
A FLOSS License-selection Methodology for Cloud Computing
Projects

Robert Viseur
CETIC, Rue des Frères Wright, 29/3, 6041 Charleroi, Belgium

UMONS, Faculty of Engineering, Rue de Houdain, 9, 7000 Mons, Belgium

Keywords: Cloud Computing, Saas, Paas, Iaas, PaaSage, Governance, License, FLOSS, Open Source.

Abstract: Cloud computing and open source are two disruptive innovations. Both deeply modify the way the
computer resources are made available and monetized. They evolve between competition (e.g. open source
software for desktop versus SaaS applications) and complementarity (e.g. cloud solutions based on open
source components or cloud applications published under open source license). PaaSage is an open source
integrated platform to support both design and deployment of cloud applications. The PaaSage consortium
decided to publish the source code as open source. It needed a process for the open source license selection.
Open source licensing scheme born before the development of cloud computing and evolved with the
creation of new open source licenses suitable for SaaS applications. The license is a part of project
governance and strongly influences the life of the project. In the context of the PaaSage European project,
the issue of the open source license selection for cloud computing software has been addressed. The first
section of the paper describes the state of the art about open source licenses including the known issues, a
generic license-selection scheme and the automated source code analysis practices. The second section
studies the common choices of licenses in cloud computing projects. The third section proposes a FLOSS
license-selection process for cloud computing project following five steps: (1) inventoring software
components, (2) selecting open source license, (3) approving license selection (vote), (4) spreading practical
details and (5) monitoring source code. The fourth section describes the PaaSage use case. The last section
consists in a discussion of the results.

1 INTRODUCTION

Licenses are thought to be selected at the beginning
of the project with no posterior change (Fogel,
2005). They give the rules of the collaboration
which everybody agrees to if participating in the
project. To some extent, they provide a sort of
“constitution” or legal agreement of how the project
is developed and distributed. The selection of a
license is particularly important in the context of
projects involving many partners. The terms of free
and open source licenses are widely considered as a
part of the open source governance mechanisms
(Markus, 2007).

Cloud computing and open source are two
disruptive innovations (Marston et al., 2011; Onetti
and Capobianco, 2005; Ven et al., 2007). Both
deeply modify the way the computer resources
(applications, storage,…) are made available and
monetized. They evolve between competition (e.g.
open source software for desktop versus SaaS

applications) and complementarity (e.g. cloud
solutions based on open source components, open
source software demonstrating open standards for
cloud computing, pooling of development resources
between industrial actors through open source
projects or cloud applications published under open
source license by editors).

PaaSage is “an open source integrated platform
to support both design and deployment of Cloud
applications, together with an accompanying
methodology that allows model-based development,
configuration, optimisation, and deployment of
existing and new applications independently of the
existing underlying Cloud infrastructures”
(paasage.org). The PaaSage is an ongoing project. It
received research funding from the European
Union's 7th Framework Programme.

A FLOSS license-selection methodology for
cloud computing projects was created and applied to
the selection of the FLOSS license for the PaaSage
European project.

Viseur, R.
A FLOSS License-selection Methodology for Cloud Computing Projects.
In Proceedings of the 6th International Conference on Cloud Computing and Services Science (CLOSER 2016) - Volume 1, pages 129-136
ISBN: 978-989-758-182-3
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

129

The paper is organized in five sections. The first
section describes the state of the art about open
source licenses, including known issues, a generic
license-selection method and automatic source code
analysis practices. The second section studies the
common choices of license in cloud computing
projects. The third section proposes a FLOSS
license-selection process for cloud computing
project. The fourth section describes the PaaSage
use case. The fifth section consists in a discussion of
the results and a presentation of the perspectives.

