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Abstract: In this paper, an unsupervised approach incorporating variable bandwidth mean-shift and robust statistics is 
presented for generating fuzzy membership functions from data. The approach takes an attribute and 
automatically learns the number of representative functions from the underlying data distribution. Given a 
specific membership function, the approach also works out the associated parameters. The investigation 
here examines the application of approach using the triangular membership function. Results from 
partitioning of attributes confirm that the generated membership functions can better separate the underlying 
distributions when compared to a number of other techniques. Classification performance of fuzzy rule sets 
produced using four different methods of parameterizing the associated attributes is examined. We observed 
that the classifier constructed using the proposed method of generating membership function outperformed 
the 3 other classifiers that had used other methods of parameterizing the attributes. 

1 INTRODUCTION 

Eliciting representative membership functions (MFs) 
for data is one of the fundamental steps in 
applications of fuzzy theory as the success of many 
fuzzy approaches depends on the membership 
functions used. However, there are no simple rules, 
guidelines, or even consensus among the community 
on how to choose the number, type, and parameters 
of membership functions for any application or 
domain (Medasani et al., 1998). Several methods for 
the automatic generation of MFs have been proposed 
in the literature and the choice of function has been 
linked to the problem and the type of data available. 
However, in most of these techniques, the number of 
fuzzy sets has to be provided empirically. 
Furthermore, the range for membership functions 
generated by many existing techniques does not 
address the impact of outliers and noisy 
measurements in data. 

In this paper, we propose a hybrid approach that 
incorporates variable bandwidth mean-shift (VBMS) 
and robust statistics for automatic generation of 
representative MF(s) for an attribute. The analysis of 
the underlying data distribution is unsupervised as 
the proposed approach first determines the number 
of modes from the probability density function 

(PDF) and then uses this value as the number of 
clusters for a multimodal data distribution. The 
approach overcomes the problems associated with 
some of the existing approaches by  

 determining the number of representative MFs 
for the attribute from the underlying data 
distribution automatically 

 automatically handling noise and outliers in the 
attribute feature space 

The rest of this paper is organised as follow: Section 
2 briefly reviews relevant literature on MF 
generation techniques. Some preliminary concepts 
are described in Section 3. Section 4 describes the 
proposed approach. The experimental evaluation of 
our technique is presented in Section 5 followed by 
conclusions and future directions in Section 6. 

2 BACKGROUND 

Many techniques have been proposed to generate 
fuzzy membership functions from an attribute. Three 
questions that have to be addressed are: (1) number 
of fuzzy sets to be defined for the dataset, (2) shape 
of the membership functions, and (3) parameters 
defining each membership function. 
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Typically, techniques have used manual 
partitioning of attributes, mostly based on expert 
knowledge, and adopted a pre-determined number of 
membership functions (Seki, 2009) to partition the 
data space for the attribute by (usually evenly-
spaced) MFs. However, manual approaches suffer 
from the deficiency that they rely on subjective 
interpretations from human experts.  

Given a labelled dataset, evolutionary methods 
can also be utilized to generate MFs. Moeinzadeh et 
al., (2009) applied Genetic Algorithm (GA) and 
Particle Swarm Optimization (PSO) for the 
adjustment of MF parameters to increase degree of 
membership of data to their classes for classification 
problems. Authors in (Amaral and Crisóstomo, 
2001) applied GA for evolving parameters 
associated with MFs in a fuzzy logic controller for a 
helicopter. Initial guesses for the MFs are made by 
the expert and the GA adjusts the MF parameters to 
minimise the movement of a hovering helicopter. In 
the classification method proposed by Tang et al. 
(2014), a fitness function quantifies how well the 
crisp values of attributes are classified into MFs and 
the GA process evolves over time by searching the 
best set of MF parameters which optimises result of 
the fitness function.  

