
Beyond CPU: Considering Memory Power Consumption of Software

Hayri Acar1, Gülfem I. Alptekin2, Jean-Patrick Gelas3 and Parisa Ghodous1
1LIRIS, University of Lyon, Lyon, France
2Galatasaray University, Istanbul, Turkey

3ENS Lyon, LIP, UMR 5668, Lyon, France

Keywords: Power Consumption, Sustainable Software, Energy Efficiency, Green IT.

Abstract: ICTs (Information and Communication Technologies) are responsible around 2% of worldwide greenhouse
gas emissions (Gartner, 2007). And according to the Intergovernmental Panel on Climate Change (IPPC)
recent reports, CO2 emissions due to ICTs are increasing widely. For this reason, many works tried to propose
various tools to estimate the energy consumption due to software in order to reduce carbon footprint.
However, these studies, in the majority of cases, takes into account only the CPU and neglects all others
components. Whereas, the trend towards high-density packaging and raised memory involve a great increased
of power consumption caused by memory and maybe memory can become the largest power consumer in
servers. In this paper, we model and then estimate the power consumed by CPU and memory due to the
execution of a software. Thus, we perform several experiments in order to observe the behavior of each
component.

1 INTRODUCTION

ICTs (Information and Communication
Technologies) are responsible around 2% of
worldwide greenhouse gas emissions (Gartner,
2007). And according to the Intergovernmental Panel
on Climate Change (IPPC) recent reports, CO2
emissions due to ICTs are increasing widely. For this
reason, many works tried to propose various tools to
estimate the energy consumption due to software in
order to reduce carbon footprint.

Since a few years, we have been able to find
several research, on the web tools, (Power Supply
Calculator, 2014), (eXtreme Power Supply
Calculator, 2006), (Computer Power Consumption
Calculator) that allow estimating the energy
consumed by each component of a computer. Doing
so, the user chooses the feature of the component and
an estimation is given about related power
consumption. However, this approach provides quite
vague results so that a developer cannot use them as
a guide when developing the software.

That is the reason of the appearance of other
measurement means: Measurement of power
consumption via hardware devices such as power
meter or printed circuits (Kern et al., 2013); (Joseph
et al., 2001); (Kamil et al., 2008). Using them, it is

more possible to obtain accurate and efficient results
for energy consumption. However, using these types
of devices is complicated because it is necessary to
have these devices and connect them to different
components. What is more with this method, it is
impossible to measure the energy consumed by
virtual machines and applications on process.

In later years, a new methology has appeared
which consists of estimating the energy consumed by
a software based on mathematical formula
established according to the characteristics of each
components susceptible to consume power. But, these
tools (Kansal et al., 2010); (Wang et al., 2011);
(Noureddine et al., 2012), in the majority of cases,
takes into account only the CPU and neglects all
others components. Moreover, the trend towards
high-density packaging and raised memory involve a
great increase of power consumption caused by
memory and maybe memory can become the largest
power consumer in servers (Minas and Ellison, 2012).

In this paper, we will present a methodology to
estimate the energy consumed by CPU and memory.
Through different experiments we show the
performance of the proposed methodology.

Acar, H., Alptekin, G., Gelas, J-P. and Ghodous, P.
Beyond CPU: Considering Memory Power Consumption of Software.
In Proceedings of the 5th International Conference on Smart Cities and Green ICT Systems (SMARTGREENS 2016), pages 417-424
ISBN: 978-989-758-184-7
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

417

2 CPU MODELIZATION

For a long time the CPU was considered the largest
energy consumer component (Kim et al., 2014) in a
computer. That is why, in each research work, the
modelization of his structure has been taken into
account to estimate the energy consumed by an
computer program only.

Several factors contribute to the CPU power
consumption and globally it is possible to give the
following formula (1) in order to describe the power
consumed by the CPU:

Pେ୔୙ ൌ 	Pେ୔୙,ୢ୷୬ୟ୫୧ୡ ൅ Pେ୔୙,ୱୡ ൅	Pେ୔୙,୪ୣୟ୩ (1)

where ஼ܲ௉௎,ௗ௬௡௔௠௜௖ represents dynamic power
consumption, ஼ܲ௉௎,௦௖ corresponds to short-circuit
power consumption and ஼ܲ௉௎,௟௘௔௞, power loss due to
transistor leakage currents and varies with the
temperature (Zapater et al., 2015). The last two power
are due to at the hardware manufacturing. Hence,
only the manufacturer can reduce the energy
consumption due to hardware. So, it is possible to
group this two power in order to obtain a static power
on the equation (2):