2 FLOSS LICENSES

2.1 Families of FLOSS Licenses

Software licenses can be roughly divided in three
categories: the open source licenses, involving the
source code sharing, the proprietary licenses,
limiting the rights to the profit of software editors,
and the hybrid licenses, providing protection for
intellectual property but wide access to source code
(de Laat, 2005; Muselli, 2007; West, 2003). Free
and open source projects (also said FOSS or
FLOSS) are covered by specific licenses that
warrant the free and open source nature of software
as defined by the Free Software Foundation (fsf.org)
and the Open Source Initiative (opensource.org). The
“free software” definition is based on four freedoms
(use, study, modify and redistribute), while the
“open source” definition is based on 10 criteria
including the access to source code, the free
redistribution of source code and the allowance to
create derived works

The free and open source licenses can be divided
in two main families (Cool et al., 2005; de Laat,
2005; Honkasalo, 2009; St. Laurent, 2004; Viseur,
2013b). The first one includes the permissive
licenses (also said : academic licenses). The second
one includes the copyleft licenses (also said :
reciprocal or restrictive licenses). The permissive
licenses allow the use of the source code in
proprietary software. The Apache, BSD and MIT
licenses are famous examples. Contrariwise,
copyleft licenses impose limitations on licensees of
any derivative work, such as the conservation of the
license or the availability of the source code when
the software is made available. Their principle could
be resumed by the sentence “copyleft one day,
copyleft always”. The AGPL, CDDL, CPL/EPL,
GPL, LGPL, MPL and OSL licenses are famous
examples of copyleft licenses.

The use of licenses evolves during time. Thus the
study of Github repositories shows a rise of
permissive licenses and the publication of source
codes without license. The publication without
license is problematic because it doesn't allow to
know what are the rights and duties for the
downloaded source codes, even if the source code is
public (it stays covered by copyright). A move
towards more permissive licenses can be also
observed among some FLOSS editors (e.g. Talend
or Alfresco) (Viseur and Robles, 2015).

2.2 Sub-families of Reciprocal Licenses

The reciprocal licenses family can be divided in
three sub-families: the licenses with weak
reciprocity, the licenses with strong reciprocity and
the licenses with network reciprocity (Cool et al.,
2005; de Laat, 2005; Honkasalo, 2009; St. Laurent,
2004; Viseur, 2013b).

Table 1: Major Open Source Licenses by Type.

 Permi-
ssive

Weak
recipr
o-city
(file-

based)

Weak
recipr
o-city

Strong
recipr
o-city

Net-
work

recipro-
city

BSD x

MIT x

Apache x

MPL x

EPL,

CPL

 x

CDDL x

LGPL x

GPL x

AGPL x

OSL x

The licenses with strong reciprocity spread to all
derivative works. Their detractors describe them as
“viral” or “contaminant”. The licenses with weak
reciprocity only apply to the original work but don't
automatically spread to derivative work. Those
licenses can be file-based or not. The file-based
licenses with weak reciprocity simplify the addition
of functionalities under different compatible
licenses. The licenses with network reciprocity are
designed for hosted software. They are close to the
licenses with strong reciprocity, but they force to

CLOSER 2016 - 6th International Conference on Cloud Computing and Services Science

130

transfer the source code as soon as the user is in
touch with the user interface of the application. The
Table 1 resumes a set of popular licenses that were
classified by category.

2.3 Issues around the License Selection

The choice of an open source license is an important
step in the life of an open source project. It is not
neutral on the life of the project. Moreover it
conditions the way the software may be monetized
by companies. The license impacts the business
model, the compatibility between open source
components, the easiness to change license and
adapt to strategic changes as well as the project
success.

2.3.1 Impact on Business Model

The business models are closely related to the
selected licenses, because they allow to regulate the
regime of appropriability (Viseur, 2012b).

Unlike the permissive licenses, the licenses with
strong copyleft forbid the creation of a proprietary
version of the software. However there is a common
exception. The dual licensing schema often
associates a version of the software under strong
copyleft license (usually: GPL) and a commercial
version (available for a fee). The commercial
version may offer additional features. That schema
is usually legal because the open source editor
organizes the sharing of the ownership of
contributed source codes, for example by using
contributor agreement (Poo-Caamaño and German,
2015) or by accepting contributions only under a
permissive license. The full ownership is possible by
rewriting each contribution (Valimaki, 2003).

2.3.2 Impact of License Changes

Viseur and Robles (2015) studied the case of 24
open source projects that were impacted by a license
change and identified problems caused by that
change.

The main difficulty comes from the shared
property of the source code. In consequence, the
license change obliges to get an agreement from all
the contributors. This process is problematic for
large projects with a lot of contributors. An
alternative consists in owning the copyright on the
source code, by using contributor agreement or by
rewriting each contribution (Poo-Caamaño and
German, 2015; Valimaki, 2003). The first solution
burdens the contribution process and may

discourage the developers to participate. The second
solution results in a lost of time.