Takagi and Hayashi (1991) also proposed the use 
of artificial neural networks (ANN) for the 
construction of membership functions. Their 
approach takes raw data (say, in a control problem), 
apply a conventional clustering algorithm to group 
the data into clusters and apply an ANN to this 
clustered data to determine the membership of a 
pattern within particular fuzzy sets. 

However, for situations where the training data is 
not labelled, MF generation techniques generally 
involve unsupervised clustering of data using a 
specific distance measure and then the parameters of 
detected clusters (mean, variance, etc.) are used to 
generate MFs. For example, techniques 
(Pazhoumand-Dar et al., 2015) have used the Fuzzy 
C-Means (FCM) clustering algorithm (Kuok et al., 
1998) to cluster a particular attribute into specific 
number of clusters. Cluster boundaries and the 
location of the centre were then used to determine 
the cluster membership function parameters. Doctor 
et al., (2014) presented a fuzzy approach to model an 
occupant behaviour in a residential environment. 
They used a Double Clustering technique 
(Castellano et al., 2002) combining FCM and 
agglomerative hierarchical clustering for extracting a 
predefined number of MFs from the user’s recorded 
input/output data. 

The disadvantage associated with most of these 
methods is that the number of fuzzy sets must be 
predefined. However, we usually do not know an 
optimal number of representative MFs for a 
particular attribute. In addition, outliers in data are 
included in range of MFs generated by many of 
these techniques. New robust techniques that can 
determine number of representative MFs 
automatically would address some of these 
limitations.  

3 PRELIMINARY CONCEPTS 

This section provides a review on related techniques 
and concepts used in the proposed approach. The 
variable bandwidth mean-shift strategy is first 
described, and is then followed by a review of the 
skewness adjusted boxplot technique.  

3.1 Variable Bandwidth Mean-Shift 
Algorithm 

VBMS proposed by Comaniciu et al., (2001) is a 
nonparametric clustering technique which does not 
require the number of clusters to be defined. It takes 
multidimensional data with an unknown density ݂ 
and estimates the density at each point by taking the 
average of locally-scaled kernels centered at each of 
the data points, and tries to map each data point to 
its corresponding mode. The output of this technique 
is locations of modes detected in ݂ and the cluster of 
data associated with each mode. Usually the kernel 
K is taken to be a radially symmetric, nonnegative 
function centered at zero such that ܭሺݔሻ 	ൌ
݇ሺ‖ݔଶ‖). 	

More specifically, given the data points ݔ௜ ሺ݅ ൌ
1,… ,ܰሻ, steps for the VBMS algorithm are as 
follows: 

1. Use the plug-in rule (Sheather and Jones, 1991) 
to find an initial bandwidth ݄଴ for the kernel 
 .ሻ and estimate PDF of data using Eq. (1)ݔሺܭ

݂̅ሺݔሻ ൌ
1
݄݊଴

෍ܭሺ
ݔ െ ௜ݔ
݄଴

ே

௜ୀଵ

ሻ (1)

 

Plug-in rule is a bandwidth selection technique for 
kernel density estimation of a data distribution. It 
involves using a kernel function to estimate the PDF 
of data. Estimation is performed per different values 
for the bandwidth of the kernel function, and the 
bandwidth that minimises an error function is 
selected. 
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In Eq. (2), ݄଴ is a fixed bandwidth obtained from the 
plug-in rule (in step 1) and  is a proportionality 
constant which divides the range of density values 
into low and high densities. When the local density 
for a given data point ݔ௜ is low (i.e., ݂̅ሺݔ௜ሻ ൏ ), 
݄ሺݔ௜ሻ increases relative to ݄଴ implying more 
smoothing in the estimated density for the point ݔ௜. 
For data points where their estimated density ݂̅ሺݔ௜ሻ 
is greater than  the bandwidth becomes narrower. 
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(3)

where d is the dimension of the data and  
݃ሺݔሻ ൌ 	െ݇ᇱሺݔሻ 
4. Choose the location of an unprocessed data as 

the initial location of the kernel and compute 
mean shift vector represented in Eq. (3) 
iteratively till convergence.  

