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Abstract: We address the problem of acquiring reliable ratings of items such as restaurants or movies from the crowd.
A reliable rating is a truthful rating from a worker that is knowledgeable enough about the item she is rating.
We propose a crowdsourcing platform that considers workers’ expertise with respect to the items being rated
and assigns workers the best items to rate. In addition, our platform focuses on acquiring ratings for items
that only have a few ratings. Traditional crowdsourcing platforms are not suitable for such a task for two
reasons. First, ratings are subjective and there is no single correct rating for an item which makes most existing
work on predicting the expertise of crowdsourcing workers inapplicable. Second, in traditional crowdsourcing
platforms there is no control over task assignment by the requester. In our case, we are interested in providing
workers with the best items to rate based on their estimated expertise for the items and the number of ratings
the items have. We evaluate the effectiveness of our system using both synthetic and real-world data about
restaurants.

1 INTRODUCTION

Rating websites have gained popularity as platforms
to share experiences and acquire recommendations
about items of interest. For example, Yelp1 is a
popular website for rating and recommending busi-
nesses like restaurants, bars, etc. In most rating web-
sites, all ratings are treated equally. However, in
many cases, people provide misleading ratings, ei-
ther because they are cheating or because they are
not knowledgeable enough about the items they are
rating. Moreover, in most rating websites, the num-
ber of ratings are not balanced across the items being
rated. Unreliable ratings and the imbalance of ratings
across items can both deteriorate the accuracy of most
recommendation algorithms.

It would thus be beneficial to build a rating plat-
form that takes into consideration rating quality and
sparsity. The platform should ideally acquire the
best ratings possible from the currently active crowd
of workers based on their expertise with respect to
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1www.yelp.com

the items. The system should automatically iden-
tify cheaters, i.e. workers that are consistently pro-
viding misleading ratings. We distinguish two types
of cheaters: i) lazy workers, who assign ratings ran-
domly to complete the rating tasks as fast or as ef-
fortlessly as possible, and ii) malign workers, who
give misleading ratings to particular items in order to
reduce or raise their average ratings. The platform
should also prioritize acquiring ratings for underex-
posed items (i.e., items that have fewer ratings).

While traditional crowdsourcing platforms such
as Amazon Mechanical Turk2 and CrowdFlower3

have been successfully used in various scenarios to
acquire human knowledge in a cheap and effective
manner, they are not suitable for our scenario. In such
platforms, there is no clear notion of a worker exper-
tise apart from a single score reflecting how well a
worker performed on previous tasks. This is not fea-
sible in our scenario for various reasons. First, differ-
ently from other tasks, rating tasks are subjective as
the workers are asked to express their personal tastes.
This means that there is no single ground truth (i.e.,
correct ratings for items) that can be used to com-
pute expertise scores for workers, based on the re-

2www.mturk.com
3www.crowdflower.com
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sults of previous tasks. Second, workers might be
more skilled to rate certain types of items than oth-
ers. For instance, students might be more knowl-
edgeable about holes-in-the-walls or cheap restau-
rants whereas professionals might be more knowl-
edgeable about fancier restaurants. It is thus crucial
to associate workers with different scores represent-
ing their expertise with respect to the different types
of items being rated.

Finally, it is crucial to ask workers to rate only the
items for which they have higher skills. In traditional
crowdsourcing platforms, workers self-appoint them-
selves to tasks and requesters have no control over
how the task assignment is carried out. In our case, we
would like the platform to automatically assign tasks
to workers based on their estimated expertise.

In this paper, we present a novel crowdsourcing
platform that acquires reliable ratings for a set of
items from a set of workers. A reliable rating is a
truthful rating provided by an expert worker. Our plat-
form estimates worker expertise based on the agree-
ment of the worker with other similar expert work-
ers in the system. The platform makes use of a fine-
grained utility function to present workers with the
best items to rate based on the workers’ expertise and
the number of ratings the items have. Finally, the
framework automatically identifies cheaters and we
experiment with various ways of dealing with them.
Our platform is described in Section 4.

With this data acquisition, we do not plan to re-
place traditional volunteering-based ratings collected
in recommendation systems, but we want to provide a
novel channel for high-quality rating collection. For
example, a new recommendation system needs high-
quality ratings to be able to build recommendations
for the first users. Through our crowdsourcing plat-
form, the service owner can ask the crowd to rate
items, motivating them with a reward, and build a
dataset of reliable ratings to use.

We evaluated our framework using a set of ex-
haustive experiments on both real and synthetic
datasets about restaurant. Our experimental results,
presented in Section 5, clearly highlight the effective-
ness of our system in acquiring reliable ratings from
expert workers, particularly for underexposed items.
We also show that identifying cheaters has a great im-
pact on the overall rating quality.

According to our knowledge, this is the first work
that addresses the issue of acquiring reliable ratings
from the crowd. Most related work studied how to es-
timate the skills of crowdsourcing workers assuming
the existence of only one valid ground truth (Dawid
and Skene, 1979; Ipeirotis et al., 2010; Joglekar et al.,
2013; Wolley and Quafafou, 2013; Hirth et al., 2011),

which is not the case in our setting as we have already
explained. Moreover, most related methods for es-
timating worker skills are generally post-processing
methods, so they are not applicable in our scenario
where we make use of the worker skills during task
assignment to improve rating quality as more tasks are
being performed. This is also not the case for existing
work where one-time pre-task qualification tests are
run to estimate worker skills. We review all relevant
related work in detail in Section 2.
Our main contributions are the followings:

• We build a scalable and realistic crowdsourcing
platform to acquire reliable ratings of items such
as restaurants, movies or hotels.

• Our platform automatically estimates worker ex-
pertise based on the agreement of the worker with
similar expert workers in the system.