Pେ୔୙,ୱ୲ୟ୲୧ୡ ൌ 	Pେ୔୙,ୱୡ ൅	Pେ୔୙,୪ୣୟ୩ (2)

Thus, it is possible to reformulate the equation (1) as
follows (3):

Pେ୔୙ ൌ 	Pେ୔୙,ୢ୷୬ୟ୫୧ୡ ൅	Pେ୔୙,ୱ୲ୟ୲୧ୡ (3)

In our case, we want to reduce the energy consumed
by software. For this, we take account only
஼ܲ௉௎,ௗ௬௡௔௠௜௖ to have more accurate and efficient

results.
The CPU, like many integrated circuit, is a set of

switches. So the main power consumption in CPU is
due to charge and discharge of capacitors during
computations that we can represent with the
following figure 1:

Figure 1: One switch in CPU.

The energy can be expressed (4) as follows:

E୚ୢୢ ൌ න i୚ୢୢሺtሻ	. Vୢୢ	. dt
ஶ

଴
 (4)

We also know that the current is given with the
following expression (5):

i୚ୢୢሺtሻ ൌ C୐ .
dv୭୳୲
dt

 (5)

Thus, the expression (4) becomes (6):

E୚ୢୢ ൌ Vୢୢ . C୐ ׬ 	
ୢ୴౥౫౪
ୢ୲

	dt
ஶ
଴

(6)
E୚ୢୢ ൌ Vୢୢ

ଶ . C୐

We assume that in a switching cycle, there are low-
to-high and high-to-low transition. So, we can obtain
the power formulate (7) of this gate:

P ൌ f . Vୢୢ
ଶ . C୐ (7)

where f is the frequency.
For N gates, we must multiply the power by N. In

a complex circuit the situation is more complicated,
as not all the gates commute at the same frequency.
Hence, we can define a parameter α < 1 as the average
fraction of gates that commute at every cycle.

Thus, the next expression of the power (8):

P ൌ f . Vୢୢ
ଶ . C୐	. N	. α (8)

By combining the constants as follows (9):

β ൌ C୐ . N . α (9)

we obtain (10):

Pେ୔୙,ୢ୷୬ୟ୫୧ୡ ൌ β	. f	. Vୢୢ
ଶ (10)

Moreover, we want to obtain the power consumed by
the program. Thus, the percentage of the process Id
(௜ܰௗ) is multiplied with the previous expression (10)
as follows (11):

Pେ୔୙,ୢ୷୬ୟ୫୧ୡ,୧ୢ ൌ Pେ୔୙,ୢ୷୬ୟ୫୧ୡ	. N୧ୢ (11)

Thanks to these formulas, we can say that there are
several ways to reduce the power consumption due to
CPU:

Table 1: Possibilities to reduce power consumption of the
CPU.

Solutions Technics

Voltage reduction
Dual voltage CPUs

Dynamic voltage scaling
Overvolting/Undervolting

Frequency reduction
Underclocking

Dynamic frequency scaling
Capacitance reduction Integrated circuits

Dual voltage CPUs consist of uses a split-rail
design to allow lower voltages to be used in the

SMARTGREENS 2016 - 5th International Conference on Smart Cities and Green ICT Systems

418

processor core while the external Input/Output (I/O)
voltages remain unchanged.

Dynamic voltage scaling: the voltage used is
increased (Overvolting) or decreased (Undervolting)
depending upon circumstances.

Underclocking: modify timing settings to run at a
lower clock rate than is specified.

Dynamic frequency scaling: the frequency of a
microprocessor can be automatically adjusted for
saving energy.

Integrated circuits: replace PCB (Printed Circuit
Board) traces between two chips.

So, we defined a mathematical formula in order to
estimate the power consumed by the CPU. And, we
noted the different ways to save energy.

Thus, should be limited to the energy
consumption of the CPU or does it take into account
other components whose energy consumption could
be represent an importance compare to the CPU ?
That is why, we will try to model the energy
consumption due to Memory.

3 POWER CONSUMPTION OF
DRAM

According to (Minas and Ellison, 2012), the power
used on servers is increasing and the two largest
consumers of power are the processor and the
memory. Otherwise, several research works try to
optimize systems to reduce DRAM power
consumption:
 (Kang et al., 2010);
 (Hur and Lin, 2008);
 (Emma et al., 2008);
 (Zheng et al., 2008);
 (Vogelsang, 2010).