Moreover the license changes may lead to some
problems. The new license may suffer from
incompatibilities (i.e. incompatibilty between
licenses or undesirable side effect such as license
propagation) with previously linked projects (e.g.
MySQL library vs PHP). For example, according to
the Free Software Foundation, the popular GPL v2
license is not compatible with GPL v3 and Apache
v2. Thus a license change implies to check the
compatibility of the new license with the
components whose the software depends. Secondly,
the license change may irritate the community and
lead to a fork. Forking is a mechanism of splitting in
a community that usually results in the cohabitation
of two competing projects. Fifteen percent of the
forks would be a consequence of the reaction to a
license change (Viseur, 2012a).

It results that license changes should be avoided
as far as possible. However it may be required by the
evolution of the environnement (e.g evolution of
license use, license change of subcomponents or
maket change).

2.3.3 Impact on Project Success

The license is highlighted in literature as a success
factor for open source project. However the impact
is always discussed (Viseur, 2013b). There is a trend
to attribute a negative impact for copyleft or
restrictive licenses.

In practice, the negative impact of restrictive
licenses would depend on the status of the project
(Midha and Palvia, 2012). If we consider the
criterion of market success, the negative impact of
restrictive licenses only takes place for the first
version of the software. It tends to disappear with
time. If we consider the criterion of technical
success, the negative impact of restrictive licenses
does not occur in the early stages of the project but
in the following stages. That finding would be
explained by the fact that the license is one of the
only pieces of information available to users when
the software appears and that the first developers see
the restrictive licenses as a protection against the
risks of privative ownership.

2.4 Methodologies for Choosing Open
Source Licenses

We rely on the generic methodology (license
selection based on the valuation schema) presented

A FLOSS License-selection Methodology for Cloud Computing Projects

131

in Viseur (2013a). That valuation scheme is divided
into three steps.

Step 1: choosing the type of license (proprietary,
hybrid, open source).

Step 2: choosing an open source license (if an
open source license is chosen in step 1).

Step 3: checking general constraints (e.g.
compatibility issues or organization policy).

As we discuss the selection for open source
license, we are mainly interested in the step 2. This
second step is divided into four sub-steps.

Sub-step 2.1: It checks the interest or the
willingness to join an existing community or
ecosystem. If yes, the license of the ecosystem is
retained (e.g. Apache license for Apache Foundation
or Eclipse license for Eclipse Foundation).

Sub-step 2.2: It tests if the priority is given to the
maximum distribution of the software. If yes, a
permissive license is chosen (e.g. MIT or BSD).

Sub-step 2.3: The priority is given to the sharing
of developments. This sub-step verifies if the license
should facilitate the integration of software into
third-party software that are potentially under other
licenses.

Sub-step 2.3.1: If the integration with third-
party software is not preferred, the willingness
to cover the use of the software as SaaS is
checked. If yes, a license with network
reciprocity is chosen (e.g. AGPL or OSL).
Otherwise, a license with strong reciprocity is
chosen (e.g. GPL).

Sub-step 2.3.2: If the integration with third-
party software is preferred, the degree of
permissiveness accepted in case of new
features addition is checked. In case of high
permissivity, a license with based-file weak
copyleft is used (e.g. MPL). Otherwise, the
LGPL is used.

Sub-step 2.4: It verifies the willingness to share
the source code ownership. If yes, a contributor
agreement is imposed to the contributors.

Once the open source license is selected, the
compliance with organization policy is checked (e.g.
black / white list of open source licenses, patent
policy or compatibility with other open source
licenses used in previous projects). In case of
incompatibility, the method is applied again; a new
license is selected or the source code is covered by
multiple licenses (if the source code is covered by

multiple open source licenses, the user can select the
license that is suitable to his context of use).

2.5 Beyond License Selection: Legal
Analysis of Source Code

Several tools allow to analyze the source code in
order to simplify the detection of legal problems
(e.g. unexpected licenses or incompatibility between
licenses).

Black Duck Software is a famous proprietary
software that includes license analyze features.
Fortunately some open source software exist. The
open source code analysis tools are usually based on
the analysis of the source code files headers and on
the open source licenses footprints. In consequence,
they are not able to detect files under proprietary
license or duplicated source codes.