• Our platform uses a carefully designed utility
function to present workers with the best items to
rate based on the estimated expertise of the work-
ers and the number of ratings for those items.

• Our platform automatically identifies cheating
workers and can dampen their effect.

2 RELATED WORK

In literature the idea of collecting information about
items to recommend form people through micro-tasks
has been already presented by Felfernig et al. (Felfer-
nig et al., 2015) and by Hacker and von Ahn (Hacker
and von Ahn, 2009). In both papers people are asked
to express their opinion about some items, while they
miss the control of answer quality and assignment of
the items the worker is more expert about.

Much work has been also done on improving the
data quality for crowdsourcing. It mostly focused on
the joint inference of true labels of items and worker
reliabilities (Dawid and Skene, 1979; Ipeirotis et al.,
2010; Joglekar et al., 2013; Wolley and Quafafou,
2013; Hirth et al., 2011). However, all these methods
suffer from two drawbacks. First, they assume the
presence of one ground truth, even if it is unknown,
which is clearly not the case for subjective crowd-
sourcing tasks such as the rating of items. Second,
they are generally post-processing methods, so they
cannot be seamlessly used during task assignment.

To address the first issue, Tian and Zhu (Tian and
Zhu, 2012) studied the problem of worker reliabil-
ity in crowdsourcing tasks in the case where more
than one answer could be valid. They started from
two mild assumptions on grouping behaviour: 1) reli-
able workers tend to agree with other workers in many
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tasks; and 2) the answers to a clear task tend to form
tight clusters. Following this idea, they developed a
low-rank computational model to explicitly relate the
grouping behavior of schools of thought, character-
ized by group sizes, to worker reliability and task clar-
ity, without the need of gold standards.

There have been various attempts to integrate
worker reliabilities or skills with task assignments in
crowdsourcing platforms. Li et al (Li et al., 2014)
proposed a crowdsourcing platform that can automat-
ically discover, for a given task, if any group of work-
ers based on their attributes have higher quality on av-
erage and target such groups, if they exist, for future
work on the same task. Auctions have been presented
as an alternative way for task assignment by Satzger
et al. (Satzger et al., 2012), assigning the task to the
more skilled workers which volunteer for it respecting
the economic constraint fixed by the requester. The
cost/quality ratio has high importance also in the work
of Karger, Oh and Shah (Karger et al., 2011). They
proposed a new algorithm for deciding which tasks
to assign to which workers and for inferring correct
answers from the workers’ answers, solving the prob-
lem of minimizing the total price (i.e., number of task
assignments) to achieve a target overall reliability.

Ho and Vaughan (Ho and Vaughan, 2012) ex-
plored the problem of assigning heterogeneous tasks
to workers with different unknown skill sets in
crowdsourcing markets. They presented a two-phase
exploration-exploitation assignment algorithm to al-
locate workers to tasks in a way that maximizes the
total benefit that the requester obtains from the com-
pleted work. The same authors together with Jab-
bari (Ho et al., 2013) investigated the problem of
task assignment and label inference for heteroge-
neous classification tasks, deriving a provably near-
optimal adaptive assignment algorithm and showing
that adaptively assigning workers to tasks can lead to
more accurate predictions at a lower cost when the
available workers are diverse. Most of the above work
addressing the issue of task assignment and worker
reliabilities however assumes the presence of single
ground truth which is not applicable in subjective
tasks such as the rating of items.

Roy et al. (Roy et al., 2013) proposed in a vi-
sion paper to rethink crowdsourcing as an adaptive
process that relies on an interactive dialogue between
the workers and the system in order to build and re-
fine worker skills while tasks are being completed. In
parallel, as workers complete more tasks, the system
learns their skills more accurately, and this adaptive
learning is then used to dynamically assign tasks to
workers in the next iteration. This dialogue between
the system and workers resembles the dialogue be-

tween users in trust-based systems (Mui et al., 2002).
In the same way in which in an e-commerce website
buyers rely on the sellers’ reputation and on the past
interactions to understand how much they can trust
them, in a crowdsourcing platform the task requesters
use the learned skills of workers to understand how
much they can trust them. However, the meaning of
worker skill is different from trust, as it includes also
the specific capabilities of a worker.

3 PROBLEM DEFINITION

Given a set of workers W and a set of items I, our goal
is data acquisition. That is, we want to acquire reli-
able ratings for as many items as possible where the
set of possible ratings R is {0 (don’t know), 1 (don’t
like), 3 (neutral), 5 (like)}. We map ratings to values
between 1 and 5 to stay compatible with the 5-star
rating paradigm used by most recommender systems.

More specifically, we want to populate a database
of tuples of the form T =< w, i,r >, where w is a
worker, i is an item, and r is the rating provided by w
for item i. Our data acquisition has the following two
sub-goals: 1) worker w should not be a cheater, and 2)
item i should currently be the best item for worker w
to rate, meaning that i is the item w is most knowl-
edgeable about and that has the fewest ratings (the
platform parameters give more importance to one or
the other aspect).

Note that the first sub-goal, identifying cheaters,
is important for the realization of our main goal, ac-
quiring reliable ratings for items. In the second sub-
goal, given that w is not a cheater, we want her to rate
the items that have fewer ratings she is most knowl-
edgeable about and for which she is most likely to
give reliable ratings. In the next section, we describe
our framework that realizes the above sub-goals to
achieve our main goal of acquiring reliable ratings for
as many items as possible from a crowd of workers.

