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Abstract: Global warming, environmental pollution, and fuel shortage are currently major worldwide challenges. Eco-
routing is one of several tools that attempt to address this challenge by minimizing network-wide vehicle fuel 
consumption and emission levels. Eco-routing systems select the most environmentally friendly route. The 
subpopulation feedback eco-routing (SPF-ECO) algorithm that is implemented in the INTEGRATION 
software can produce a reduction in fuel consumption levels by approximately 17%. However, in some cases, 
due to delayed updates or the lack for updates, its performance degrades. In this paper, we propose the ant 
colony based eco-routing technique (ACO-ECO), which is a novel feedback eco-routing and cost updating 
algorithm to overcome these shortcomings. In the ACO-ECO algorithm, real-time performance measures on 
various roadway links are shared. Vehicles build their minimum path routes using the latest real-time 
information to minimize their fuel consumption and emission levels. ACO-ECO is also able to capture 
randomness in route selection, pheromone updating, and pheromone evaporation. The results show that the 
ACO-ECO algorithm and SPF-ECO have similar performances in normal cases. However, in the case of link 
blocking, the ACO-ECO algorithm reduces the network-wide fuel consumption and CO2 emission levels in 
the range of 2.3% to 6.0%. It also reduces the average trip time by approximately 3.6% to 14.0%. 

1 INTRODUCTION  

The environmental and economic impact of the 
transportation sector has necessitated research in 
recent years because the transportation sector is an 
important source of the major current challenges, 
including: global warming, energy and fuel shortage, 
and environmental pollution.  In 2008, the U.S. 
Department of Energy mentioned in (U.S. Dept. 
Energy 2008) that approximately 30% of the fuel 
consumption in the U.S. is consumed by vehicles 
moving on the roadways. In addition, about one-third 
of the U.S. carbon dioxide (ܱܥଶ) emissions comes 
from vehicles (U.S. E.P Agency  2006). The 2011 
McKinsey Global Institute report estimated savings 
of “about $600 billion annually by 2020” in terms of 
fuel and time saved by helping vehicles avoid 
congestion and reduce idling at red lights or left turns.  

From the drivers’ perspective, drivers usually 
select routes that minimize their costs such as travel 
time or travel distance.  However, the minimum time 
or distance routes do not necessarily minimize the 
fuel consumption or emission levels (Barth, 

Boriboonsomsin et al. 2007, Ahn and Rakha 2008). 
There are many cases where the minimum time routes 
result in higher fuel consumption levels such as high-
speed routes; despite the time reduction that could be 
achieved, the higher speed routes may produce higher 
fuel consumption levels due to the higher vehicle 
speeds, route grades or longer distance. Also, shorter 
distance routes can result in higher fuel consumption 
if the speed is too low or if the route has many 
intersections that result in numerous deceleration and 
acceleration manoeuvres. Selecting the minimum time 
or minimum distance routes is simple compared to 
finding the minimum fuel consumption routes. The 
fuel consumption depends on many parameters such as 
distance, travel time, route grades, congestion level, 
vehicle characteristics, and the driving behaviour.  

Researchers have proposed several models for the 
estimation of vehicle fuel consumption and emission 
levels. These models can be classified into two 
classes; macroscopic models (Brzezinski 1999, ARB 
2007) and microscopic models (Barth 2000, Rakha, 
Ahn et al. 2004). In macroscopic models, the average 
link speeds are used to estimate the fuel consumption 
and emission levels for each link. This class is 
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characterized by its simplicity but has a limited 
accuracy because it ignores the speed and the 
acceleration impacts on fuel consumption levels. 
Meanwhile, microscopic models overcome this 
limitation using instantaneous speed and acceleration 
levels to estimate the fuel consumption and emission 
levels. Consequently, microscopic models provide 
higher accuracy at the cost of model complexity.  

Eco-routing (Ericsson, Larsson et al. 2006) was 
developed to select the route that minimizes vehicle 
fuel consumption levels between an origin and 
destination. In a feedback system, Eco-routing 
depends on the vehicle and route characteristics as 
well as its ability to report this information to a traffic 
management center (TMC) that updates the routing 
information, rebuilds the routes, and sends the new 
routes to vehicles traversing the network. 

Eco-routing is a promising navigation technique 
because it results in a significant reduction in fuel 
consumption and emission levels. However, through 
some improvements, the Eco-routing system can be 
further enhanced to produce additional fuel 
consumption and emission savings.  