The more famous open source tool is probably
FOSSology. It is supported by Hewlett Packard
(www.fossology.org). Its main drawback is probably
the slowness. An alternative software is edited by
Ohloh (now Open Hub after Black Duck bought the
service) and called Ohcount
(www.ohloh.net/p/ohcount). The Ohcount main
function is source code line counter. However, the “-
l, --license” option allows to display the detected
licensing information contained in each source code
file. A basic formatting process allows to create
reports that simplify the detection of problems. The
process can be supplemented by focused searches
(for example, with Find and Grep open source tools)
in order to detect issues with patents or copyrights
notices. An example of implementation is described
in (Viseur, 2012b).

Those tools allow to process an automated
analyze of the source code hosted in repositories in
order to anticipate the issues (mainly: wrong
copyright notices and unexpected licenses headers).
Alerts could be directly and automatically reported
from Git directory (git-scm.com).

3 COMMON CHOICES IN OPEN
SOURCE CLOUD PROJECTS

3.1 Typology of Cloud Computing

From the point of view of a user, cloud computing
comes in three distinct service models (Marston et
al., 2011; Mell and Grance, 2011). The Software as
a Service model (SaaS) provides the user with an
application hosted in the cloud (e.g. Google Mail or

CLOSER 2016 - 6th International Conference on Cloud Computing and Services Science

132

Google Documents). The Platform as a Service
(PaaS) model provides an environment to develop
and deploy applications (e.g. Microsoft Azure or
Google App Engine). The Infrastructure as a Service
(IaaS) model provides storage and computation
capacities (e.g. Amazon S3 or Amazon EC2). These
models can be deployed in a corporate network or an
external platform. The first case is known as private
cloud, the second, as public cloud.

3.2 Open Source SaaS Projects

The open source offers numerous alternatives to
SaaS products (e.g. Owncloud, Cozycloud or Odoo).
The providers may build services upon open
components under license with weak or strong
reciprocity and keep a product advantage by
comparison to competitors. Indeed the use of open
source software as SaaS doesn’t oblige the provider
to furnish the source code as there is no software
distribution (“convey”).

The FLOSS editors’ behavior facing to SaaS was
studied by Viseur (2012c) in the field of ebusiness
software. The paper reveals the rise of licenses with
network effect (e.g. AGPL and OSL). Indeed several
of the studied projects (e.g. Magento, OpenERP and
SugarCRM) adopted such licenses at their creation
or later evolved towards that type of license. That
trend has been observed since 2008 and is not
without consequences for editors who were
sometimes obliged to negotiate license change with
community.

3.3 Open Source PaaS and IaaS
Projects

The situation for IaaS and PaaS open source
software is less well-known. We selected a set of
open source cloud projects and detailed some
characteristics, including the license and the
responsible (private company, foundation, self-
organized community,...). The projects are famous
open source IaaS or PaaS software. They are:
Openstack, Eucalyptus, OpenNebula, Cloudstack,
Deltacloud, Openshift, Appascale, Stratos and
Tsuru.

The open source cloud computing projects
landscape is characterized by the weight of
initiatives hosted by Apache Foundation
(www.apache.org). We also point to the use of
Apache license by other organizations such as
Appscale Systems (www.appscale.com) or Red Hat
(www.redhat.com).

Table 2: Characteristics of open source cloud projects.

Name Description License Responsible
OpenStack IaaS (described

as cloud
operating
system).

Apache 2
license.

By OpenStack
Foundation.
Strong HP

engagement.
Eucalyptus IaaS. Various with

GNU GPL (+
commercial

release).

By Eucalyptus
company.

Open-
Nebula

IaaS (described
as management

tool for
virtualized

datacenters).

Apache 2
license.

Founded by
European

project, now
supported by
C12G Labs.

Cloud-Stack IaaS
(management of
large networks

of virtual
machines).

Apache 2
license.

By Apache
Software

Foundation.

DeltaCloud Application
Programming

Interface (API)
that abstracts

the differences
between cloud

computing
implemen-

tations.

Apache 2
license.

By Apache
Software

Foundation.

OpenShift PaaS. Apache 2
license.

By Red Hat.

AppScale PaaS (open
source

implementation
of Google App

Engine).