4 FRAMEWORK

In a nutshell, our framework works as follows. First,
we cluster the items to be rated into n itemsets I1, ..., In
according to characteristics of the items. The clus-
ters can overlap and the characteristics are inherent
properties of the items. For example, in the case of
restaurants, the characteristics can be cuisine, price
range, etc. We cluster items into itemsets so that we
can associate each worker in our system with an ex-
pertise level for each itemset that can help us assess
how likely the worker can provide reliable ratings for
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Figure 1: The proposed framework.

items in an itemset. A given worker can be an expert
in one type of items and less expert or completely
unknowledgeable for other types. Second, we con-
stantly cluster active workers in the platform based
on the ratings they provide: each cluster represents a
group of workers with same tastes, different from the
other ones. Clusters are used in our system for two
reasons: 1) to compute the expertise of workers, and
2) to identify workers who provide misleading ratings
which we refer to as cheaters.

A diagram of our framework is shown in Figure
1. Our platform works in task sessions: the worker
enters a new task session with the first ratings she
assigns and continues to rate the items the platform
presents her till she leaves the session. Within a ses-
sion, the reliability of her ratings is checked. Once a
new worker joins the system, she is asked to rate the l
items with the highest number of ratings in the system
so far, to be able to compare her with as many work-
ers in the system as possible. Based on her provided
ratings, we assign the worker into one worker clus-
ter. After a worker is assigned to a cluster, her profile
is updated for each itemset she provided ratings for.
Using the calculated profile, the worker is either sus-
pected to be a cheater and is asked to pass a verifica-
tion test, or she is asked to rate more items. A verifi-
cation test is simply another set of rating tasks where
a worker is asked to rate items she has rated before. A
worker passes the verification test if she is relatively
consistent with her previous ratings, otherwise she is
banned from the system. The verification test is de-
signed this way to disguise it from actual cheaters and
to not turn off falsely-flagged workers. Other ways of
dealing with cheaters are also applicable and we ex-
periment with different methods in Section 5.

In case more items are to be rated (i.e., the worker
was not flagged as a cheater or has passed the verifi-
cation test), we apply a utility function that presents
the worker with the items we anticipate that she has
the most promise to rate reliably, prioritizing items
that have fewer ratings. Our framework performs the

above mentioned procedure for every worker that is
currently active in the platform and the same proce-
dure is repeated each time a new rating is provided
until the worker leaves the system. In case a worker
consistently fails to join a worker cluster after she has
provided a given number of ratings, the worker is sus-
pected to be a cheater and is asked to pass a verifica-
tion test as before.

Our framework consists of four main components:
1) Worker Clustering, 2) Profile Computation, 3) Util-
ity Optimization, and 4) Cheater Identification. We
describe each component next.

4.1 Worker Clustering

Given the set of active workers W in the system, our
goal is to cluster them into a number of clusters based
on their ratings. Let w and w′ be two workers in W
and Iint =< i1, i2, . . . , in > be the set of items that both
w and w′ rated. Also, let R =< r1,r2, . . . ,rn > be the
vector of ratings worker w provided for the items in
Iint where rk is the rating of item ik. Similarly, let
R′ =< r′1,r

′
2, . . . ,r

′
n > be the vector of ratings worker

w′ provided for the items in Iint where r′k is the rat-
ing of item ik. We cluster the workers based on an
adjusted Euclidean-distance-based similarity measure
which is computed as follows:

sim(w,w′) = 2∗ ( 1

1+
Σn

k=1(
rk−r′k

rmax−rmin
)2

n

− 1
2
)

where rmax is the highest rating possible (5 in our
case) and rmin is the lowest rating possible (1 in our
case). In the computation of similarity we are ignor-
ing the “don’t know” ratings with value 0.

Note that using a standard Euclidean-distance-
based similarity or a Cosine Vector similarity will
not work in our setting, where the neutral rating (3)
should be considered very similar to both “like” (5)
and “don’t like” (1). In standard similarity metrics, in-
stead, rating 3 is considered quite different from both
1 and 5. To overcome this, we started from the stan-
dard Euclidean-distance-based similarity metric

EuclideanDistanceSim(w,w′) =
1

1+
√

Σn
k=1(rk−r′k)

2
√

n

and substituted the simple distance (
√

Σn
k=1(rk− r′k)

2)
with a relative distance by dividing it by the maxi-
mum distance there could be between any two ratings
(in our case 4). This results in a value in the range of
[−1,1] and squaring it gives a value in [0,1] which is
a diminished distance to accommodate for the close-
ness between the neutral rating and the other two rat-
ings. Finally, the whole fraction gives a result in the
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Algorithm 1: Cluster Workers.

Input: current set of clusters H, provoking worker w,
closeness threshold τC

Output: new set of clusters
if w is an exisiting worker then

Cw← getCluster(H,w)
removeWorker(Cw,w)
if Cw is empty then

removeCluster(H,Cw)
end if

end if
new← createNewCluster(w)
addCluster(H,new)
while TRUE do

max←−∞; f irst← null;second← null
for i = 1 to |H|−1 do

for j = i+1 to |H| do
closeness← closeness(Ci,C j)
if closeness > max then

max← closeness
f irst←Ci;second←C j

end if
end for

end for
if max > τC then

merged← mergeClusters( f irst,second)
replaceClusters(H, f irst,second,merged)

else
break

end if
end while
return H

range of [0.5,1] (after calculating the average, adding
1 and then taking the reciprocal). Thus, we subtract
1/2 and multiply by 2 to map the results back to the
interval [0,1]. Of course, any other suitable similarity
measure can be seamlessly used instead depending on
the context for which the framework is used.

Our incremental clustering algorithm is shown as
Algorithm 1. The algorithm is called whenever a new
rating is provided, since it is a new evidence about
what the worker knows and the goal of the clustering
is to group together workers who have similar tastes
and experiences. This is also the case when a new
worker joins the system and there already exists a set
of worker clusters. We utilize an incremental hier-
archical clustering algorithm (Johnson, 1967). We
opted for a hierarchical clustering rather than a flat
one since the number of clusters is not known a priori
and it changes over time as workers rate more items or
as new workers join the platform. Hierarchical clus-
tering is also best suited for incremental clustering as
it avoids recomputing the full hierarchy of clusters

each time a new rating arrives. Note that we do not
store the full hierarchy of clusters at the end, but only
store the final level ending with a flat set of clusters.