In this paper, we first study the Eco-routing 
performance and show that in some cases its 
performance may not be optimum. Subsequently, 
based on this, we propose an ant colony Eco-routing 
(ACO-ECO) algorithm that employs the ant colony 
optimization algorithms (Dorigo and Birattari 2010). 
Due to the major differences between the ant colony 
and the transportation network, the ant colony 
algorithms are not directly applied to select the best 
routes, however, they are used to optimize the route 
selection process by optimizing the route selection 
updating. Finally, we compare the proposed approach 
to the subpopulation feedback Eco-routing algorithm 
(SPF-ECO) (Rakha, Ahn et al. 2012). 

The remainder of this paper is organized as 
follows. An overview of the Eco-routing literature 
and the subpopulation feedback assignment Eco-
routing (SPF-ECO) algorithm is introduced. This is 
followed by outlining the main problems with the 
SPF-ECO algorithm. Subsequently, an overview of 
the ant colony optimization is presented. After that, 
the proposed approach (ACO-ECO) is described. 
Subsequently, the simulation results that compare the 
ACO-ECO to the SPF-ECO are presented and 
discussed. Finally, the study conclusions are presented 
together with recommendations for further research. 

2 ECO-ROUTING LITERATURE 

In 2006, Ericsson et al. proposed the  Eco-routing  in 

(Ericsson, Larsson et al. 2006) where they presented 
a comprehensive study that provides optimal route 
choices for lowest fuel consumption. The fuel 
consumption measurements are made through the 
extensive deployment of sensing devices in the street 
network in the city of Lund, in Sweden. This study 
showed that about 46% of the trips were not made on 
the most fuel-efficient route. And approximately 8% 
of the fuel consumption could be saved on average 
using the most fuel-efficient routes. In 2007, Barth et 
al. (Barth, Boriboonsomsin et al. 2007) combined 
sophisticated mobile-source energy and emission 
models with route minimization algorithms to 
develop navigation techniques that minimize energy 
consumption and pollutant emissions. They 
developed a set of cost functions that include the fuel 
consumption and the emission levels for the road 
links. In 2007, Ahn and Rakha (Ahn and Rakha 2007) 
showed the importance of route selection on the fuel 
consumption and environmental pollution reduction, 
by demonstrating through field tests that an emission 
and energy optimized traffic assignment could reduce ܱܥଶ emissions by 14 to 18%, and fuel consumption 
by 17 to 25% over the standard user equilibrium and 
system optimum assignment. Later in 2012, Rakha et 
al. (Rakha, Ahn et al. 2012), introduced a stochastic, 
multi-class, dynamic traffic assignment framework 
for simulating Eco-routing using the 
INTEGRATION software (Rakha Last Access  Feb. 
2016). They demonstrated that fuel savings of 
approximately 15% using two scenarios were 
achievable. In (Boriboonsomsin, Barth et al. 2012), 
the authors developed an Eco-routing navigation 
system that selects the fuel-efficient routes based on 
both historical and real-time traffic information. 

2.1 Subpopulation Feedback 
Eco-routing 

In this section, we will describe in details the 
subpopulation feedback assignment Eco-Routing 
SPF-ECO (Rakha, Ahn et al. 2012) implemented in 
the INTEGRATION software. INTEGRATION uses 
the VT-Micro model (Rakha, Ahn et al. 2004) for 
calculating the fuel consumption rate (ݐ)ܨ in ݏ/ܮ for 
each vehicle as shown in Equation (1). 

(ݐ)ܨ =
۔ۖۖەۖۖ
ۓ ௜,௝ܮቌ෍෍݌ݔ݁ ଷ	ܽ௝	௜ݒ

௝ୀଵ
ଷ
௜ୀଵ ቍ 					݂݅		ܽ ≥ ݌ݔ݁				0 ቌ෍෍ܯ௜,௝	ݒ௜	ܽ௝	ଷ

௝ୀଵ
ଷ
௜ୀଵ ቍ 					݂݅		ܽ < 0	

 

(1)
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Here ܮ௜,௝ are model regression coefficients at 
speed exponent ݅ and acceleration exponent		݆, ܯ௜,௝ 
are model regression coefficients at speed exponent ݅ 
and acceleration exponent		݆,		 ݒ is the instantaneous 
vehicle speed in (km/h), and ܽ is the instantaneous 
vehicle acceleration (km/h/s).   