5. Record the location of kernel at convergence as 
the location of a mode of PDF, and group all data 
points covered by the kernel, during its 
successive locations, as the cluster associated 
with the mode. 

6. Repeat step 4 to 5 until no unprocessed data is 
left. 

More details on VBMS can be found in (Sheather 
and Jones, 1991). 

3.2 The Skewness Adjusted Boxplot 
Technique 

The skewness adjusted boxplot (SAB) technique is a 
graphical tool (with a robust measure of skewness) 
used in robust statistics (RS) for the purpose of 
outlier detection (Rousseeuw and Hubert, 2011).  

Given a continuous unimodal data, SAB first 
calculates a robust measure of skewness (i.e., 
medcouple (MC) (Brys et al., 2004)) of the 
underlying data distribution. Then it outputs a 
normal range for the data which excludes possible 
outliers from the normal data. 

More specifically, if ݔ௡ ሺ݊ ൌ 1,… ,ܰሻ is a 
univariate data, medcouple (MC) of data is 
calculated as 

                   
  

 ( , )
x m xi n j

MC h x xi jmed
 

              (4) 

where for all ݔ௜ ്  ௝ the kernel function ݄ is givenݔ
by: 

݄൫ݔ௜, ௝൯ݔ ൌ 
൫௫ೕି௠೙൯ିሺ௠೙ି௫೔ሻ

௫ೕି௫೔
 (5)

In Eq. (5), ݉௡ is the median of data points. If ݔ௜ ൌ
௝ݔ ൌ ݉௡, let ݉ଵ 	൏	. . . ൏ ݉௞ be the indices of the 
data points which are associated with the median 
݉௡. The kernel ݄ is then defined as Eq. (6).  

݄ ቀݔ௠೔
, ௠ೕݔ

ቁ ൌ ቐ
൅1, ݂݅	݅ ൅ ݆ െ 1 ൏ ݇
0, ݂݅	݅ ൅ ݆ െ 1 ൌ ݇
െ1, ݂݅	݅ ൅ ݆ െ 1 ൐ ݇

 (6)

In case the distribution is skewed to the right, MC 
gets a positive value up to +1. MC becomes negative 
(up to -1) in a left-skewed distribution. Finally, a 
symmetric distribution has a zero MC. 

Once the value of MC is obtained for the data, 
SAB calculates the normal range (NR) for the data as 

1 3

1 3

( ) (3MC)-4MC

(-3MC) (4MC)

[Q   -1.5 e   IQR ;Q   + 1.5 e IQR]   if MC 0 

NR=

[Q   -1.5 e   IQR ;Q   + 1.5 e IQR]   otherwise

 





 
(7)

where ܳଵ and ܳଷ are the first and the third quartiles 
of the data and ܴܳܫ ൌ ܳଷ െ ܳଵ. For a left-skewed 
distribution (with a MC <0), the cut-off interval for 
the distribution will be the upper range shown in Eq. 
(7). The lower range in Eq. (8) is for right-skewed 
distributions having a positive MC.  

Once NR is determined for the distribution, all 
observations outside the interval will be marked as 
potential outlier. Note that by using different ranges 
for different types of skewed distributions, we allow 
the cut-off interval to be asymmetric around the 
median of distribution. 

4 THE PROPOSED APPROACH 

The proposed approach takes an attribute and 
automatically defines a number of associated MFs as 
linguistic variables. Let an attribute take a series of 
crisp numerical values ݔ௡ ሺ݊ ൌ 1,… ,ܰሻ and these 
data points belong to an unknown probability 
density function (PDF) f. The two-step procedure of 
the proposed approach for generating MFs for the 
attribute is as follows 
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Step 1. use VBMS to find modes (local maxima) of 
f representing the attribute and cluster of 
data points associated with each mode 

Step 2. use skewness adjusted boxplot technique 
(Hubert and Vandervieren, 2008) to obtain 
the normal range of data for each cluster 
(where there are no outliers), and 
accordingly define a MF for the cluster.  