Apache 2
license.

By AppScale
Systems.

Stratos PaaS
(framework

based on
Apache

Tomcat, PHP
and MySQL.

Apache 2
license.

By Apache
Software

Foundation.

Tsuru PaaS. BSD 3-clauses
license.

By Globo.com
company.

As a consequence, the Apache license is often
use in IaaS and PaaS projects (see Table 2). The
Apache license is a permissive one and offer latitude
to choose business model. Moreover it obliges to
document intellectual property issues (e.g.
copyrights, trademarks, patents or other licenses
covering sub-components) in NOTICE file (that
practice can be reassuring in business context).

4 FLOSS LICENSE-SELECTION
PROCESS FOR CLOUD
COMPUTING PROJECTS

We suggest a FLOSS license-selection process in
five steps.

A FLOSS License-selection Methodology for Cloud Computing Projects

133

Inventoring Software Components – The first
step consists in an inventory of the components that
have to be reused in the new development. That
inventory allows to check the open source definition
conformity and the compliance of the licenses
attached to the components. It also allows to detect
copyrights issues and conflicts with common
valuation practices among the partners (e.g. TTO in
the universities).

Selecting Open Source License – The second
step consists in the license selection. It relies on the
process that was explained in the section
“Methodologies for choosing open source licenses”.
The result should take into account the common
practices in cloud computing industry.

Approving License Selection – The third step
consists in an approval process. The license that was
selected at the second step is subject to a vote.

Spreading Practical Details – The fifth step
consists in spreading the practical details among the
partners and the developers, in particular for labeling
the license in the source code of the software.

Monitoring Source Code – The sixth step
consists in monitoring each release of the software
in order to detect violation to the license policy.

5 USE CASE: PASSAGE
PROJECT

PaaSage would like to “deliver a development and
deployment platform, with an accompanying
methodology, with which developers of enterprise
systems can access services of cloud platforms in a
technology neutral approach that abstracts the
technical details while guiding them to configure
their applications for best performance”
(www.paasage.eu).

The PaaSage project has its own specific
features. Firstly, the PaaSage project receives
research funding from the European Union's 7th
Framework Programme. In consequence, it must
respect some dissemination obligations. Open source
appears as a suitable solution to offer common
technological foundations and disseminate results in
industry. Secondly, the project gathers 19 partners
(i.e. cloud technology providers, application
developers, researchers and technology transfer
experts). In consequence, the partners are
heterogeneous, with possible differences between
intellectual property policies among the different

partners. For example, the strong copyleft was
quickly considered as inappropriate for most of
companies in cloud industry. Thirdly, some partners
brought existing software components. In
consequence, some open source or proprietary
licenses were already used and must be taken into
account in the view to integrate the software
components in a common open source software
package.

The five steps license-selection methodology
was applied as follows.

1) Step 1: Inventoring Software Components.
An inventory of the existing component was

processed by appealing to partners and validated
during a meeting. It highlights the use of some open
source licenses and a copyright issue with one of the
partner (privative source code).

2) Step 2: Selecting Open Source License.
The PaaSage members wished to favour the

creation of source code commons but encourage
industry and avoid the problems of virality that
cause incompatibility problems between software
components. Considering those requirements we
suggested to choose a license with weak reciprocity.
Although it is widely used in open source cloud
project, the permissive Apache license didn’t satisfy
the constraints expressed for PaaSage project, event
if Apache license is widely used in open source PaaS
/ IaaS industrial ecosystem.

If we restrict the choice of licences at the list of
recommended licenses that is published by Open
Source Initiative at http://opensource.org/licenses we
had to select between 4 licenses: the LGPL (2.1 or
3), the CPL/EPL, the CDDL and the MPL (1.1 or
2.0).

The CPL/EPL and CDDL were eliminated
because they is incompatible with widely used GPL
licence. The LGPL 3.0 license is stronger in terms of
mutualization and responsibility to contribute to the
development. However some companies could be
afraid by the “GNU” label. The MPL 2.0 license is
easier for the creation of combined works that
contain files with various licenses. The PaaSage
project gathers several partners and needs the
integration of different components. The MPL
license was designed to simplify the aggregation of
open source code and third party components under
various licenses. Moreover, the MPL license allows
a wide variety of business models, in particular dual
licensing model. Indeed it offers the possibility to
add extensions under proprietary license and
commercialize derivative software with
technological differenciation. In consequence the

CLOSER 2016 - 6th International Conference on Cloud Computing and Services Science

134

MPL 2.0 license was suggested. No contributor
agreement was required.