An important characteristic of INTEGRATION is 
its time granularity which is a deci-second resolution. 
This granularity enables it to accurately calculate the 
fuel consumption and emissions based on 
instantaneous speed and acceleration levels.   

In SPF-ECO, when the vehicle enters a new link. 
The vehicle’s fuel consumption and emission levels 
are reset to zero for the new link. Subsequently, the 
SPF-ECO algorithm periodically calculates the fuel 
consumption and emissions for each vehicle using 
Equation (1). For each vehicle, the estimated fuel 
consumption and emission levels are accumulated 
until the vehicle traverses the link. When a vehicle 
leaves a link, it submits its fuel consumption cost for 
this link to the traffic management center (TMC), 
which updates the link fuel consumption using some 
smoothing techniques. Subsequently, 
INTEGRATION periodically rebuilds the routes for 
each origin-destination pair at a frequency specified 
by the user. Subsequently, vehicles use the latest 
paths when looking identifying the next link along the 
route. This mechanism has three main shortcomings 
that are discussed in this section. 

2.1.1 Fixed Cost for Empty Links 

Assume that a link ܮ௜ was loaded with a high traffic 
flow that resulted in congestion on this link. This 
congestion will result in a lower speed and increasing 
the acceleration/deceleration noise. Consequently, 
increasing the fuel consumption and emission levels 
on this link. At a certain time, the SPF-ECO system 
will re-route vehicles to another route that reduces the 
route cost. Since the vehicles on ܮ௜	have been exposed 
to the congestion, the link fuel consumption will be 
very high after these vehicles leave the link. As the 
system re-routes vehicles to other routes, the link will 
not be loaded by vehicles until the routing 
information changes. Consequently, the cost of ܮ௜	will continue to be high while it is actually 
decreasing. This lag in the system is typical of any 
feedback control system and will result in vehicles 
using sub-optimal routes. Consequently, increasing 
the network-wide fuel consumption levels. 

2.1.2 Fixed Cost for Blocked Links 

A reverse situation can take place in case of blocking 

a link (for example due to an incident).  In this case 
the vehicles that were not blocked will have a low fuel 
consumption level, and will report it when leaving the 
link. The SPF-ECO will maintain a low cost for this 
link as long as the link is blocked since there is no 
vehicle leaving the link to update the information on 
this link. Consequently, the SPF-ECO will continue 
to use this route and load more vehicles to this link 
resulting in higher fuel consumption and emission 
levels. 

2.1.3 Delayed Updates 

The third point is that the updates are only sent when 
a vehicle leaves a link. For long links and/or low-
speed links, the link travel time is relatively long. 
Consequently, the information used to update the 
SPF-ECO routing might be obsolete and may not 
reflect the current state of the link.  This inaccurate 
routing information might result in incorrect routing 
decisions and hence increase the fuel consumption 
level. 

In the proposed approach, we solve these 
problems by utilizing ant colony techniques to update 
the link cost function (the fuel consumption level in 
this application).  

3 ANT COLONY OPTIMIZATION 

Ant colony optimization (Dorigo and Birattari 2010) 
is a branch of the larger field of swarm intelligence 
(Blum and Li 2008). Swarm intelligence studies the 
behavioural patterns of social insects such as bees, 
termites, and ants in order to simulate these processes. 
Ant colony optimization is a meta-heuristic iterative 
technique inspired from the foraging behaviour of 
some ant species. In the ant colony, ants walking to 
and from a food source deposit a substance called 
pheromone on the ground. In this way, ants mark the 
path to be followed by other members of the colony. 
The shorter the path, the higher the pheromone on that 
route, and consequently, the preferable this route is. 
The other ant colony members perceive the presence 
of pheromone and tend to follow paths where 
pheromone concentration is higher. Ant colony 
optimization exploits a similar mechanism for solving 
some optimization problems. 

In this paper, we use the same ant colony concept 
to optimize the fuel consumption and emission cost 
for a transportation network. Vehicles are employed 
as artificial ants, the pheromone is considered to be 
the inverse of the fuel consumption cost for each link. 
Each artificial ant periodically deposits the 
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pheromone by updating the fuel consumption cost for 
the link it is traversing.   

