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Abstract: Forecasting airline passenger volumes can be helpful for flight and airport capacity planning. While there 
are many parameters affecting the passenger volume, to our knowledge no work has directly studied the 
effect of neighbour airports in modelling of passenger volumes. We develop an integrated model for 
forecasting the number of passengers arriving/departing an airport, considering the airport’s interactions 
with its neighbour airports. In particular, we analyse the time series of the flights arriving to and departing 
from two largest airports in Turkey, namely Ankara Esenboga and Istanbul Ataturk Airports, and explore 
the interactions between these airports by using them as regressors for each other. We also apply 
independent models based on TBATS which was previously proposed in the literature to handle multiple 
seasonalities. In our experiments, TBATS performs better than ARIMA for independent modelling, and 
TBATS with multiple seasonal periods outperforms TBATS with single seasonality in majority of the cases. 
In several cases, the forecasting accuracy increases when the neighbour airports’ traffic data is used in 
modeling the passenger volumes.  

1 INTRODUCTION 

Civil aviation authorities and airline companies need 
short and long term forecasts for effective flight and 
capacity planning. A wide range of forecasting 
models are developed including econometric 
modelling, univariate time series modelling, time 
series decomposition, non-linear regression models 
and gravity models (Scarpel, 2013). While it is 
intuitive that the traffic of an airport is not 
independent of its neighbour airports, to our 
knowledge this is not directly taken into 
consideration in modelling and forecasting airport 
traffic. Research is needed to investigate how the 
traffic model of an airport can incorporate its 
‘neighbours’ traffic as they affect each other 
possibly with a small time shift. In this paper, we 
consider interactions between neighbour airports in 
developing time series forecasting models for air 
traffic volumes. We handle two neighbour airports 
as a dyad in an airport network and compare 
independent and neighbour-dependent models to 
forecast the number of passengers for particular 
routes. 

As a case study, we analyse time series patterns 
of domestic and international flights arriving to and 
departing from Ataturk and Esenboga International 
Airports in Turkey over the course of a year. We 
propose a neighbour-dependent approach using 
regression with ARIMA errors and explore 
explanatory relations by regressor time series. For 
independent modelling, we consider ARIMA and 
TBATS models for developing independent 
forecasting models. TBATS (Trigonometric, Box-
Cox transform, ARMA errors, Trend, and Seasonal 
components) model was proposed to deal over 
parameterization and handle both non-integer period 
and dual-calendar effects (De Livera et al., 2011). 
ARIMA models enable fitting the patterns in data 
with smallest number of estimated parameters. 
TBATS handles multiple seasonality which we 
observe in Turkish flight data. We elaborate 
accuracy performance of TBATS method and 
ARIMA models in independent modelling as well. 
By comparing the accuracy of independent and 
dependent models we are able to explore 
contribution of neighbour relations on forecasting 
performance.  
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In our experiments, TBATS performs better than 
ARIMA for independent modelling. TBATS models 
with multiple seasonal periods perform better than 
models with single seasonality. These results verify 
that TBATS model performs well in airline data 
with multiple seasonality. Using explanatory time 
series of neighbours’ air passenger volumes is found 
to be useful in several cases.  

The remainder of the paper contains the 
following sections. First, we present a literature 
overview on air passenger flow problem and the 
forecasting methods used in this study. We then 
present the proposed methodology and empirical 
results. Finally, we conclude with future research 
directions. 

2 RELATED WORK 

Air transportation has achieved a remarkable growth 
both worldwide and in Turkey, e.g., the total number 
of passengers in Turkey has risen 14.3% in the last 
decade (TOBB, 2013). According to 
EUROCONTROL forecasts, Turkey will be the 
arrival or departure point for the greatest number of 
extra flights in the future European airspace by 2035 
(EUROCONTROL, 2013). In our study, we generate 
forecasting models for the number of air travel 
passengers for different routes between Ankara 
Esenboga and Istanbul Ataturk Airports. 