3) Step 3: Approving License Selection.
A vote for MPL 2.0 license approval was

processed. The following question was asked : “does
your organisation approve the adoption of the
MPL2.0 licence as the common licence for PaaSage
[Y/N] ?”. MPL 2.0 has been adopted unanimously as
the common license for PaaSage.

4) Step 4: Spreading Practical Details.
The chosen open source license must be

referenced in the source code. The developers have
to indicate the license in the source code of the
software, i.e.:

• Put the text of the license in the root of the
source code.

Typically, the original text is written in a
file that is named LICENSE or
LICENSE.txt. The text of the open source
license can be found on
www.opensource.org or on the websites of
organizations that published the license.

• Put the short description of the license in the
header of each file.

The websites of Open Source Initiative
and other organizations that publish the
licenses suggest standard headers for each
license. Tools allow to automate the
process of header addition (e.g.
customized bash scripts or Copyright
Wizard plugin for Eclipse).

The MPL is well documented. In particular, the
FAQ give examples of reusable headers and
copyright notice (refer to
http://www.mozilla.org/MPL/2.0/FAQ.html).

5) Step 4: Monitoring Source Code.
We plan to use tools allowing to detect lacks of

conformity with the PaaSage license policy in the
source code stored in the official Git repository.

Thanks to the PaaSage project, we discovered
that Apache offered fast and reliable tool for license
analysis: Apache Rat. “Apache Rat is a release audit
tool, focused on licenses”
(http://creadur.apache.org/rat/). The hosting as Apache
Software Foundation (ASF) incubated project is a
sign of the growing sustainability of the project (the
Apache incubator provides an ASF entry point for
new projects and allows the development of
emerging communities). Moreover, Apache Rat may
work as a plugin of Maven
(http://mojo.codehaus.org/rat-maven-plugin/). “Apache
Maven is a software project management and
comprehension tool” (maven.apache.org). Maven and

Git are used for PaaSage project. So it would be
possible to use Apache Rat with Maven in order to
generate alerts in case of abnormal license
footprints. In addition Maven should allow to get a
view of the structure of dependencies and to more
efficiently filter those alerts.

6 DISCUSSION AND
PERSPECTIVES

Results – PaaSage is an open source integrated
platform to support both design and deployment of
cloud applications. The PaaSage consortium decided
to publish the source code as open source. It needed
a process for the open source license selection.
Indeed open source licensing scheme was born
before the development of cloud computing (the
applications were usually installed on local desktops
or servers) and evolved with the creation of new
licenses suitable for SaaS applications. The study
results in a FLOSS license-selection process in five
steps: (1) inventoring software components, (2)
selecting open source license, (3) approving license
selection (vote), (4) spreading practical details and
(5) monitoring source code.

Limitations – We point to the following
limitations to our approach. Firstly, our simplified
license-selection methodology doesn't distinguish
the different versions of a license. However the
successive versions of a license can strongly differ
and can even be incompatible (e.g. GPL 2 and GPL
3). The selection method must be used with the
hypothesis the last version of the license is used.
Secondly, the open source code analysis tools suffer
from some limitations. Thus they doesn't detect
“copy and paste” behaviors. Indeed they are based
solely on open source license footprints and are able
to detect rightly added open source source code
files. In addition, they don't detect proprietary source
codes or proprieray artefacts in source code (e.g.
trademarks or proprietary source codes). Additional
processing is needed to address those issues.

Improvements – The upstream work could still
be improved by the use of design tools (e.g. OSSLI)
allowing to detect legal issues (e.g. unwanted license
side-effects or incompatibility issues) as soon as the
software design step. That precaution would allow to
anticipate problems as early as possible and raise
developers awareness by doing. Moreover it would
complement the use of source code monitoring tools
for detecting a posteriori errors.

A FLOSS License-selection Methodology for Cloud Computing Projects

135

ACKNOWLEDGEMENTS

The work presented in this paper has been partially
funded by the EU FP7-ICT project PaaSage (grant
no. 317715).