Our clustering algorithm takes as input 1) the
worker who provided the new rating (or a new
worker) which we refer to as the provoking worker
w, 2) the current set of worker clusters H, and 3) a
cluster closeness threshold τC, and it returns a new set
of clusters. In case the provoking worker w was an ex-
isting worker who has rated a new item, we remove w
from its own cluster and assign it to a singleton clus-
ter. In case w is a new worker who has just joined the
system, she is also assigned to a singleton cluster after
providing a predefined number of ratings for the most
rated items. The algorithm then follows a bottom-up
approach, merging the two closest clusters and reduc-
ing the number of clusters by one at each iteration.

The closeness of two clusters Ci and C j is com-
puted as the smallest similarity between their workers
(i.e., complete-linkage clustering) as follows:

closeness(Ci,C j) = min
w∈Ci,w′∈C j

sim(w,w′)

Finally, we merge the two clusters Ci and C j with the
highest closeness. We keep on merging clusters as
long as the following condition holds:

∃Ci,C j closeness(Ci,C j)> τC

where τC is a threshold on the closeness between any
two clusters to be merged.

We use complete linkage to ensure that when we
remove the provoking worker from her cluster, the
intra-cluster similarity either stays the same or in-
creases. This in turn means that the affected cluster
stays compact, does not need to be split to improve the
clustering quality, and we can start improving clusters
from the current configuration of clusters, without re-
computing the complete clustering hierarchy. Since
we only add one cluster at each step, very few itera-
tions are needed for updating the clusters and this is
independent from the number of clusters and workers.

4.2 Profile Computation

Each worker w is associated with a profile vector
< w.p1, . . . ,w.pn > representing the worker’s exper-
tise for each itemset I j, where w.p j is the ordered pair
(w.p j.known,w.p j.skill). To compute this profile, we
measure two aspects of the worker: how many items
in I j she knows (i.e., did not rate 0), which we refer
to as w.p j.known and, for the items she knows, how
much she agrees with other expert workers from her
cluster, which we refer to as w.p j.skill. The first com-
ponent of the worker profile w.p j.known is computed
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as follows:

w.p j.known =
#known(w, I j)

#ratings(w, I j)

where known(w, I j) is the number of items that
worker w knows in I j (i.e., did not rate as 0) and
#ratings(w, I j) is the number of items in I j she has
rated so far (including the 0 rating).

The second component measures how skillful the
worker is for the items she knows. For the skill com-
ponent, we utilize the agreement of the worker w with
other workers from her cluster. The intuition behind
this is that the worker is expected to behave simi-
larly to the rest of the workers in her cluster. Before
we dwell into the details of how we compute agree-
ment between workers, we need to decide on who to
compute agreement with. One alternative is to com-
pute the agreement of worker w with all other workers
from her cluster. This is however prune to some fun-
damental issues. First, in case some non-expert work-
ers are still present in the current worker cluster, their
effect on the agreement might deteriorate the profile
values computed for other, possibly, expert workers.
Moreover, if we compute the agreement with all the
workers in the cluster of w, we would need a lot more
ratings to have sufficient enough ratings to compute
agreements between workers. Note that agreement
depends solely on ratings provided by workers for
items in the current itemset of interest. This is a prob-
lem since we ideally would like to acquire minimum
number of ratings from non-expert workers. In order
to overcome the aforementioned issues, we propose
the following. To compute the skill value w.p j.skill
for worker w, we measure the agreement of worker w
with only the top-k most expert workers for the item-
set I j. We explain how to retrieve the top-k most ex-
pert workers in a given cluster later.

Regardless of whether we measure agreement
with all workers in a cluster or with only expert work-
ers, the rest of the computation procedure for the skill
component of a worker’s profile is the same. To mea-
sure agreement between two workers wi and w j, we
use the same similarity metric used for building our
clusters described in the previous subsection. Our
similarity metric is well adapted to our setting of rat-
ings and is applicable even when only few items have
been rated by both users.

Once we have the agreement of the worker wi with
all the top-k expert workers in her cluster, we aggre-
gate the agreements by taking the average and use this
as the skill for worker wi on itemset I j as follows:

w.p j.skill =
Σw′∈top−kagreement(w,w′)

k
where top-k is the top-k most expert workers in w’s
cluster.

Retrieving the Top-k Most expert Workers in a
Cluster. Recall that in order to compute the skill
component of the profile of a worker w, we need to
measure the agreement between w and the top-k most
expert workers in her cluster Cw with respect to an
itemset I j. In order to retrieve these top-k most expert
workers, we rank all the workers w∈Cw in decreasing
order of their skill components w.p j.skill. We then
take the top-k workers with the highest w.p j.skill val-
ues. Ties are broken arbitrarily using #known(w, I j)
which is the number of items that the worker knows
(i.e., did not rate as 0) from itemset I j.

Initially, we bootstrap the system with a set of ex-
perts, for instance, restaurant or movie critics. These
initial experts are clustered based on their ratings and
their skills are computed based on the overall agree-
ment between them. At step n, when worker skills
need to be updated, the top-k most expert workers are
selected based on their skills computed at step n− 1
and those are used to update the worker skills.

4.3 Utility Optimization

The goal of the utility optimization component is to
pick the best item for a given worker w to rate. More
precisely, we want to pick the items with few ratings
the worker most likely knows and will be able to reli-
ably rate. To be able to do this, we use a utility func-
tion that is composed of two sub-components. The
first component, SetUtility(w, I j), takes into consid-
eration the worker profile and the number of ratings
the worker has already provided for the itemset I j.
The second component, ItemUtility(w, i), takes into
consideration the number of ratings available for the
item i and the closeness of the item to other items the
worker knows.