There are many variants of ant colony 
optimization. However, all of them share the same 
idea described earlier. The main steps in each 
iteration are: 1) construct the solutions, 2) conduct an 
optional local search step, and 3) update pheromones. 
The ant colony system does not specify how these 
three steps are scheduled and synchronized, the 
system leaves these decisions to the algorithm 
designer (Blum 2005). In the solution construction 
step, artificial ants construct a feasible solution and 
add it to the solution space. The system starts with an 
empty solution space, the ants start at the nest, and 
each ant probabilistically chooses a solution ݁௜	between a set of paths ሼ݁ଵ, ݁ଶ, … ݁௞ሽ to reach the 
food source. To choose between these paths, each ant 
uses the probability ௜ܲ computed in Equation (2). 

௜ܲ = 	 ߮∑ ߮௝௞௝ୀଵ 		 (2)

Where ߮௜	is the amount of pheromone on path	݁௜. 
This probabilistic behavior for route selection 
guarantees the exploration of more feasible solutions 
and avoids converging to local ones.  

The pheromone updating takes place while the 
ants are moving, where they deposit the pheromone 
on their paths. Also, as time passes, the pheromone 
evaporates based on an evaporation factor		ߩ. 
Subsequently, after each iteration, the phenome is 
updated according to Equation (3). ߮௜ = (1 − ௜߮	(ߩ +෍߮߂௝௠

௝ୀଵ 	 (3)

Where ݉	 is the number of ants that traverse a 
link, and ߮߂௝	is the amount of pheromone deposited 
by ant	݆. After the solution construction and before 
the pheromone updating, the local search step can be 
carried out to improve the solution. This step is 
optional and problem specific. 

In the proposed approach, we utilize these steps to 
achieve our objective of minimizing the fuel 
consumption and consequently the pollutant 
emissions. 

4 ANT COLONY BASED 
ECO-ROUTING (ACO-ECO) 

This section presents the proposed approach (ACO-
ECO) and describes its operation in details.  In ACO-
ECO, the ant colony techniques will be applied to 

optimize the fuel consumption and emissions in the 
transportation network. The vehicles are the artificial 
ants, and the pheromone is the inverse of the fuel 
consumption. Because of the major differences 
between the ant colony system and the transportation 
network, we introduce some variations to ant colony 
techniques to tailor it to the specific application. The 
ACO-ECO uses a number of steps that are described 
here. 

4.1 Initialization 

This phase initializes the cost associated with the 
various links. Because initially the links are free, the 
cost of each link is initialized to the free flow speed 
fuel consumption using equation (1).  

4.2 Route Construction  

This phase starts directly after the initialization phase 
and is repeated periodically and was defined to be 60 
seconds in this application. In this phase, the ACO-
ECO builds the minimum path based on the cost of 
each link. When the vehicle leaves a route link, it 
searches the tree to find its next link.   

The probabilistic route selection (introduced by 
Equation (2)) is an important mechanism in ant 
colony algorithms to search all the available routes. 
However, this mechanism as described in Equation 
(2) cannot be applied in vehicular route selection 
because it is not realistic. As mentioned earlier, 
drivers try to select routes that minimize their cost, 
while this probabilistic selection assigns a random 
route to each vehicle based on the route’s pheromone 
level (route cost) relative to that for all other routes.  
Using this equation, and due to the randomness, a 
vehicle might be assigned a very high-cost route 
which is not realistic, and is not consistent with the 
driver behaviour when selecting routes. 
Consequently, it will result in a higher fuel 
consumption level. So, we use another technique to 
introduce some limited randomness into the route 
selection mechanism while maintaining the error 
within a given predefined margin. An error factor is 
configured for the network. This error factor (α) is 
used to add some error to the cost of the links, 
subsequently to the tree building and the route 
selection algorithms. The error value added to the link 
cost is a randomly selected point from the standard 
normal distribution	ܰ(0, σ), where σ is the standard 
deviation and		σ = 	α	.  In this way, we .ݐݏ݋ܿ_݈݇݊݅
have a grantee that 95.45% of the link costs are 
within	(1 ± 2α).  Which means that by .ݐݏ݋ܿ_݈݇݊݅
controlling the error factor ߙ we can control the 
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randomness level within the route selection 
algorithm. 