There are also some memory system simulator:
 DRAMSim2 (Rosenfeld et al., 2011);
 Cacti 5.1 (Thoziyoor et al., 2008);
 Micron System Power Calculator (Micron, 2007).

That is why, we choose to study the DRAM in order
to model his power consumption. We need to use
datasheet values from DRAM manufacturer to
establish an expression to estimate the power.

As the CPU, we are interested only by the
dynamic power consumed because we can only save
energy in this part. Thus, based on (Micron, 2007) we
assume that the dynamic power is composed of:
 Activate power;
 Precharge power;

 Read power;
 Write power.

To modelize these powers, we need to understand the
functionality of a DDR3 SDRAM. The master
operation is controlled by clock enable (CKE) that
must be high to allow the DRAM to receive activate,
precharge, read, and write commands. And in this
situation, commands begin to propagate across the
DRAM command decoders, and the activity rises the
power consumption.

We regroup all the parameters that we will use to
calculate the following powers in the table 2.

3.1 Activate Power

The first command sent to the DRAM, during normal
working, is an activate command that chooses a bank
and row address in order to allow a DDR3 SDRAM
to read or write data. The data, that is stored in the
cells of the chosen row, is then transferred from the
array into the sense amplifiers. Then, the DRAM past
in the active state. The precharge command restores
the data from the sense amplifiers into the memory
array and resets the bank for the next activate
command. This leaves the bank in its precharge
condition.

Thus, the following expression (12) can be used
to estimate activate power:

P୅ୡ୲୧୴ୟ୲ୣ ൌ PsysሺACT_PDNሻ
൅ PsysሺACT_STBYሻ
൅ PsysሺACTሻ

(12)

where:

PsysሺACT_PDNሻ ൌ IDD3P	 ∗ 	Vcc	
∗ BNK_PRE	
∗ 	CKE_LO_ACT	
∗ 	 ሺVdd	/	Vccሻ²	
∗ syst_ck_freq	/	1000	
∗ Tck_used

(13)

PsysሺACT_STBYሻ ൌ IDD3N	 ∗ 	Vcc	 ∗ 	 ሺ1	
െ BNK_PREሻ 	∗ 	ሺ1	
െ 	CKE_LO_ACTሻ 	
∗ 	 ሺVdd	/	Vccሻ²	
∗ syst_ck_freq	/	1000	
∗ Tck_used

(14)

PsysሺACTሻ ൌ ሺIDD0 െ	ሺIDD3N	
∗ tRAS / tRC	 ൅ 	IDD2N	
∗ 	 ሺtRC	 െ 	tRASሻ	/	tRCሻሻ 	
∗ Vcc ∗ tRC	/	tRRDsch	
∗ ሺVdd / Vccሻ²

(15)

So, activate power depends of many factors. Each
term of these equations are summarized on the Table
2.

Beyond CPU: Considering Memory Power Consumption of Software

419

3.2 Precharge Power

Every activate command, that opens a row, have a
precharge command, that closes the row, associated
with it.

Precharge power can be formulated with the
equation (16):

P୔୰ୣୡ୦ୟ୰୥ୣ ൌ 	PsysሺPRE_PDNሻ +
Psys(PRE_STBY)

(16)

where:

PsysሺPRE_PDNሻ 	ൌ Idd2P	 ∗ 	Vcc	
∗ 	BNK_PRE	
∗ 	CKE_LO_PRE	
∗ 	ሺVdd /	Vccሻ²	 ∗ 	1

(17)

PsysሺPRE_STBYሻ 	
ൌ 	IDD2N	 ∗ 	Vcc	
∗ 	BNK_PRE	 ∗ 	ሺ1	
െ 	CKE_LO_PRE%ሻ	
∗ 	ሺVdd	/	Vccሻ²	
∗ 	syst_ck_freq	/	1000	
∗ 	Tck_used

(18)

Precharge power depends also of several factors that
are defined on the Table 2.

3.3 Read Power

During active state, data can be read from or written
to the DDR3 SDRAM. A read command decodes a
specific column address associated with the data that
is stored in the sense amplifiers. The data from this
column is driven across the I/O, gating to the internal
read latch. From there, it is multiplexed onto the
output drivers.