REFERENCES

Cool Y., De Patoul F., De Roy D., Haouideg H., Laurent
P., Montero E. (2005), “Les logiciels libres face au
droit”, Cahier du CRID, n°25, Bruylant.

de Laat, P.B. (2005), “Copyright or copyleft ? An
analysis of property regimes for software
development”, Research Policy, vol. 34, pp. 1511-
1532, 2005.

Fogel, K. (2005), Producing open source software: How
to run a successful free software project, O'Reilly
Media, Inc.

Honkasalo, P. (2009), “Reciprocity under the GNU
General Public Licenses”, Nordic Journal of
Commercial Law, no 1.

Markus, M. L. (2007), “The governance of free/open
source software projects: monolithic,
multidimensional, or configurational?”. Journal of
Management & Governance, 11(2), pp. 151-163.

Marston, S., Li, Z., Bandyopadhyay, S., Zhang, J.,
Ghalsasi, A. (2011), “Cloud computing—The business
perspective”. Decision Support Systems, 51(1), pp.
176-189.

Mell, P., Grance, T. (2011), “The NIST Definition of
Cloud Computing”, US Nat’l Inst. of Science and
Technology; http://csrc.nist.gov/publications/nistpubs
/800-145/SP800-145.pdf.

Midha, V., Palvia, P. (2012), “Factors affecting the
success of Open Source Software”. Journal of Systems
and Software, 85(4), pp. 895-905.

Muselli, L. (2007), “Les licences informatiques : un outil
de modulation du régime d’appropriabilité dans les
stratégies d’ouverture. Une interprétation de la
licence SCSL de Sun Microsystems.”, 12ème
Conférence de l'Association Information et
Management, Lausanne, juin 2007.

Onetti, A., Capobianco, F. (2005), “Open source and
business model innovation. the funambol case”. In
Proceedings of the first International Conference on
Open source Systems.

Poo-Caamaño, G., German, D. M. (2015), “The Right to a
Contribution: An Exploratory Survey on How
Organizations Address It”. In Open Source Systems:
Adoption and Impact (pp. 157-167). Springer
International Publishing.

St. Laurent, A.M. (2004), “Understanding Open Source
and Free Software Licensing”, O'Reilly Media, 2004.

Valimaki, M. (2003), “Dual licensing in open source
software industry”. Systemes dInformation et
Management, 2003, vol. 8, no 1, pp. 63-75.

Ven, K., Verelst, J., Mannaert, H. (2007), “On the
Relationship between Commoditization and Open
Source Software”, 12e conférence de l’Association
Information et Management (AIM), Lausanne
(Suisse), 18-19 juin 2007.

Viseur, R. (2012a), “Forks impacts and motivations in
free and open source projects”, International Journal
of Advanced Computer Science and Applications
(IJACSA), Volume 3 Issue 2 February 2012;
http://dx.doi.org/10.14569/IJACSA.2012.030221.

Viseur R. (2012b), “Gérer la propriété intellectuelle dans
les projets à base de logiciels libres”, 17ème
conférence de l'Association Information et
Management (AIM), Bordeaux (France), 21-23 mai
2012.

Viseur, R. (2012c), “Evolution des stratégies et modèles
d’affaires des éditeurs Open Source face au Cloud
computing,” in Terminal : Technologie de
l'Information, Culture, Société, n°113-114, 2013, pp.
173-193.

Viseur, R. (2013a), “Élaboration d'un schéma de
valorisation pour l'édition de logiciels open source »,
18ème conférence de l'Association Information et
Management (AIM), Lyon (France), 22-24 mai 2012.

Viseur, R. (2013b), “Identifying Success Factors for the
Mozilla Project”, Proceedings of the Ninth
International Conference on Open Source Systems
(OSS 2013), Capodistria (Slovenia), June 25-28, 2013.

Viseur, R., Robles, G. (2015), “First Results About
Motivation and Impact of License Changes in Open
Source Projects”. In Open Source Systems: Adoption
and Impact (pp. 137-145). Springer International
Publishing.

West, J. (2003), “How open is open enough?: Melding
proprietary and open source platform strategies”.
Research policy, 32(7), pp. 1259-1285.

CLOSER 2016 - 6th International Conference on Cloud Computing and Services Science

136