4.3 Pheromone Update 

In this phase, two updating processes take place. 
Pheromone deposition where ants deposit pheromone 
to indirectly communicate the route preference to the 
following ants. And the pheromone evaporation, 
where the pheromone level on each link decays with 
time.  

4.3.1 Pheromone Deposition 

In the vehicular network, each vehicle sends the cost 
it experienced on a link to the TMC, and 
consequently, the link cost is updated in the routing 
algorithm. In the SPF-ECO, the vehicles only submit 
the link cost when leaving the link. The advantage of 
this method is the small number of updates being sent 
on the network and consequently the low network 
overhead. But on the other hand, it results in delayed 
updates and fixed cost for empty or blocked links as 
mentioned earlier.  

In contrast to the SPF-ECO, the ACO-ECO 
overcomes these issues by enabling vehicles to 
submit multiple updates while traveling the link. 
These updates can be sent periodically either time-
based or distance-based. Using time-based updating, 
the vehicles have a predefined maximum updating 
interval		ܶ. The vehicles should send their estimation 
for the link cost each ܶ seconds. This cost updating 
method can control the number of updates that are 
sent over the network. However, it has an important 
drawback; for low speed links or blocked links, the 
vehicles will send many unnecessary updates. 
Another drawback is for short length links and/or 
high speed links, this time interval ܶ	may be longer 
than the link traversal time. Consequently, no updates 
would be sent for these links. This drawback can be 
overcome by setting ܶ	 to a value that is shorter than 
the minimum link travel time in the network, 
however, this will result in many unnecessary updates 
for long links or low speed links.   

Another way to submit the link cost updates is the 
distance based updating, where the vehicles should 
submit an update every distance ܦ it traverses on the 
link. In contrast to the time based updating, the 
distance based method limits the number of updates 
for each link. But on the other hand, for blocked links, 
the updates will not be sent and consequently, the cost 
will be fixed for blocked links resulting in the same 
problem as the SPF-ECO algorithm. 

Consequently,    a    compromise     approach     is 

proposed, which combines both the time- and 
distance-based updating to take advantage of the 
merits of each approach. Also, we used the end of the 
link updating where the vehicle sends an update when 
it leaves the link. To estimate the link fuel 
consumption, the ACO-ECO algorithm defines the 
maximum time interval ܶ and the maximum 
distance	ܦ to report conditions. When any of these 
conditions is met, the vehicle submits a new update 
quantifying its estimation for the overall link cost, and 
then resetting its time and distance counter. To 
calculate the fuel it consumed, the ACO-ECO 
periodically estimates the fuel consumption rate using 
the VT-Micro model in Equation (1). And then uses 
Equation (4) to accumulate the total fuel consumed in 
the previous interval.   ܥ = ෍(ݐ)ܨ	.		ݐ∆௧ 	 (4)

Where (ݐ)ܨ is the VT-Micro model instantaneous 
fuel consumption rate, and ∆ݐ	is the fuel consumption 
calculation interval which is typically 0.1 seconds in 
INTEGRATION. Whenever either ܶ or ܦ is reached, 
the ACO-ECO estimates the overall link fuel 
consumption ܥ௟ as shown in Equation (5). ܥ௟ = ܥ . ݀ܮ 		 (5)

Where ݀	is the distance traveled in the previous 
period in meters		(݀ ≤  the link length in	ݏ݅	ܮ and ,(	ܦ
meters. This calculation assumes that the conditions 
on the remainder of the link will continue as was 
observed by the vehicle. 

4.3.2 Pheromone Evaporation 

To overcome the fixed cost problem for empty links, 
the cost of these links must be updated when the TMC 
has not received updates for a period of time. In an 
ant colony, if no pheromone is deposited for a long 
time, the link pheromone level will decay towards 
zero due to the evaporation, this is an indication of the 
low preference for that route. In a transportation 
network, not receiving an update about a link for a 
long time, indicates that this link is empty. 
Consequently, the cost of this link must be updated 
toward the free flow speed cost		(	ܥ௙௙௟). So, in this 

case, the TMC updates the cost as follows. First, it 
finds the minimum updating interval (࢒࣎) for the link. 
This value is the minimum of three parameters; the 
updating interval (T), the link travel time at free-flow 
speed, and the updating interval in case of distance 
based updating. These parameters are shown in 
Equation (6). The rationale is that after receiving an 
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update, the next vehicle will send an update in case of 
one of three situations; it reaches its updating 
interval	ܶ, it reaches its updating distance, or it ends 
the link. ߬௟ = 	݉݅݊ ቆܶ, ௟௙ܵ௙௟ܮ , 	௙ܵ௙௟ቇܦ (6)