Read power can be expressed as follows (19):

Pୖ ୣୟୢ ൌ 	 ሺIDD4R	 െ IDD3Nሻ	∗ 	Vcc	
∗ 	8	/	Blength	 ∗ 	RDsch
∗ 	ሺVdd	/	Vccሻ²	
∗ 	syst_ck_freq	/	1000	
∗ 	Tck_used

(19)

Each term of this equation is also described on the
Table 2.

3.4 Write Power

The power needed for a write data is similar to the
read data except the data propagates in the opposite
direction. Data from the DQ pins is latched into the
data receivers/registers and is transferred to the
internal data drivers that transmit the data to the sense
amplifiers across the I/O gating and into the decoded

column address location.
Write power is defined with (20):

P୛୰୧୲ୣ ൌ ሺIDD4W െ IDD3Nሻ	∗ 	Vcc	
∗ 8 / Blength	
∗ 	WRsch	
∗ 	ሺVdd	/	Vccሻ²	
∗ syst_ck_freq	/	1000	
∗ Tck_used

(20)

Each parameter of this formula is also expressed on
the Table 2.

3.5 DRAM Total Power

DRAM total power (21) is obtained by summing all
the equations (12), (16), (19) and (20) of powers
defined in the preceding paragraphs.

Pୈୖ୅୑ ൌ P୅ୡ୲୧୴ୟ୲ୣ ൅ P୔୰ୣୡ୦ୟ୰୥ୣ ൅	 Pୖ ୣୟୢ

൅ P୛୰୧୲ୣ
(21)

Moreover, we want to calculate the power consumed
by the application. That is why, the usage percent of
the process Id (ܯ௜ௗ) is multiplied with the previous
expression (21) as follows (22):

Pୈୖ୅୑,୧ୢ ൌ Pୈୖ୅୑	.M୧ୢ (22)

Table 2: Data sheet specifications.

Parameter Description
Idd2P Precharge power-down current
Vcc Voltage

BNK_PRE
The percentage of time that all banks on

the DRAM are in a precharged state

CKE_LO_PRE
Percentage of the all bank precharge time

for which CKE is held LOW
Vdd System VDD

IDD2N Precharge standby current
syst_ck_freq System CK frequency

Tck_used Used for current measurements
IDD3P Active power-down current

CKE_LO_ACT
Percentage of the at least one bank active

time for which
CKE is held LOW

IDD3N Active standby current

IDD0
Operating current: One bank active-

precharge
tRAS Used for IDD0 calculation
tRC Activate-to-activate timing

tRRDsch
The average time between ACT

commands to this DRAM
IDD4W Operating burst write current
Blength Burst length

WRsch
The percentage of clock cycles which are

inputting write
data to the DRAM

IDD4R Operating burst read current

RDsch
The percentage of clock cycles which are

outputting read
data from the DRAM

SMARTGREENS 2016 - 5th International Conference on Smart Cities and Green ICT Systems

420

Thus, we established also the relation allowing us
to estimate the power consumed by DRAM. Hence,
we implemented a tool and realize some experiments
in order to see the behavior of DRAM compare to
CPU.

4 EXPERIMENTS

4.1 Devices Used

We used the laptop ASUS model N751J composed of
a CPU Intel Core i7-4710HQ (2.5GHz) and a RAM
16 Go (2 * 8 Go) DDR3 1600 MHz.

To run tests, we developed a tool TEEC (Tool to
Estimate Energy Consumption), whose model is
shown in Figure 2, in Java programing language
because depending on (Noureddine, 2012) Java
represent the language with the least power
consumption during compilation and execution steps
in default parameter settings of the compiler. In this
tool TEEC, we use Sigar library (Morgan and
MacEachern, 2010) in order to get information about
the CPU and the RAM. Moreover, we use also the
parameter provides by manufacturers. And, Java
Agents allows us to the instrumentation capabilities
to an application.

Figure 2: Model of our tool TEEC.

Thus, using TEEC, we realized several different
tests in order to observe the variation of the power
consumption due to the CPU and the memory and
compare them.

4.2 Source Code Adjustment

Based on (Kambadur and Kim, 2014), we realize the
following tests in order to see the impacts of source
code on CPU and memory power consumption.

4.2.1 Strength Reduction

Strength reduction consists of replacing an operation
by a similar operation. The most common example of
strength reduction is using the shift operator to

multiply and divide. For instance, a >> 2 can be
used in place of a / 4, and a << 1 replaces a *
2.