Several methods have been proposed for 
forecasting the number of air travel passengers in the 
context of air travel demand, pax growth and air 
travel flow. Traditional methods, such as neural 
networks, exponential smoothing, Box-Jenkins, and 
Holt-Winters, are commonly applied in this context. 
Nam et al. use neural networks for predicting 
international air passenger volume between US and 
Mexico and compare them with regression and 
exponential smoothing forecasting models (Nam et 
al., 1997). Neural network models are also compared 
with well-known Box-Jenkins and Holt-Winters 
Methods (Faraway et al., 1998). In an application 
study, neural networks are shown to outperform the 
traditional econometric approach for forecasting 
Brazilian air transport passenger traffic (Alekseev et 
al., 2009).  

Samagaio and Wolters propose ARIMA and 
exponential smoothing models for forecasting the 
number of passengers for 2008-2020 to help 
decision making for establishing a new airport 
(Samagaio et al., 2010). An application of fuzzy 
regression model is developed to forecast the 

demand of Rhodes airport (Profillidis, 2000). 
Grosche et al. propose two gravity models using 
geo-economic factors as independent variables for 
estimation of airline passenger volume between city 
pairs (Grosche et al., 2007). Fildes et al. explore the 
relations between air traffic flows to different 
countries by pooled ADL model (Flides et al., 2011). 
They enhance their models with “world trade” 
variable and conclude that pooled ADL model with 
“world trade” variable outperformed the alternatives. 
Benitez et al. propose a modified Grey Model for 
airlines routes pax growth for long lead-time 
(Benitez et al., 2013). ARIMAX and SARIMA 
based models are recently used to forecast Hong 
Kong airport's passenger throughput till 2015 (Tsui 
et al., 2014). Time series involved in our analysis 
involve multiple seasonal patterns. Hence we use a 
recent proposal, TBATS, which handles multiple 
seasonality (De Livera et al., 2011).  

3 METHODOLOGY 

In this section, we highlight the methods for 
handling the seasonality from the literature and 
introduce the details of our methodology to 
incorporate the interactions of two airports into their 
forecasting models. In particular, we study Ataturk 
and Esenboga Airports in Turkey and investigate if 
they affect each other while forecasting their 
passenger volumes. The data set of the number of 
passengers for Ataturk and Esenboga Airports in 
2011 is obtained from the General Directorate of 
State Airports Authority of Turkey. Eight time series 
of the number of passengers in international and 
domestic incoming & outgoing flights of these 
airports are generated. We build models both 
independently and neighbour-dependently and 
compare their performance. For independent models, 
which do not consider the neighbour effects, we 
investigate the conventional ARIMA and the 
recently proposed TBATS approach on forecasting 
airline passenger volumes. We also study a 
neighbour dependent approach where we use the 
traditional regression with ARIMA errors approach 
and incorporate the neighbour effects as a regressor 
time series.  

We now summarize the methods we applied in 
our independent modelling and present our 
neighbour dependent modelling approach. 
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3.1 Independent Modelling with 
ARIMA and TBATS 

We apply ARIMA and TBATS methods for 
independent modelling and analysis. ARIMA (Auto-
Regressive Integrated Moving Average) is a basic 
approach for analysis and forecasting of equally 
spaced univariate time series data. Box and Jenkins 
proposed an entire family of ARIMA models and an 
analysis to find the smallest number of estimated 
parameters needed to fit the patterns in the data. 
Box-Jenkins methodology involves three steps; 
identification, estimation and diagnostic checking 
(Pankratz, 1983). As a baseline for comparison, we 
use automated ARIMA model fitting function in 
forecast package of R programming.  