The output of Step 1 is the location of modes of f 
denoted as ݉௜	ሺଵஸ௜ஸேሻ and the cluster of data 
associated with each mode.  

When an attribute has a multimodal PDF and 
each mode may be associated with a different 
density distribution, one fixed global bandwidth is 
not optimal for estimating the location of modes in 
PDF, and thus local bandwidths should be computed 
(Comaniciu et al., 2001). Using VBMS, we 
determine a local bandwidth for each data point in a 
way that points corresponding to tails of the data 
distributions receive a bigger bandwidth than data 
points lying in large density region of distributions 
and hence the estimated density function for tails of 
the distributions is smoothed more.  

In Step 2, we use the output from Step 1, the 
number of modes as the number of required MFs 
representing the attribute and for each cluster of data 
associated with a mode, we define a MF. We first 
use the SAB technique to determine the normal 
range (NR) for the cluster (see Section 3.2) and we 
denoted this as ሾ݈, ݄ሿ	.	 

The output of Step 2 for each attribute is a tuple 
(X, m1, m2, … , mnc) as linguistic variables, where X 
stands for the attribute name and mi stands for an 
MF defined over the universe of discourse for the 
attribute and nc stands for the number of modes 
identified in Step 1. 

Various forms of MFs, together with their 
corresponding parameters, can be used in the 
proposed approach to characterise the identified 
clusters. In this paper we first explored using 
triangular membership functions (TMFs) because of 
their simplicity of calculation and ability to represent 
skewed distributions. As shown in Figure 1(b), 
parameters of TMF are defined by a triad ሺܣ, ,ܤ  ,ሻܥ
with point ܣ representing the left foot of TMF, ܤ is 
the location of the center, and ܥ is the location of the 
right foot. 

To define a TMF for a detected cluster we use 
NR ሾ݈, ݄ሿ (݈ is the lower and ݄ is higher limit for the 
normal range, respectively) associated with the 
cluster, and the cluster mode, ݉, to determine its 
parameters ሺܣ, ,ܤ  ሻ. This is illustrated using anܥ
example shown in Figure 1. 

  
                         (a)                                              (b) 

Figure 1 (a): The histogram of a detected data cluster from 
Step 1. The vertical axis shows the number of 
observations. (b) The corresponding TMF defined for the 
cluster. 

Figure 1(a) showed the histogram associated 
with the cluster, with the detected mode ݉ and 
normal range ሾ݈, ݄ሿ shown, in Figure 1 (a). A 
probability density distribution (PDF) is first 
obtained from this histogram. Figure 1 (b) shows the 
corresponding TMF defined for the cluster with ݉ 
as the center point ܤ for the TMF. Next, using the 
generated PDF, we calculate the probability density 
of lower bound (݈) and higher bound (݄) of the 
cluster, denoted by ܲሺ݈ሻ and	ܲሺ݄ሻ	in	Figure	1ሺbሻ, 
respectively. Then, we find the parameter A for the 
TMF by extrapolating the two points (݉, 1) and (݈, 
ܲሺ݈ሻ). In the same manner, we find the parameter C 
by extrapolating the two points (݄, ܲሺ݄ሻሻ and (݉, 
1). Now, TMF is defined using Eq. (8). 