In our case in order to see the behavior of this
replacement, we execute the same operation several
time (here: 50000 repetitions). So, we can observe the
results on the Figures 3a and 3b.

Figure 3a: Strength reduction unoptimized.

Figure 3b: Strength reduction optimized.

For this test, we observe that the DRAM power
consumption remains constant in the two cases and
the time elapsed is similar. The CPU power
consumption is less important after the strength
reduction. This show, the impact of the code source
on the CPU power consumption. Moreover, in the
two cases, we observe that the CPU power varies and
sometimes these values are close to DRAM values.
Thus, we can say that the DRAM power consumption
is not always neglected in front of CPU power
consumption.

4.2.2 Eliminate Common Subexpressions

To remove redundant calculation, we eliminate
common subexpressions. This part of code:

double a = c * (d / e) * f;
double b = c * (d / e) * g;

can be rewritten as:

Beyond CPU: Considering Memory Power Consumption of Software

421

double h = c * (d / e);
double a = h * f;
double b = h * g;

We run test in a loop of 50000 repetitions to observe
the variation of power. The results are in Figure 4a
and 4b.

Figure 4a: Subexpression unoptimized.

Figure 4b: Subexpression optimized.

In this test, the results show that the CPU and the
DRAM power consumption and the elapsed time in
the two cases are quite similar. However, we note that
the CPU power consumption vary and several times
is more close to DRAM power consumption.

4.2.3 Code Motion

Code motion moves code that calculates an
expression whose result doesn't change. This is most
common with loops, but it can also involve code
repeated on each invocation of a method. For
example:

for (int i = 0; i < a.length; ++i)
 a[i] *= Math.PI * Math.cos(b);

becomes:

double pico = Math.PI* Math.cos(b);
for (int i = 0; i < a.length; i++)
 a[i] *= pico;

The results of this test is represented on the
Figures 5a and 5b.

Figure 5a: Code motion unoptimized.

Figure 5b: Code motion optimized.

This test show that in the unoptimized code
motion, the time elapsed is slightly greater than
optimized code. CPU and DRAM power
consumption are quite similar in the two cases. And,
sometimes CPU power consumption curve
approaches DRAM power consumption curve.

4.2.4 Unrolling Loops

Unrolling loops reduces the number of loop control
code by performing more than one operation each
time in the loop, and consequently running fewer
iterations. With the previous example, if the length of
the table a is always a multiple of two, the loop can
be rewrite like:

double pico = Math.PI* Math.cos(b);
for (int i = 0; i < a.length; i += 2) {
 a[i] *= pico;
 a[i+1] *= pico;
}

Figure 6 shows the power consumption of CPU and
DRAM depending on the time.

SMARTGREENS 2016 - 5th International Conference on Smart Cities and Green ICT Systems

422

Figure 6: Unrolling loops.

Compare to the Figure 5b, in this case, we observe
that at the beginning of the curve, the CPU consumes
more power during some time than code motion and
then becomes similar. But, in unrolling loops case, the
total execution elapsed time is the half of the code
motion case. And at the end of the curve in Figure 6,
the CPU power is less important than the curve in
code motion (Figure 5b). Moreover, in this test, the
difference between CPU and DRAM power
consumption is less important than code motion case.

Thus, the results reveal that the unrolling loops
method is quicker and consumes less CPU power than
the code motion method.

5 CONCLUSIONS

A modelization of the CPU and the DRAM has been
made in order to understand the behavior and the
functionality of each component. Thanks to this
model, several mathematical formulas have been
established to estimate the power consumption due to
each part of each component. Thus, based on this
methodology, a tool that allow to measure the power
consumed by CPU and DRAM has been implemented
and named TEEC (Tool to Estimate Energy
Consumption). This tool gives accurate and efficient
information about CPU and DRAM power
consumption, has been used to perform some
experiments. The goal of these tests was to observe
the impact of the code source of an application in the
power consumption. These experiments have
provided several results.

When the code source is optimized, it is possible
to reduce the power consumption due to CPU. But,
the DRAM power consumption remains quite
constant.

Sometimes, it is possible to save energy with an
optimization of the code by reducing execution time
of an application.

In several cases, after some time of execution,

CPU power consumption remains the main energy
consumer. However, the DRAM power consumption
can’t be neglected.

Moreover, some code optimizations don’t make
any real impact on the CPU and DRAM power
consumption.

