2 Camera Calibration 

The cameras mounted on the FLIR thermal 

attachment are used in our experiments. Pin-hole 
camera model (Hartley et al., 2003) is used. The 
internal calibration process is performed offline 
using well known checker board methods as 
described by Zhang (Zhang, 2000). 

External calibration are derived from inertial and 
IMU sensors as described by Bhowmick et al., 
(2014). 

Optical and thermal cameras are apart with fixed 
distance and they are parallel. So there is a fixed 
translation between the cameras without any 
rotation. So the external calibration for the thermal 
image is derived by adding the fixed translation 
vector with the calibration matrix of optical camera. 

 

Figure 1: System Workflow. 

3.3 Dense Correspondence Estimation 

The dense stereo matching is vast and we refer to H. 
Hirschmuller (Hirschmuller and Scharstein, 2009) 
for a comparison of all existing methods. In fact, 
there are few relevant works available on real-time, 

Simultaneous RGB & 
Thermal data capture 

3D reconstruction 
using RGB images 

Superimpose thermal 
information using 
back projection 

Generate camera 
calibration matrix 
using IMU sensors 

Segment the heated region 
from thermal 3D cloud 

Generate the contour of 
all heated regions 

Calculate the dimensions 
from all heated regions 

contours 
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dense reconstruction using a monocular moving 
camera. 

Motion estimation by means of optical flow is a 
well-accepted and established methodology for 
providing dense sampling in time. The predominant 
way of estimating dense optical flow in today’s 
computer vision literature is by an approach of 
integrating rich descriptors into the variational 
optical flow setting as described in T. Brox (Brox 
and Malik, 2011). The main advantage of the 
selected approach is the ability to produce better 
results in a wide range of cases and also for large 
displacement. 

Large displacement optical flow is a variational 
optimization technique which integrates discrete 
point matches with continuous energy formulation. 
The final goal is to find the global minima of the 
energy and for that the initial guess of the solution 
has to very close to the global minima. The entire 
energy is globally minimized and the details of 
minimization procedure are studied in T. Brox (Brox 
and Malik, 2011). 

The n-view point correspondence generation is 
carried out using the GPU implementation as 
described by N. Sundaram (Sundaram et al., 2010). 
The point trajectories are generated between 
consecutive frames from the captured images. 
Optical flow has an effect of accumulating errors in 
the flow vector. So, a long trajectory suffers from 
this error and leading to a significant drift. Short 
trajectories are almost free from the drift error, but 
the triangulation process suffers due to small base 
line measurements. Hence, we have chosen 
consecutive frames that are having base line more 
than 5 cm and the trajectory length chosen as less 
than 8. 

3.4 Outlier Estimation 

Detecting outlier is a very primitive task before 
doing any further processing with the available 
information. Outlier detection process is very 
straight forward and it follows the epipolar 
constraints (Hartley et al., 2003) as shown in (4). 

The main advantage of having accurate camera 
calibration parameters helps us to generate an 
accurate fundamental matrix using equation (1) 
(Hartley et al., 2003). F ൌ K′ିሾܜሿ୶RKିଵ (1)
 

Where F is the fundamental matrix between an 
image pair, K and K′ correspond to the internal 
calibration matrix of the image pair, R and t 
represent the rotation matrix and translation vector 
of second image with respect to first image. 

Rotation matrix R୧୨ between camera pair i and j 
can be obtained using equation (2) (Hartley et al., 
2003) where R୧	 and R୨ denotes the rotation matrix 
of camera i and j respectively with respect to the 
global coordinate system. 
 R୧୨ ൌ R୨R୧ି ଵ (2)
 

The translation vector t୧୨ between a camera pair i 
and j is calculated using equation (3) where C୧ and C୨ 
denotes the absolute position for camera i and j 
respectively. ܜ୧୨ ൌ R୨ሺC୧ െ C୨ሻ (3)
 

The corresponding points ሺx, xᇱሻ ideally should 
follow the epipolar constraints as given in equation 
(4) (Hartley et al., 2003) where F denotes the 
Fundamental matrix. In reality, the value never 
becomes zero rather it goes very close to zero. So, 
any corresponding points in order to be considered 
as inlier, the value should be below to a threshold. 
Now, a particular threshold is not suitable for all 
cases, so there is a requirement of defining a 
dynamic threshold which can automatically be 
adjusted depending upon the captured scene. The 
threshold value is defined as dynamic and it gets 
calculated based on percentage of rejection. 
 x′Fx ൌ 0 (4)
 

Implemented optical flow algorithm is more error 
prone towards the image boundaries. Centre of the 
image is given higher weightage due to the sated 
reason and pixels are placed near to the image 
boundaries are removed as outlier. 

3.5 3D Model Reconstruction 

The 3D model generation is done in form of point 
cloud. The 3D point cloud is created using 
triangulation process. The approaches are quite 
similar as described by Dewangan et al., (2015). 
Each point is back projected onto the image plane to 
calculate the back projection error. Any 3D point 
with back projection error more than 2 pixels is 
considered as outlier. The camera calibration 
parameters from IMU sensors and dense point 
correspondence from optical flow estimation 
generates an accurate point cloud which does not 
require any further optimization. 

The whole scene reconstruction is done in an 
incremental way. Images are divided into small sets 
as mentioned above such that the trajectory length is 
not more than 8 images. Each subset is merged after 
triangulation to get the final reconstruction. 
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3.6 Opto-thermal Mapping 

Normally thermal cameras are required to calibrate 
the intensity in regular interval for correction for a 
gradual decrease in measured signal accuracy during 
operation. These operations are known as NUCs 
(Non-Uniformity Corrections). FLIR thermal 
attachment is of similar type and required regular 
calibration. 
 