Our preliminary data analysis reveals that our 
passenger volume time series involve multiple 
seasonality. Most commonly used methods for 
modelling seasonal time series, such as Holt-
Winters, exponential smoothing approach, ARIMA 
models, suffer dealing with double seasonality. 
Recently, exponentially weighted methods for 
multiple seasonal time series are proposed (De 
Livera, 2010). To deal with double seasonality, an 
extension of Holt-Winter is proposed (Taylor, 2003). 
In another study, a multiple seasonal method is 
developed that allows the seasonal cycle to be 
updated more than once during the period of the 
cycle (Gould et al, 2007). Also time series may have 
complex seasonal patterns such as patterns with a 
non-integer period, have high frequency multiple 
seasonal patterns or may have dual calendar effects. 
De Livera et al. propose a new innovations state 
space model based approach that is capable of 
dealing over parameterization and tackling with both 
non-integer period and dual-calendar effects (De 
Livera et al., 2011). They improve the traditional 
single seasonal exponential smoothing methods, and 
introduce two algorithms. They propose TBATS, 
which stands for Trigonometric, Box-Cox transform, 
ARMA errors, Trend, and Seasonal components 
Model. 

The Box-Cox transformation, ARMA errors, 
Trend and Seasonal components (BATS) are defined 
by; ݕ௧(ఠ) = ൜( ௧ܻఠ − ߱	ℎ݁݊ݓ					߱/(1 ≠ ݃݋0݈ ௧ܻ											ݓℎ݁݊	߱ = 0 ௧(ఠ)ݕ    ,  = ݈௧ିଵ + ߶ܾ௧ିଵ + ∑ ௧ି௠೔௜௡௜ୀଵݏ + ݀௧  (3.1)

 ݈௧ = ݈௧ିଵ + ߶ܾ௧ିଵ + ௧ (3.2)݀ߙ
 ܾ௧ = (1 − ߶)ܾ + ߶ܾ௧ିଵ + ௧ (3.3)݀ߚ
 

௧(௜)ݏ = ௧ି௠೔(௜)ݏ + Υ௜݀௧ (3.4)

where ߱ ∈ ܴ is the Box-Cox transformation 
parameter, ݉ଵ……݉௡  denote the constant periods 
of the n seasonal components, ܾ is the long run 
trend, ሼ݀௧ሽ is an ݌)ܣܯܴܣ,  process with Gaussian (ݍ
white noise innovations having zero mean and 
constant variance, and for ݐ = 1,… . , ܶ , ݈௧ is the 
local stochastic level, ܾ௧ is the short term trend and ݏ௧(௜) is the stochastic level of the ݅ −  ℎ seasonalݐ
component.  

De Livera et al. proposed a new trigonometric 
representation of seasonal components based on 
Fourier series.  ݏ௧(௜) = ∑ ௝,௧(௜)௞೔௝ୀଵݏ   (3.5)

௝,௧(௜)ݏ  = ௝,௧ିଵ(௜)ݏ ௝(௜)ߣݏ݋ܿ + ௝,௧ିଵ∗(௜)ݏ ௝(௜)ߣ݊݅ݏ + Υଵ(௜)݀௧ 
 

(3.6)
௝,௧∗(௜)ݏ  = ௝(௜)ߣ݊݅ݏ௝,௧ିଵݏ− + ௝,௧ିଵ∗(௜)ݏ ௝(௜)ߣݏ݋ܿ + Υଶ(௜)݀௧  (3.7)

Where Υଵ(௜) and Υଶ(௜) are smoothing parameters, ߣ௝(௜) =  ௝,௧(௜)  describe the stochastic level ofݏ . ௜݉/݆ߨ2
the ith seasonal component, and the stochastic 
growth in the level of the ith component that is 
needed to describe the change in the seasonal 
component over time is described by ݏ௝,௧ିଵ∗(௜) .  The 
number of harmonics required for the ith seasonal 
component is denoted by  ݇௜ (De Livera et al., 
2011). The performance of these approaches on 
forecasting passenger volumes is presented in the 
experimental section. 