Where ܶ  is the updating interval, ܦ is the updating 
distance, ࢒ࡸ	is the link length and ࢒ࢌࢌࡿ	is the free-flow 

speed of the link. 
Subsequently, the ACO-ECO algorithm estimates 

the overall link cost ܥ௟	as shown in Equation (7). This 
evaporation technique results in exponential 
increasing or decreasing in the link cost towards the 
free-flow speed cost. ܥ௟ = ௟ܥ − ௟߬ݐ∆ 	ቀܥ௟ − 	௙௙௟ቁܥ	 (7)

Where 	ܥ௙௙௟	is the free-flow speed fuel 

consumption estimate for the link, and ∆ݐ	 is the 
evaporation interval after which the evaporation 
process should be performed for the link cost if no 
updates were received. 

5 SIMULATION RESULTS 

In this section, we compare the proposed approach 
ACO-ECO to the SPF-ECO for different traffic rates 
using the INTEGRATION software (Rakha Last 
Access  Feb. 2016). The network shown in Figure 1 
is used for comparing the two approaches.   

 

Figure 1: Road Network used in Simulation. 

The network consists of 10 zones with the main 
highway (center horizontal road) between zone 1 and 
zone 2, and two arterial roads (side roads). The 
network size is 3.5 km x 1.5 km. The free-flow speeds 
are 110 and 60 km/h for the highway and arterial 
roads, respectively. The highway has 3 lanes in each 
direction while the other roads have only 2 lanes in 
each direction. Regarding the origin-destination 
traffic demands (O-D demands), we use 5 different 
scenarios, as shown in Table 1. The main traffic 
stream is the traffic between zone 1 and 2 for each 

direction, the side traffic streams are between each 
two other zone pairs. This traffic rate is generated for 
half an hour, and the simulation runs for 4500 seconds 
to ensure that all the vehicles complete their trips. 

Table 1: Origin-Destination Traffic Demand Configuration. 

 Main 
Demand 
(Veh/h) 

Secondary 
Demand 
(Veh/h) 

Total no.  
vehicles 
(Veh) 

1 500  50  1600 
2 1000  75  2650 
3 1500  100  3700 
4 2000  125  4750 
5 2500  150 5800 

The comparison is done in two cases; the normal 
operation (no incident) case where there is no link 
blocking, and in the case of blocking due to an 
incident (link blocking case). For each case, we run 
each traffic assignment technique (ACO-ECO, and 
SPF-ECO) 20 times with different seeds to consider 
the output variability due to randomization. This is 
repeated for each of the five O-D demand 
configurations. The error factor is set for both 
techniques to 1%. For the ACO-ECO parameters, the 
maximum update interval ܶ is 180 seconds, and the 
maximum update distance ܦ is 750 meter.   

5.1 Normal Operation Scenarios 

For the normal operation scenarios, the results show 
no significant differences between the ACO-ECO and 
the SPF-ECO for average fuel consumption levels, as 
shown in Figure 2. The figure also shows that as the 
traffic demand increases, the average fuel 
consumption and the average trip time increases due 
to the higher congestion levels. Moreover, the results 
show the same behaviour for the average trip time, 
the	COଶ	and ܰ ௫ܱ emissions levels, where ACO-ECO 
has no significant effect on any of them. 

 

Figure 2: Average Fuel Consumption (L/Veh). 

Regarding the ܱܥ emission, the ACO-ECO has a 
higher emission level as shown in Figure 3. 
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Figure 3: Average Vehicle CO Emission. 

5.2 Incident Scenarios 

To simulate the link blocking in the network, we 
configured an incident on the highway from zone 1 
and 2 at point (A) marked in Figure 1, the incident 
does not affect the other direction from zone 2 to zone 
1. This incident occurs 10 minutes after starting the 
simulation and blocks 50% of the highway (1.5 lanes) 
for 5 minutes. Then the blocking is reduced to 25% of 
the highway for the next 10 minutes, then the incident 
is completely removed and the highway works with 
its full capacity.   