ሻݔ௜ሺߤ	 ൌ

ە
ۖۖ
۔

ۖۖ
ۓ

0 ݔ	݂݅	 ൑ ௜ܣ
ݔ െ ௜ܣ
௜ܤ െ ௜ܥ

௜ܣ	݂݅				 ൏ ݔ ൑ ௜ܤ
	

௜ܥ െ ݔ
௜ܥ െ ௜ܤ

௜ܤ	݂݅				 ൏ ݔ ൑ ௜ܥ

0 ௜ܥ	݂݅		 ൑ ݔ

 (8)

Figure 2 (a) and (b) shows examples of histograms 
for attributes with a unimodal and bimodal 
distributions, respectively. Each distribution of data 
associated with a detected mode is shown with a 
different colour. In case of Figure 2 (a), VBMS 
associates all the data pints with the only mode 
detected in the PDF whereas for Figure 2 (b), two 
separate distributions as shown in blue and red 
colours have been detected. The corresponding 
normal range and the location of mode detected for 
each of the distributions in Figure 2 (a) and (b) are 
shown in Figure 2 (c) and (d), respectively. In Figure 
2 (c), the detected lower and upper bounds for the 
distribution are shown by the two vertical black 
lines, respectively, and the range between these two 
lines forms the normal range for the cluster 
associated with the distribution. All the data points 
shown by the red dots outside the detected normal 
range are marked as outlier. As can be observed 
from Figure 2 (c), the distance of the lower limit to 
the mode of distribution is larger than that between 
the mode and the upper limit, thus reflecting the
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                                                (a)                                              (b)

 

 
                                             (c)                                             (d)

 

 

                                                (e)                                               (f)

Figure 2 (a) and (b): examples of attributes with a unimodal and bimodal distributions, respectively. (c) and (d) the 
corresponding normal range and the location of mode detected for each of these distributions, respectively, and (e) and (f) 
the corresponding TMFs. 

skewness of the underlying distribution in Figure 2 
(a). In Figure 2 (c) and (d), the data points inside 
each normal range are kept as a cluster, and data 
points that are outside of the detected normal ranges 
are considered in this technique as being outliers and 
will be eliminated. Figure 2 (e) and (f) show TMFs 
representing the distributions in Figure 2 (a) and (b) 
obtained from the procedure described in Step 2 of 
the proposed approach. 

5 EXPERIMENTAL RESULTS 

Our evaluation consists of comparison between the 
proposed approach and two other techniques in 
terms of (i) parameterising MFs for attributes with 
different distributions, and (ii) classification 
performance of a fuzzy rule set that was developed 
using the parameterised output of each of the 3 
techniques. 

5.1 Dataset 

We evaluated the effectiveness of the proposed 
approach using attributes associated with a dataset 
for classification activities of daily living (ADLs), as 
previously used in (Pazhoumand-Dar et al., 2015). 
This dataset is collected via multiple Kinect 
cameras, each installed in a different area of a single 
monitored house. Data was collected from this house 
for a period of five weeks, during which a single 
occupant undertook activities typical of a retired 
elderly person. From each Kinect, observations for 
activities undertaken are taken at one-second 
intervals and ones in which a person is detected are 
stored. The entire dataset consisted of more than two 
million observations. The attributes we extracted 
from this dataset were the occupant’s Centre of 
Gravity pixel location ሺܺܿ, ܻܿሻ, Aspect Ratio (AR) 
of the 3D axis-aligned bounding box, and 
Orientation (ܱ).  

The dataset for each location was partitioned into 
a training set and an unseen test set. The training set 
for each location consisted of nearly one million 
observations of behaviour patterns associated to 
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typical (or normal) ADLs of the occupant. The test 
set holds some sequences of normal behaviour (i.e. 
typical ADLs) and abnormal events (e.g. occupant 
lying on the floor of the kitchen). 

The system used for the gathering of data 
consisted of Windows 8.1 notebook PCs, with one 
notebook per Kinect device. Custom data collection 
code was written in C# under the Microsoft .Net 
framework. Data analysis was subsequently 
performed in MatLab™. 