3.2 Neighbour Dependent Modelling 

In neighbour-dependent analysis, we incorporate the 
explanatory effects of regressor time series of 
neighbour airports using regression with ARIMA 
errors method.  ௧ܻ = ܾ଴ + ܾଵ ଵܺ,௧ + ⋯+ ܾ௞ܺ௞,௧ + ௧ܰ (3.8)

One of the key assumptions of multiple 
regression is that ௧ܰ is an uncorrelated series. For 
regression with ARIMA, it is considered that ௧ܰ 
contains autocorrelations. The resulting model is 
now a regression model with ARIMA errors. 
Equation 3.8 still holds but ௧ܰ 	is modeled as an 
ARIMA process. We follow the notations of 
Makridakis et al. (1998) for stating regression with 
ARIMA model. For example, if ௧ܰ is an ARIMA (1, 
1, 1) model, 3.8 can be written ௧ܻ = ܾ଴ + ܾଵ ଵܺ,௧ + ⋯+ ܾ௞ܺ௞,௧ + ௧ܰ  (3.9)
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where (1 − ߶ଵ1)(ܤ − (ܤ ௧ܰ = (1 − ߶ଵܤ)݁௧ and ݁௧ is a white-noise series. 
For identification of regressor time series, we 

analyse the cross correlation between time series and 
consider highly correlated and weakly correlated 
series for building significant explanatory relations. 
Initially we build regression with ARIMA models in 
line with the correlation between Ataturk and 
Esenboga series and we add regressor variables into 
the model individually. Then we check the internal 
cross correlation in Ataturk and Esenboga series in 
order to identify regressor pairs. In this analysis it is 
revealed that all series in Ataturk dataset are highly 
correlated, hence we do not use any pairs while 
building explanatory models for Esenboga series 
with Ataturk data. In Esenboga dataset, we find out 
that Esenboga International Incoming Passengers 
data is weakly correlated with the rest of the series 
and this result enables us to use pairs as regressors 
while building explanatory models for Ataturk data.  

4 EMPIRICAL ANALYSIS 

To evaluate the performance of the presented 
methods for forecasting the number of passengers 
for an airport, we collected a list of real time series 
as presented in Table 1. We adjusted our dataset by 
forming equal time intervals for all time series. 
Volumes of passengers are quarterly aggregated by 
six-hour time periods for each day that helps to 
detect seasonal patterns inherent in data. Following 
the data adjustment, we divided the available one-
year data into training and test sets. We built models 
with a training set involving 1092 data points and 
tested the models with 124 data points.  

Table 1: List of analysed time series. 

Ataturk A. Domestic Flights Incoming Number 
of Passengers  (ADI) 

Ataturk A. Domestic Flights Outgoing Number 
of Passengers  (ADO) 

Ataturk A. International Flights Incoming 
Number of Passengers (AII) 

Ataturk A. International Flights Outgoing 
Number of Passengers (AIO) 

Esenboga A. Domestic Flights Incoming 
Number of Passengers (EDI) 

Esenboga A. Domestic Flights Outgoing 
Number of Passengers (EDO) 

Esenboga A. International Flights Incoming 
Number of Passengers (EII) 

Esenboga A. International Flights Outgoing 
Number of Passengers (EIO) 

All series have multiple seasonal patterns and 
high frequency seasonality. For each set of data, four 
independent models are fit: (I) ARIMA model with 
frequency=4,(II) ARIMA model with frequency=28, 
(III) TBATS Model with frequency=28 and (IV) 
TBATS Model with double seasonality. For 
neighbour-dependent analysis, we build regression 
with ARIMA models with convenient regressor time 
series. MAPE (Mean Absolute Percentage Error) is 
the preferred forecasting accuracy measure for 
simplicity when all data are positive and much 
greater than zero (Hyndman and Koehler, 2006). We 
also report MAE (Mean Absolute Percentage Error) 
and MASE (Mean Absolute Scaled Error) based 
results of our experiments (Hyndman and Koehler, 
2006). 

4.1 Independent Analysis with ARIMA 
and TBATS Models 

We first analyse the time-series, ACF 
(Autocorrelation Function) and PACF (Partial 
Autocorrelation Function) plots for all data sets. For 
brevity, we present the models for one representative 
data set (i.e., ADI) in detail and for the rest of the 
series we present the model results.  

The ACF and PACF plots illustrate two seasonal 
periods (Figure 1). The first seasonality arises from 
aggregating daily data quarterly by 6 hour time 
periods and the seasonal period is four.  The second 
seasonality is observed with the help of PACF plot, 
28 periods indicates the weekly seasonality in the 
training data set. 