More precisely, given a worker w and an itemset
I j, the SetUtility component is defined as follows:

SetUtility(w, I j) = β1 · (1−
#ratings(w, I j)

MAXk#ratings(w, Ik)
)

+ β2 · (w.p j.known∗w.p j.skill)

where β1 +β2 = 1, #ratings(w, I j) is the number
of ratings the worker w provided for I j and w.p j is the
profile value of worker w for I j. The first component
of the SetUtility favors itemsets for which the worker
has provided fewer ratings. The second component
measures how expert the worker is with respect to the
itemset.

Similarly, given a worker w and an item i, the
ItemUtility component is defined as follows:
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ItemUtility(w, i) = β3 · (1−
#ratings(i)

MAX j#ratings( j)
)

+ β4 ·
Σ j∈Iw

k
sim(i, j)

|Iw
k |

where β3 + β4 = 1, #ratings(i) is the total number
of ratings for item i and Iw

k is the set of items that
worker w knows (i.e., has not rated as 0). The similar-
ity sim(i, j) is the similarity between two items i and j
and it can be measured based on characteristics of the
items (e.g. geographic distance between restaurants).

The final utility function utility(w, i) of item i be-
longing to itemset I j for worker w is then computed as
the average of ItemUtility(w, i) and SetUtility(w, I j)
as follows:

utility(w, i)=
ItemsetUtility(w, I j)+ ItemUtility(w, i)

2

Note that the utility of item i for worker w or
utility(w, i) is equal to 0 if worker w has already rated
item i since we do not want to acquire more than one
rating for an item by the same worker.

Once the utilities of every item for a given worker
w are computed, we pick the item i for which
utility(w, i) is maximum and provide this item to the
worker w to rate.

4.4 Cheaters Identification

One constant goal of our framework is to identify
cheaters, that is, workers who are consistently pro-
viding misleading ratings. We distinguish two types
of cheaters: i) lazy workers, which assign ratings ran-
domly to complete the rating tasks as fast or as ef-
fortlessly as possible, and ii) malign workers, which
provide misleading ratings to particular items in order
to reduce or raise their average ratings. Our platform
makes use of its different components to achieve this
task. Given a threshold τS, the worker w is considered
a cheater if the following condition holds:

∀ jw.p j.skill ≤ τS

In addition, a worker w is considered a cheater
if she consistently remains in a singleton cluster af-
ter m number of ratings have been collected (other
than don’t know or 0). In either case, the flagged
worker is asked to pass a verification test by asking
her to rate items she previously rated. We then mea-
sure the agreement between the new ratings and the
old ratings, and if the agreement is below a threshold
value τ, the worker is verified to be a cheater and is
banned from the system. Otherwise, the worker pro-
file is updated based on the agreement between the
worker’s new and old ratings. In the next section, we

experiment with other strategies to deal with cheaters
such as weighting down their ratings when aggregat-
ing items’ ratings.

5 EVALUATION

We evaluate the effectiveness of our framework for
acquiring reliable ratings from expert workers using
four different sets of experiments. The first set veri-
fies the quality of ratings acquired for a real dataset
of restaurants by assessing the performance of a rec-
ommendation system after identifying cheaters. This
set of experiments clearly highlights the importance
of the identification of cheaters. In these experiments,
we also test the effect of worker expertise with respect
to itemsets on the quality of the ratings acquired.

Next we perform parameter tuning to study the ef-
fect of the different parameters in our system such as
the clustering algorithm parameters, cheaters identi-
fication threshold and the weights used in the utility
function. Parameter tuning was performed on both
synthetic and real datasets about restaurants.

The third set of experiments studies our utility
function more closely and compares it with a num-
ber of alternative utility functions to test its effect on
the overall performance of the system. In all these
three experiments, we used the case of lazy workers
to represent cheaters, as it was easier to simulate and
since the results of the experiments hold regardless of
the type of cheaters. In the fourth and final experi-
ment, we focus on the other type of cheaters, namely
malign workers, which are workers who intentionally
give misleading ratings to particular items in order to
reduce or raise their average ratings. In particular, we
evaluate the effectiveness of our framework in identi-
fying such cheaters.

5.1 Rating Quality Experiments

Effect of Filtering Out Lazy Workers. The main
goal of our work is to build a crowdsourcing service
for collecting reliable high-quality ratings. One major
application that could benefit from our work is rec-
ommendation, as we assume that using reliable rat-
ings we can improve recommendation accuracy. To
validate this hypothesis, we measured the difference
in prediction errors by an off-the-shelf recommender
algorithm when using the full dataset and when only
using the ratings of trusted workers, i.e. removing the
identified lazy workers.

To run this evaluation, we built a real dataset by
collecting ratings for 50 selected restaurants in Greno-
ble, France, from students and researchers using a
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custom website. We had a total of 57 workers, seven
of which were experts and 10 were lazy workers (as-
signing random ratings) and acquired a total of 540
ratings. The experts were colleagues very familiar
with the restaurants in Grenoble.

We analyse the recommendations built on differ-
ent subsets of our ratings to identify which one have
higher quality and let the algorithm build better rec-
ommendations. We used user-based collaborative fil-
tering as a recommendation algorithm, with cosine
similarity on rating vectors to define, for each user,
a fixed-size neighborhood of 10 most similar users.
Such a configuration has been shown to perform quite
well and is very popular in many successful recom-
mendation systems (Lee et al., 2012).