The contribution to power measurement literature
will continue by bringing improvement to the
estimation of the consumption of other components;
such as, disk and network in order to observe their
impact. It will allow us to have a higher accuracy in
estimating the energy consumption of a program.

The proposed tool TEEC is expected to be
improved, and it is planned to dynamically
identifying locations where code consume the largest
power. This will allow developers to optimize their
own codes to obtain green and sustainable software.

REFERENCES

Gartner, Green IT: The New Industry Shock Wave,
Gartner, Presentation at Symposium/ITXPO
Conference, 2007.

Power Supply Calculator, February 2014. URL:
http://powersupplycalculator.net/.

eXtreme Power Supply Calculator, January 2006. URL:
http://outervision.com/power-supply-calculator.

Computer Power Consumption Calculator. URL:
http://www.matthewb.id.au/power/computer_power_c
onsumption_calculator.html.

Kern, E., Dick, M., Naumann, S., Guldner, A., Johann, T.,
2013. Green software and green software engineering–
definitions, measurements, and quality aspects. ICT4S
2013: Proceedings of the First International
Conference on Information and Communication
Technologies for Sustainability.

Joseph, R., Brooks, D., Martonosi, M., 2001. Live, runtime
power measurements as a foundation for evaluating
power/performance tradeoffs. Workshop on Complexity
Effective Design WCED, held in conjunction with
ISCA-28.

Kamil, S., Shalf, J., Strohmaier, E., 2008. Power efficiency
in high performance computing. IEEE International
Symposium on Parallel and Distributed Processing,
IPDPS 2008.

Kansal, A., Zhao, F., Liu, J., Kothari, N., Bhattacharya, A.,
2010. Virtual Machine Power Metering and
Provisioning. ACM Symposium on Cloud Computing
(SOCC).

Wang, S., Chen, H., Shi, W., 2011. SPAN: A software
power analyzer for multicore computer systems.
Sustainable Computing: Informatics and Systems,
Volume 1, Issue 1.

Noureddine, A., Bourdon, A., Rouvoy, R., Seinturier, L.,
2012. A Preliminary Study of the Impact of Software
Engineering on GreenIT. First International Workshop

Beyond CPU: Considering Memory Power Consumption of Software

423

on Green and Sustainable Software.
Kim, M., Ju, Y., Chae, J., Park, M., 2014. A Simple Model

for Estimating Power Consumption of a Multicore
Server System. International Journal of Multimedia
and Ubiquitos Engineering.

Zapater, M. et al., 2015. Leakage-Aware Cooling
Management for Improving Server Energy Efficiency.
IEEE Trans. Parallel Distrib. Syst. 26(10): 2764-2777.

Minas, L., Ellison, B., 2012. The Problem of Power
Consumption in Servers. Intel Press.

Kang, U. et al., 2010. 8 Gb 3-D DDR3 DRAM Using
Through-Silicon-Via Technology. Journal of Solid-
State Circuits.

Hur, I. and Lin, C., 2008. A comprehensive approach to
DRAM power management. International Symposium
on High Performance Computer Architecture.

Emma, P., Reohr, W. and Meterelliyoz, M., 2008.
Rethinking Refresh: Increasing Availability and
Reducing Power in DRAM for Cache Applications.
IEEE Micro.

Zheng, H. et al., 2008. Mini-Rank: Adaptive DRAM
Architecture for Improving Memory Power Efficiency.
Proceedings of Micro.

Vogelsang, T., 2010. Understanding the energy
consumption of dynamic random access memories.
Proceedings of the 2010 43rd Annual IEEE/ACM
International Symposium on Microarchitecture.

Rosenfeld, P., Cooper-Balis, E., Jacob, B., 2011.
DRAMSim2: A Cycle Accurate Memory System
Simulator. CAL.

Thoziyoor, S., Muralimanohar, N., Ahn, J., Jouppi, N.,
2008. CACTI 5.1. HP Laboratories Palo Alto.

Micron Technologies Inc. System Power Calculator. URL:
http://www.micron.com/support/power-calc.

Micron, 2007. Calculating Memory System Power for
DDR3.

Morgan, R. and MacEachern, D. 2010. URL:
https://support.hyperic.com/display/SIGAR/Home

Kambadur, M., Kim, M.A., 2014. An experimental survey
of energy management across the stack. ACM
International Conference on Object Oriented
Programming Systems Languages & Applications.

SMARTGREENS 2016 - 5th International Conference on Smart Cities and Green ICT Systems

424