 

 
Figure 1: ACF and PACF plots of ADI data. 

Based on these results, we fit four independent 
models. (I) ARIMA model with frequency=4, (II) 
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ARIMA model with frequency=28, (III) TBATS 
Model with frequency=28 and (IV) TBATS Model 
with double seasonality for each dataset. We 
developed these four independent models for each of 
the eight time series and according to MAPE (Mean 
Absolute Percentage Error) measure we present the 
best independent models for each of the time series 
in Table 3.  

Table 2: Forecasting Accuracy of Independent Models for 
ADI. 

               Model MAE MAPE MASE 

ARIMA(0,1,2)(2,0,0)[4] 727.15 19.81 1.24 
ARIMA(4,0,0)(0,1,1)[28] 513.41 12.45 1.05 

TBATS(0.71, {2,1}, 
0.809, {<28,7>}) 

455.22 11.69 0.93 

TBATS(0.684, {2,1}, 
0.861, {<4,1>, <28,6>}) 

441.30 11.07 0.90 

Table 3: Best Independent Models for All Time Series. 

Data The Best Model MAPE 
ADO  TBATS(1, {2,1}, -, {<28,8>}) 12.03 
AII  ARIMA(4,0,0)(0,1,1)[28] 9.24 

AIO  TBATS(0.998, {5,4}, -, {<4,1>, 
<28,5>}) 9.70 

EDI  TBATS(0.999, {4,5}, -, 
{<28,8>}) 11.94 

EDO  ARIMA(4,0,0)(0,1,1)[28] 7.85 

EII TBATS(0.327, {4,4}, -, 
{<28,7>}) 52.02 

EIO  TBATS(0.095, {0,0}, -, {<4,1>, 
<28,5>}) 56.58 

In half of the independent models, TBATS 
model with multiple seasonality outperformed other 
models according to MAPE measure. In the second 
half of the independent models, TBATS and 
ARIMA models with weekly seasonality outperform 
other models. These results show that TBATS 
successfully handles multiple seasonality in our 
airline passenger volume time series, and it yields 
better forecasting accuracies than the traditional 
ARIMA approach. 

4.2 Neighbour-dependent Analysis with 
Regression with ARIMA Errors 

We generated a cross correlation matrix for time 
series in the preliminary analysis phase. Table 4 
depicts the cross correlation in all series. According 
to correlation values in this matrix, we establish the 
explanatory relations between time series and we 
build regression with ARIMA models with regressor 
time series. While building regression with ARIMA 

models for Ataturk Airport time series data, initially 
we analysed cross correlation with Esenboga Airport 
data. For example, ADI data can be paired with data 
of EIO, EDI and EDO data as explanatory Regressor 
variables.  

Table 4: Cross Correlation between All Series. 

ADI ADO AII AIO EDI EDO EII EIO 

ADI 1.00 0.53 0.44 0.88 0.72 0.87 0.16 0.57 
ADO 0.53 1.00 0.83 0.50 0.53 0.55 0.51 0.40 

AII 0.44 0.83 1.00 0.46 0.42 0.39 0.62 0.31 
AIO 0.88 0.50 0.46 1.00 0.64 0.79 0.21 0.59 
EDI 0.72 0.53 0.42 0.64 1.00 0.74 0.26 0.34 

EDO 0.87 0.55 0.39 0.79 0.74 1.00 0.20 0.53 
EII 0.16 0.51 0.62 0.21 0.26 0.20 1.00 0.27 
EIO 0.57 0.40 0.31 0.59 0.34 0.53 0.27 1.00 

 
Figure 2: Explanatory Relations between Time Series. 

Taking into account all possible routes and 
connections we consider the explanatory relations in 
Figure 2. In this figure, black undirected edges 
represent the mutual interactions, the gray directed 
edges represent the single sided influence. 
According to these relations, it is clear that the 
volume of passengers in international incoming 
flights cannot be explained by neighbour effects. 
This observation also makes sense in practice. 
Hence we do not build regression with ARIMA 
models for international incoming passengers data. 
But we consider these series as explanatory variables 
in other models. 