We ran a recommender algorithm evaluation
based on a 70-30 training-test split of data and
root mean squared error (RMSE) as evaluation met-
ric. We ran the algorithm using the training set as
known ratings and predicted the ratings (computed as
similarity-wighted mean of neighbors ratings) for the
worker-item pairs already present in the test set. In
this way, we compared the predicted rating and the
real rating assigned by the worker to the item and
measured the error (according to RMSE) the algo-
rithm made. The smaller the error the better the pre-
diction, and hence the better the quality of the data
in the training dataset. For evaluation, we considered
only “known” ratings (i.e. ratings 1, 3 and 5) and we
split the dataset by time, identifying a specific date
such that 70% of the ratings in our dataset were pro-
vided before that date (i.e. the training set) and 30%
of the ratings were provided after (i.e. the test set).

Using the full dataset, we obtained an RMSE of
2.202. Removing lazy workers, the RMSE was 1.021.
We can therefore conclude that the ability to isolate
cheaters in this dataset reduced recommendation error
by 53.6%. This result is quite promising and shows
the utility of cheater identification for a popular rec-
ommendation algorithm.
Effect of Filtering Out Ratings of Non-expert
Workers. Moreover, we know which itemsets the
workers are deemed to be more experts for, and we
can exploit this information to filter out lower quality
ratings (i.e., those for which workers are not consid-
ered to be experts enough to rate). Recall that our
utility function makes use of the worker profile w.p j
to identify the itemsets for which the worker can give
the best ratings. This means that ratings provided
to items in itemsets for which the worker has higher
profile values should be of higher quality since the
worker is considered to be an expert for items they
contain. For this reason, by filtering out the ratings
workers provided to itemsets they are less experts for,

Figure 2: RMSE as ratings for itemsets on which workers
are less expert about are filtered out.

i.e., with lower profile value, we will increase the
quality of the ratings used to compute recommenda-
tions. Recall that the profile value of a worker w
for an itemset I j is composed of two components:
1) w.p j.skill which is measured as the agreement of
worker w with the top-k most experts in her cluster
with respect to itemset I j, and 2) w.p j.known which
is measured as the number of items in I j the worker
knows (i.e., did not rate as 0). Finally, the two com-
ponents of the worker profile are then used in our
utility function to represent the worker expertise as
expertise(w, I j) = w.p j.known∗w.p j.skill.

The minimum expertise value we obtained in
our dataset was zero, so we tried different expertise
thresholds τE ranging from 0.1 to 0.9. After removing
all ratings assigned by workers to itemsets for which
they had expertise lower than the threshold, we split
the dataset into training and test sets using a temporal
cutoff as in the previous experiment (70% training set,
30% test set). We computed the RMSE for the same
user-based collaborative filtering algorithm used pre-
viously (with a fixed-size neighborhood of 10 workers
with the highest cosine similarity).

As can be seen in Figure 2, the RMSE decreases
as the threshold τE increases, confirming that the rat-
ings for which workers are more expert are of better
quality and enable the recommendation algorithm to
produce more precise predictions. The RMSE imme-
diately falls to 1.819 with τE = 0.1, and reaches the
lowest value of 1.029 with τE = 0.7. As the value of
τE increases, we end up with too few remaining rat-
ings and for τE = 0.9 the recommendation algorithm
is not able to compute any prediction. As can be seen,
the final RMSE is always lower than the one we ob-
tained before removing lazy workers (2.202).
Effect of Weighting Ratings by Worker Expertise.
Filtering out the ratings of non-experts or flagged
cheaters is a huge expense. In fact, they can still be of
some value when aggregated. Another possibility is
to weight the ratings by the expertise of the workers
providing them when aggregating the items’ ratings.
To test the effect of this on the final aggregated rat-
ings, we created two lists of aggregated ratings. In
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the first list, which we refer to the unweighted list, the
ratings for each item were aggregated by taking the
average over all the ratings provided for this item by
all workers including lazy workers. In the second list,
which we refer to as the weighted list, the ratings of
each item were aggregated by taking a weighted av-
erage over all the ratings provided for this item by all
workers (including lazy workers) such that each rating
is weighted by the expertise of the worker that pro-
vided the rating at the time the rating was provided.
To compare these two lists of aggregated ratings, we
created a third list of aggregated ratings and used this
list as a reference list. In this third list of aggregated
ratings, the rating of each item was computed as the
average of all ratings provided for the item by only
“trusted” workers (excluding lazy workers).

We computed the RMSE (root mean squared er-
ror) for each of the two lists, the unweighted list and
the weighted one, using the reference list as the “true”
average ratings. We obtained an RMSE of 0.201 for
the unweighted list and an RMSE of 0.077 for the
weighted list, with a reduction of 62% in average rat-
ing prediction. This clearly highlights the merits of
weighting ratings by worker expertise when aggregat-
ing ratings. This can also be seen as another strategy
for dealing with cheaters, instead of using a verifica-
tion test and banning workers that do not pass it.

5.2 Parameter Tuning

In this set of experiments we study the effect of the
various parameters of our framework on cheater iden-
tification accuracy. We generated a synthetic dataset
and computed the accuracy of cheater identification
for different values of the worker clustering thresh-
old, the weights used in the utility function and the
minimum skill threshold. We then tested the selected
values on other larger datasets and a real-world one.
Here we focused only on lazy workers as cheaters.