 

Figure 2: Temperature assignment in 3D model. 

One of the great advantages of using FLIR is the 
placement of optical and thermal camera; both the 
sensors are very close and reproduce almost similar 
views. If any 3D point is visible in a RGB image 
almost all cases it is also visible in the corresponding 
thermal image. We measure the displacement 
between these two sensors and incorporate the 
measurement into calibration. The thermal 
annotation of every point is almost error free due to 
very short base line between optical and thermal 
camera. 

Thermal information is assigned on the optical 
3D point cloud by applying back projection. Each 
3D point from the point cloud is back projected 
using equation (5) (Hartley et al., 2003) to the 
corresponding 2D thermal image plane to determine 
the coordinate on the 2D thermal image plane and 
determines the temperature from 2D coordinate 
location of thermal image. The entire process is 
explained in figure 2. 
 x ൌ KሺRX  ሻ (5)ܜ
 

Where X and x represents the 3D and 2D point 
respectively. 

3.7 Heat Measurement 

Thermal 3D point cloud is the representation of 
thermal profile in 3D space. The visualization is 
only the annotation of temperature in form of colour 
as shown in figure 3. The temperature values are the 
main differentiator in the entire 3D model. Heated 
regions are segmented using the temperature profile. 
All segmented point cloud are stored and analysed 
separately. Point cloud library (PCL) is an open 
source tool for cloud processing and this is been 
extensively used in our implementation. Contour of 
each segmented heat cloud is determined and the 
area or volume is calculated from the contour. 

4 RESULTS 

4.1 Test Environment 

Our test environment is iPhone 5s with FLIR 
thermal attachment. The entire framework is 
implemented and tested as an application. 

The accuracy of the proposed system is entirely 
depends on reconstruction accuracy which is intern 
dependent on the output of the optical flow. We 
have incorporated several precaution procedures to 
make the system robust enough for daily usage. The 
accuracy of the flow vector is less than a pixel and 
so the estimated error is in few millimetre ranges for 
bigger object like car as shown in the example of 
figure 4. The presented system is probably the first 
such mobile application as per our knowledge which 
is capable of measuring area or volume of heat 
automatically, so unable to benchmark with similar 
application. Costly thermal cameras are used in 
industries which are capable of measuring heated 
area or volume with greater accuracy. 

We have tested the application in normal lighting 
condition in both indoor and outdoor situations and 
found satisfactory result. 

4.2 Outputs 

We present two sample heat measurements in 
different environment to demonstrate the usability. 

Figure 3 shows a sample 3D thermal point cloud 
of a mug containing hot water. The presence of 
water is only detectable through thermal image. The 
testing is performed using 11 images with two 
iterations. The 3D thermal cloud shows the structure 
of the mug along with the hot region. The idea is to 
measure the volume of hot water present inside. The 
mug is segmented by the knowledge of its 
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cylindrical shape. The segmentation finally is used 
to detect the dimension of the mug. Mostly heated 
region is extracted from the temperature and the 
dimension is calculated from 3D structure. 
 

 

Figure 3: Volumetric Measurement: Top to bottom shows 
the captured RGB and thermal image, segmented 3D 
thermal model, detected dimension of the heated region 
with maximum temperature. 

Figure 4 represents thermal profile of a car just 
after parking in an indoor parking lot. The 
registration number plates on the images are 
corrupted intentionally. Thermal profile on the 
images shows the tires and engine inside the bonnet 
is the hottest zones as expected. We have measured 
the surface areas of the heated zones. Any 
abnormality found in the area of the heated region 
would eventually help automobile companies to 
predict or understand the fault in the engine or any 
other part of a car. 

The presented samples show the capabilities to 
perform a heated area or volumetric analysis in a 
non-invasive way. Heat measurement is typically 
depends on the heat flow inside the container and 
type of material used for the container. We observe 
the similar characteristics through our experimental 
experiences. Thermo-flax is typically well known 

for locking the heat inside the container for longer 
time so the temperature gradient is not prominent or 
distinct if we perform experiments with hot water 
inside of a thermo-flax. 
 

 

Figure 4: Area Measurement: Top to bottom: RGB and 
thermal image, detected hot zones with covered area and 
maximum temperature in each heated region on the 
thermal 3D model. 

4.3 Execution Time 

Execution time is highly dependent on 3D 
reconstruction time and number of images that are 
used for testing. We could able to process a single 
image roughly between 2 to 2.5 seconds. The 
execution time for the samples presented in figure 3 
and 4 are 23 seconds and 18 seconds respectively. 

5 CONCLUSIONS 

We presented an approach for dense 3D thermal 
mapping for heat monitoring along with 
area/volumetric heat measurement using smart-
phone and FLIR thermal attachment. 3D 
reconstruction is performed with RGB image and 
thermal overlapping on 3D model is done to create a 
3D thermal structure. Heated regions are segmented 
and structure of heated regions is analysed to 
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calculate the contours. Area / volume of the heated 
regions are calculated from the corresponding 
contours. Our results show the capability of such 
solution which can be applied in other domain for 
any specific purpose. The main advantage of such a 
system is that, it uses only passive sensors for 
measurement, so it can be deployable in outdoor 
environment. We also analysed computation time 
and this shows the solution runs in near real-time. 

The heated area or volume measurements with 
closed container show different heat profile. The 
heat flow also has a great effect on heat profile. 
These types of works are considered as further 
improvement of the entire system. 
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