When we consider all possible routes and 
connections that may affect ADI data, we may 
expect ADI data to be correlated with all series in 
Esenboga data. We build seven neighbour-
dependent models for ADI dataset and compare 
contribution of regression variables in forecasting 
performance. Regression with ARIMA models for 
ADI data is presented in Table 5. We find out that 
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the best model in neighbour-dependent models is 
regression with ARIMA model including EDO data 
as regressor variable, and it performs better than an 
independent ARIMA model (seasonal period: 4). We 
compare these neighbour dependent model results 
with the independent model results in Table 6 by 
MAPE accuracy measure. For this data set, the best 
model out of all models is the independent TBATS 
model with multiple seasonality.  

Table 5: Regression with ARIMA models for ADI Data 
(Neighbour dependent models). 

Model MAE MAPE MASE 

ARIMA(0,1,2)(2,0,0)[4] 
REG. with EDI 

721.32 18.80 1.23 

ARIMA(0,1,3)(2,0,0)[4] 
REG. with EDO 

632.39 16.36 1.08 

ARIMA(1,1,1)(2,0,0)[4] 
REG. with EII 

1063.30 32.13 1.82 

ARIMA(3,1,1)(0,0,1)[4] 
REG. with EIO 

778.20 21.99 1.33 

ARIMA(0,1,3)(2,0,0)[4] 
REG. with EII and EIO 

1020.09 30.04 1.74 

ARIMA(1,1,1)(2,0,0)[4] 
REG. with EII and EDI 

690.17 17.71 1.18 

ARIMA(0,1,3)(2,0,0)[4] 
REG. with EII and EDO 

619.53 15.88 1.06 

Table 6: Forecasting Accuracy of Independent Models for 
ADI. 

Model MAE MAPE MASE 

ARIMA(0,1,2)(2,0,0)[4] 727.15 19.81 1.24 
ARIMA(4,0,0)(0,1,1)[28] 513.41 12.45 1.05 
TBATS(0.71, {2,1}, 
0.809, {<28,7>}) 

455.22 11.69 0.93 

TBATS(0.684, {2,1}, 
0.861, {<4,1>, <28,6>}) 

441.30 11.07 0.90 

Ataturk Airport Domestic and International 
Outgoing Passengers data are correlated with all 
series in Esenboga data. For this reason, we add all 
series as regressor variables individually and we also 
consider the weakly interrelated Esenboga time 
series pairs as regressor variables. Regression with 
ARIMA models with the best test results are 
presented in Table 7. 

The best model for ADO data in the neighbour-
dependent approach is when EDI is used as a 
regressor variable. It outperforms the worst model, 
ARIMA (seasonal period: 4) in independent models. 
For ADO data, the best model out of all models is 
the independent TBATS model with single 
seasonality. The comparison of the best performing 
dependent and independent models is presented in 

Table 8. 
For AIO data, the best neighbour-dependent 

model is the regression with ARIMA model 
including EDO data. The best model out of all 
models is the independent TBATS model with 
multiple seasonality. The comparison of the best 
performing dependent and independent models is 
presented in Table 9. 

Table 7: The Best Regression with ARIMA models for 
ADO and AIO Data. 

Data The Best Neighbour 
Dependent Models 

MAPE 

ADO ARIMA(3,1,0)(0,0,1)[4] 
REG. with EDI 16.59 

AIO ARIMA(0,1,1)(2,0,1)[4 
REG. with EDI 11.48 

Table 8: Comparison of Models for ADO Data. 

Data Models MAPE 

ADO 
 

ARIMA(3,1,0)(0,0,1)[4] 
REG. with EDI 16.59 

TBATS(1, {2,1}, -, {<28,8>}) 12.03 

In regression with ARIMA models for Esenboga 
Airport, due to the strong cross correlation in 
Ataturk Airport time series data, each regression 
with ARIMA model built for Esenboga Airport 
routes involves one of the Ataturk Airport time 
series. The accuracy performance of regression with 
ARIMA models is demonstrated in Tables 10-11. 