The synthetic dataset consisted of 100 fake restau-
rants, randomly placed in a 20-km diameter, divided
into four non-overlapping itemsets I1, I2, I3, and I4,
of the same size (i.e., 25 restaurants each). We gen-
erated 100 workers divided in the following way: 15
initial experts, 15 lazy workers and 70 trusted work-
ers (i.e. providing truthful ratings). Each worker rated
40 restaurants, for a total of 4000 ratings with a value
greater than zero (i.e., no don’t know or 0 ratings).
The 15 initial experts in our dataset were divided into
three non-overlapping groups each consisting of five
experts. The first group liked itemsets I1, and I2, the
second group liked itemsets I3 and I4, and the third
group liked I1 and I4. In order to make rating gen-
eration simpler, we assumed all expert workers ei-

ther liked or disliked all the items they know in any
given itemset for which they provided ratings. This
is a simplification of a real-world scenario where it is
more likely that workers will like some items in an
itemset and dislike others in the same itemset. Simi-
larly, our 70 trusted workers were divided into seven
non-overlapping groups each consisting of 10 work-
ers. The first three groups were similar to the three
groups of experts, that is, they liked the same itemsets
as the three groups of experts. The fourth group of
trusted workers liked I1 and I3, the fifth group liked
I2 and I4, the sixth group liked I1 only, and the sev-
enth and final group liked I3 only. Rating generation
for trusted workers was done as follows. All trusted
workers gave a rating of 5 to items within the itemsets
they liked with a 70% probability, and 3 (i.e., neutral)
with a probability of 30% . The same happened for
items they didn’t like where a rating of 1 was gener-
ated with a 70% probability and a rating of 3 was gen-
erated with a 30% probability. Finally, the remaining
15 workers in our dataset were designed to be lazy
workers with random ratings.

Using the above synthetic dataset, we tuned the
different parameters in our framework. The first pa-
rameter is the similarity threshold for our clustering
algorithm. Recall that our framework continuously
re-clusters workers in the system as new ratings ar-
rive. Our incremental hierarchical clustering algo-
rithm merges clusters continuously until no two clus-
ters can be merged (i.e., the closeness between any
pair of clusters is lower than a threshold τC). We ran
our algorithm with different values of τC keeping all
other parameters fixed to some randomly selected val-
ues: β1,β2,β3 and β4 = 0.5 for the utility functions
and τS = 0.3 for the minimum skill threshold. We
then computed the precision, recall and F2 measure
for detecting cheaters, where

precision =
#true positives

#true positives+# f alse positives

recall =
#true positives

#true positives+# f alse negatives

F2 measure = (1+22)∗ ( precision∗ recall
(22 ∗ precision)+ recall

)

We used the F2 measure since we wanted to sacrifice
a bit of precision in favor of a higher recall. That is,
we want to detect as many lazy workers as possible,
even with the price of falsely flagging some trustful
workers as cheaters. This is not a problem in practice,
since trustful workers will eventually pass the verifi-
cation test after being flagged as cheaters.

We obtained the highest F2 measure with τC = 0.6
(see Figure 3(a)). We also measured the quality of the
clusters obtained with our algorithm with respect to
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(a) Best value for τC.

(b) Best value for τS.

(c) Best values for β1 and β2, with β2 values on
top and β1 values on bottom.

(d) Best values for β3 and β4, with β4 values on
top and β3 values on bottom.

(e) Legend.
Figure 3: The best values for system parameters.

the ideal set of clusters computed once all the ratings
were generated. On average, 76% of workers were
clustered correctly, with an 83% precision when the
selected similarity threshold was used. In a similar
fashion, we identified the best values for the other pa-
rameters in our framework: τS = 0.5 for the minimum
skill threshold; β1 = 0.3 and β2 = 0.7 for itemset util-
ity; and β3 = 0.6 and β4 = 0.4 for item utility. The
results of this evaluation are shown in Figure 3.

To test the identification of cheaters on a larger
dataset, we built four other synthetic datasets of big-
ger size, each one with 1000 workers and 300 items
divided into six itemsets I1 through I6. The set of ex-
perts was composed of 100 workers equally divided
into five groups, same for all datasets. The groups
have tastes like the ones presented for the smaller
dataset, with the addition of an itemset-independent
taste: one group liked only items whose id was a mul-

Figure 4: Results of the 4 synthetic datasets with 1000
workers.

tiple of three. This last group represents a more realis-
tic group of workers who like and dislike items within
the same itemset and across itemsets. Experts’ ratings
were generated with the correct rating (i.e., 1 for items
the expert didn’t like and 5 for items she liked) with
80% probability and the neutral rating (with value 3)
with 20% probability.

The main difference between the four datasets in
this evaluation is the number of lazy workers. Dataset
A had 100 cheaters, dataset B had 200 cheaters,
dataset C had 300 cheaters and dataset D had 400
cheaters. Trusted workers were equally divided into
10 different groups, five of which correspond to the
ones of the experts while the rest are composed in the
same way, but with different combinations of item-
sets. Trusted workers gave correct ratings (either
1 or 5) with a 70% probability and neutral rating
(i.e., 3) with a 30% probability. Each dataset con-
tained around 120,000 ratings. As shown in Figure 4,
our framework performs consistently well for all four
datasets, reaching full precision and recall for dataset
D (i.e., as the number of cheaters increase). Each task
was run in about 2 seconds on average, from received
rating to visualization of next item to rate, indicating
the feasibility of our approach as a web service for
crowdsourcing rating tasks.

Finally, we ran our framework with the best pa-
rameter values determined by the previous experi-
ment on our real dataset. We obtained a precision of
0.727, a recall of 0.800 and an F2 measure of 0.784.
These results confirm the ability of our framework to
correctly identify cheaters in a real setting.

5.3 Utility Function Experiments

Our utility function has no influence on the identifi-
cation of cheaters: cheaters will sooner or later reveal
themselves as they rate more items, regardless of the
order in which items are presented. The importance
of the utility function is the time needed to identify
cheaters. Clearly, the sooner they are identified, the
better. If the framework needs to collect many ratings
before identifying cheaters, this would be costly and it
could happen that a cheater might stop giving ratings
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before the framework had had the chance to identify
her as one. In this case, the ratings provided by this
unidentified cheater would be considered reliable.