Figure 4 shows the fuel consumption in case of an 
incident. The figure demonstrates that the ACO-ECO 
algorithm reduces the average fuel consumption level 
for all traffic demands. The reduction ranges between 
2.3% to 6% compared to the SPF-ECO. 

 

Figure 4: The Average Fuel for the Link Blocking Scenario. 

These results show the ability of ACO-ECO to 
reduce the fuel consumption level and the trip time in 
addition to all the time-related measurements. ACO-
ECO also succeeds in reducing the pollutant 
emissions in most cases. 

Table 2 shows the percentage reduction attributed 
to the ACO-ECO for both fuel consumption, different 
emissions, and different time-related measurements. 
For instance, the fuel consumption is reduced by 6% 
in the moderate traffic scenario and this reduction 
ratio decreases as the traffic demand increases. This 
also applies for the COଶ emissions and the time-
related measurements. The reason is that as the traffic 
demand increases, the congestion increases and thus 
affects all the alternative routes, which limits the 
ACO-ECO ability to recover from the congestion. 

To find the significance of the reduction made by 
ACO-ECO, analysis of variance (ANOVA) is 
employed to compare means of ACO-ECO to that of 
SPF-ECO.  
The hypotheses are:-  
• Null hypothesis: the means for both algorithms 

are equal (ܪ଴:	ߤଵ =  (ଶߤ	
• The alternate hypothesis: the means are not 

equal		(ܪ௔ ∶ ଵߤ ്  .(ଶߤ
We applied this ANOVA for the fuel consumption 

results in the lowest traffic rate. Given this scenario 
has the lowest reduction in fuel consumption. The 
result shows that p-value is less than 0.0001. Which 
gives a strong evidence to reject the null hypothesis.  
And shows the significance of the reduction mad by 
the ACO-ECO. And, since the lowest reduction level 
is significant, we can conclude that the higher levels 
for other configuration are also significant. 

Table 2 also, shows some rare cases where the 
some emissions increase in due to the use of ACO-
ECO. For instance, CO and NOx emissions increased 
in case high traffic rates. 

6 CONCLUSIONS 

We propose an ACO-ECO traffic assignment 
technique  that  is   inspired   from   the   ant   colony 

Table 2: Percent of Reduction Made by ACO-ECO over SPF-ECO in case of Link Blocking. 

Traffic 
rate Fuel CO2 CO HC  NOX Trip 

time
Stop 
delay

Accel. 
noise 

Accel./Decel. 
delay 

500 2.37 2.29 3.75 3.71 1.60 3.64 4.04 1.87 12.02 
1000 3.72 3.86 1.05 1.73 0.91 8.83 19.04 4.90 21.97 
1500 6.06 6.42 -1.51 0.38 0.24 14.98 27.68 5.28 25.43 
2000 4.57 4.75 0.49 2.19 0.11 12.66 19.75 4.91 16.84 
2500 3.09 3.32 -2.10 -0.58 -0.75 7.11 15.39 1.61 11.34 
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optimization algorithm. ACO-ECO attempts to 
enhance the SPF-ECO algorithm that is currently 
implemented in the INTEGRATION software. These 
enhancements include cases in which the links are 
blocked or no vehicles traverse the link.  ACO-ECO 
employs the ant colony techniques to minimize the 
fuel consumption and emission levels. It uses the 
route construction to build routes and assign them to 
vehicles, it also applies pheromone deposition and 
pheromone evaporation to update the route link costs. 
These ant colony techniques are customized to be 
suitable for transportation networks. In the case of 
normal operation, the ACO-ECO performance is 
similar to the SPF-ECO. While for link blocking 
scenarios, the ACO-ECO reduces the fuel 
consumption, average trip time, stopped delay, and 
most of the emission levels. An important advantage 
of the ACO-ECO is its flexibility; where its 
parameters (error factor, maximum updating time, 
maximum updating distance, and evaporation 
interval) can be tuned in order to achieve better 
performance. The fine tuning and testing of these 
parameters are an important future extension of the 
work presented in this paper.  

Another future research is to study the effect of 
each of the new updating methods on the network 
traffic and studying the trade-off between the 
reduction in the fuel consumption and emission levels 
and the communication network traffic load. The 
market penetration rate is an effective and important 
parameter that should be studied. Also, it is important 
to study the effect of the communication network on 
the ACO-ECO performance.  
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