Table 9: Comparison of Neighbour Dependent and 
Independent Models for AIO Data. 

Data Models MAPE 

AIO 
 

ARIMA(0,1,1)(2,0,1)[4] REG. 
with EDI 11.48 

TBATS(0.998, {5,4}, -, 
{<4,1>, <28,5>}) 9.70 

Table 10: Regression with ARIMA models for EDI Data 
(Neighbour Dependent Models). 

Model MAE MAPE MASE 
ARIMA(3,1,1)(0,0,1)[4] 
REG.with ADI 

257.95 12.12 0.70 

ARIMA(3,1,0)(2,0,0)[4] 
REG.with ADO 

372.63 15.94 1.02 

ARIMA(0,1,3)(1,0,1)[4] 
with drift REG. with  AII 

254.69 12.93 0.70 

ARIMA(0,1,3)(1,0,1)[4] 
with drift REG. with 
AIO 

277.25 14.20 0.76 
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For EDI data, the best model out of all models is 
the independent TBATS model with single 
seasonality. The second best model is the neighbour-
dependent model, i.e., regression with ARIMA 
model involving ADI data as regressor variable. The 
comparison is presented in Table 11.  

Regression with ARIMA models with best 
forecasting accuracy for Esenboga Outgoing 
(Domestic and International) Passengers data are 
presented in Table 12.  

Table 11: Comparison of Neighbour Dependent and 
Independent Model for EDI Data. 

Data Models MAPE 

EDI 
 

TBATS(0.999,{4,5},-, 
{<28,8>}) 11.94 

ARIMA(3,1,1)(0,0,1)[4] 
REG. with ADI 12.12 

Table 12: The Best Regression with ARIMA models for 
EDO and EIO Data. 

Data The Best Neighbour Dependent 
Models 

MAPE 

EDO ARIMA(3,1,0)(2,0,0)[4] REG. 
with ADI 20.99 

EIO ARIMA(3,1,0)(0,0,1)[4] REG. 
with AII 64.33 

For EDO data, the best model out of all models 
is the independent ARIMA model with seasonal 
period 28. For EIO data, the best model out of all 
models is the independent TBATS model with 
multiple seasonalities. The comparisons are 
presented in Table 13 and Table 14. 

Table 13: Comparison of Neighbour Dependent and 
Independent Model for EDO Data. 

Data Models MAPE

EDO 
 

ARIMA(3,1,0)(2,0,0)[4] 
REG. with ADI 20.99 

ARIMA(4,0,0)(0,1,1)[28] 7.85

Table 14: Comparison of Neighbour Dependent and 
Independent Model for EIO Data. 

Data Models MAPE

EIO 

ARIMA(3,1,0)(0,0,1)[4] 
REG. with AII 64.33 

TBATS(0.095, {0,0}, -, {<4,1>, 
<28,5>}) 56.58 

 

 
Figure 3: Resulting Explanatory Relations. 

The experimental results illustrate some 
improvements using the explanatory regression with 
ARIMA models. Figure 3 summarizes the observed 
explanatory relationships between the data sets that 
showed considerable improvements in accuracies of 
the forecasting models. The head of the arrow shows 
the dependent time series while the tail shows the 
regressor time series.  

5 CONCLUSIONS 

In this paper, we investigate incorporation of the 
data of the neighbour airports in forecasting the 
traffic volume of an airport.  To analyse the 
contribution of neighbour effects, we report on 
forecasting accuracies of independent and 
neighbour-dependent models for a variety of real 
time series data sets. In several cases, we observe 
improvement on forecasting performance when 
neighbour-dependent models are used. We also 
compared the performance of independent models 
based on TBATS vs. ARIMA. In half of the series, 
TBATS model with multiple seasonality 
outperforms the other models. For the rest, TBATS 
with single seasonality and ARIMA models provide 
comparable results. For future work, we are planning 
to observe the performance of TBATS model on 
long term airline passenger data involving dual 
calendar based seasonality. Dual calendar effects 
were studied for demand cash (Du Toit, 2011) and 
European tourist arrivals (Hassani et al., 2015) in the 
literature. 
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