To test the effect of our utility function on
the overall performance of the system, we com-
pare it to two other baseline utility functions: i) a
recommendation-based utility function, in which the
next item shown to the worker is the one recom-
mended to the worker according to the ratings she
already gave using an off-the-shelf recommendation
system, and ii) a random utility function, in which
the next item is randomly selected. Recall that our
proposed utility function is based on the number of
ratings already assigned to an itemset, the profile of
the worker for the itemset, the number of ratings al-
ready given for an item and the similarity of the item
with other items rated by the worker. To test which
utility function performs best, we analyzed the num-
ber of ratings the framework asked each cheater be-
fore identifying her, using our real dataset of restau-
rants. Using our real dataset, on average the ran-
dom utility function needed to show 25 items and the
recommender-based utility function needed to show
32 items, while our utility function needed to present
only 17 items. These different results are statistically
significant according to t-tests between the pairs (p-
values: 0.0001, 0.008, 0.03, α-level: 0.05). This
means that our utility function identified cheaters at
least 32% earlier than the other two functions.

Another important aspect of our utility function is
that it keeps the number of ratings balanced over items
which is a main goal of our data acquisition that dis-
tinguishes it from a recommendation system. When
the framework chooses which item to show next, it
gives higher priority to items that have fewer ratings,
balancing in this way the number of ratings across
items. To verify this, we analyzed how many ratings
items had after N data acquisition rounds, for different
values of N. We used standard deviation to compute
rating distributions. The results are shown in Table 1.
We can see that all utility functions have close values
of standard deviation, with our utility function having
smaller values for the first 150 ratings. A smaller de-
viation means that the number of ratings across items
is quite balanced. When we consider a higher number
of ratings, the standard deviation increases even with
our utility function. This is mainly an effect of the
initial items proposed to the worker when she arrives.
Since the system aims to gather enough ratings per
worker to be able to cluster them, the first items pro-
posed to workers are those with the highest number of
ratings. We thus end up with a small set of items that
have more ratings than others, causing this problem
of unbalanced ratings.

Table 1: Standard deviation of number of ratings per item.

N Our util-
ity

Recommendation-
based utility

Random
utility

150 0.2 0.53 0.59
300 0.99 0.53 0.57
600 1.2 0.67 0.57
1200 1.32 1.67 1.11
2000 1.94 1.81 1.75

Figure 5: Average recall of malign workers identification.

5.4 Malign Workers Experiments

So far, we have only considered lazy workers as
cheaters. There are other ways for cheating and a par-
ticularly appealing category of them are the malign
ones. Malign workers are workers who intentionally
give misleading ratings to particular items to reduce
or raise their average ratings.

In this set of experiments, we added malign work-
ers to our real and synthetic datasets and tested how
many of them are correctly marked as cheaters. For
the synthetic dataset, these malign workers provided a
percentage of “truthful” ratings by following the same
behavior of some of the experts in the system (as these
behaviors are well defined). For the real dataset, the
malign worker followed the behavior of the major-
ity of the other workers (i.e., giving a positive rat-
ing when the majority gave a positive rating and vice
versa). For the rest of the items, the malign work-
ers provided opposite ratings to those provided by the
experts or the majority depending on the dataset, re-
ducing or raising the average ratings of these items.

We start by testing how many misleading ratings
these workers had to give before being identified as
cheaters. In the synthetic dataset used for parameter
tuning (with 100 workers), we added 24 malign work-
ers divided into four groups of six workers with dif-
ferent percentages of misleading ratings: 10%, 20%,
30% and 40%. The framework identified 87% of the
malign workers on average (21 of 24), and 71% of the
ones that it missed to identify had only 10% of mis-
leading ratings. Considering only the workers with
a higher percentage of misleading ratings, the frame-
work identified on average 95% of the malign work-
ers. We conclude then that the framework is able
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to correctly identify almost all malign workers when
they give at least 20% of misleading ratings.

We also computed the recall of malign workers’
identification as we vary the clustering threshold (τC).
Since workers are marked as cheaters when they fail
to join clusters, a different value for this parameter
could increase or decrease the amount of misleading
ratings the workers should provide to be identified as
cheaters by our framework. Figure 5 shows that the
recall remains stable with varying τC values. On av-
erage, 75% of malign workers that were not identi-
fied as cheaters had only 10% of misleading ratings.
This confirms the previous limit of 20% of mialsedi-
nag ratings as the minimum amount of biased ratings
that a malign worker has to provide to be identified as
a cheater by our system.

Finally, we confirmed the above results using our
real dataset. We added 10 malign workers with 20%
of misleading ratings and the rest of the ratings fol-
lowing the majority of the other workers, and the
framework correctly identified 93% of the malign
workers on average. These results are quite promis-
ing, but marking malign workers as cheaters is only
half of the work. To complete the work, malign work-
ers should not be able pass the verification test. How-
ever, since malign workers are aware of their mislead-
ing ratings, they will be able to reproduce their ratings
when the verification test is run. We leave the iden-
tification of a different verification test that is hard to
pass for malign workers but not for trustful workers
falsely flagged as cheaters to future work.

6 CONCLUSION

We presented a crowdsourcing platform to acquire re-
liable ratings of items. Our data acquisition platform
differs from existing crowdsourcing systems and rec-
ommendation systems because it targets the most ex-
pert users to provide ratings for items with the fewest
number of ratings. Our system relies on incremen-
tal clustering to identify cheaters and a carefully-
designed utility function to assign items to rate to
the most expert workers. Our experimental evaluation
on both synthetic and real restaurant datasets showed
that detecting cheaters, acquiring ratings from expert
workers only, and automating the rating acquisition
process all have a positive impact on both the cost
of acquiring reliable ratings and on improving recom-
mendation accuracy in popular recommendation sys-
tems. In the future, we plan to run more experiments
on other datasets including movie datasets and to de-
sign other utility functions that are most adapted to
such datasets.
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