5.2 Comparison of Techniques for 
Parameterizing Attributes with 
Different Characteristics 

Attributes with different data distribution were used 
to compare the parameterisation results between the 
proposed approach (VBMS–RS) and two other 
techniques: (i) using MS (instead of VBMS) in Step 
1 of the proposed approach followed by the 
procedure of robust statistics in Step 2 (MS-RS), and 
(ii) using the Fuzzy-C-Means (FCM) clustering 
algorithm to generate a fixed number of membership 
functions over the domain of a particular attribute 
without the use of robust statistics. For each 
particular attribute, we empirically set this number 
for FCM according to the number of modes in the 
attribute probability density function, as discussed in 
the following sections. In each case, comparisons are 
made through the clusters and TMFs produced by 
each of the 3 techniques. 

5.2.1 Attribute with Separated Distributions 

One example with separated distributions is for the 
attribute ܺܿ associated with the living room dataset, 
as shown in Figure 3.  
 

 

Figure 3: A bimodal distribution for the ܺܿ attribute 
associated with the living room dataset. 

The reason is that, as shown in Figure 4 (a) and 
(b), the living room was occupied mainly for sitting 
at a computer desk (the left distribution) and using 

the sofa for watching TV (the distribution to the 
right) and as a result, values for ܺܿ are mostly 
concentrated around two separate regions in feature 
space of Xc (i.e., 150 and 325), respectively. 

 
(a) 

 
(b) 

Figure 4: (a) Sitting at a computer desk, and (b) watching 
TV while sitting on a sofa in the living room. The body of 
the occupant is masked by its binary silhouette obtained 
from the Kinect SDK and the numbers in the vertical and 
horizontal axis indicate pixel location. 

It should be remarked that all the attributes in 
this dataset were obtained from depth maps and their 
corresponding binary mask of the occupant. The 
colour images shown in Figure 4 are only to 
visualise the living room area for the readers and the 
attributes for the two observations shown in Figure 4 
were actually obtained from the two depth maps 
shown in Figure 5, respectively.  

    
                         (a)                                               (b) 

Figure 5: The corresponding depth maps of images shown 
in Figure 4. 

Figure 6 (a) illustrates the results of using 
VBMS–RS for parameterising distributions of Xc 
from the living room. Each underlying distribution 
of data associated with a detected mode is shown 
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with a different colour. 
VBMS–RS could separate correctly this attribute 

feature space into two main underlying distributions. 
The distribution to the right in Figure 6 (a) is in the 
shape of reverse-J (skewed to the left), and the 
corresponding TMF defined by VBMS–RS 
represents only the range for the normal data points 
associated with this distribution. 

To further evaluate VBMS-RS, we replaced 
VBMS with MS in Step 1 of the proposed approach 
and repeated the experiment. By comparing the 
results, we observed that where the distributions in 
the attribute feature space are separated distinctly, 
both methods work equally well. However, MS–RS 
requires an empirical input, the bandwidth 
parameter, whereas for VBMS in the proposed 
approach, the initial bandwidth is derived from the 
data automatically (see Section 3.1). 

In the comparison using FCM, we empirically set 
the number of membership functions to be 2 (as this 
is obvious from a visual examination of the data). As 

shown with blue and red colours, Figure 6 (e) 
demonstrates that FCM correctly separated the 
attribute into two distributions in the attribute feature 
space. As a result, the two TMFs in Figure 6 (f) were 
generated to represent the two distributions detected 
in the attribute feature space, respectively. Since 
FCM does not use robust statistics, the resulting 
parameterization of the TMFs is not the same as the 
proposed approach. More specifically, TMFs 
generated by FCM have a wider support and hence 
represent a wider area outside the normal range for 
the two main distributions in Figure 6 (e). As a 
result, the TMFs generated by FCM will be 
representing many rare observations (outliers) 
around the main distributions. For example, they 
give membership values 0.17 and 0.83 to the outlier 
point (380) so that the sum of memberships of this 
point is one. This is in contrast to TMFs generated 
by VBMS-RS which give zero membership to this 
outlier point. 

VBMS-RS 

 

                                           (a)                                              (b)

   MS-RS 

                                           (c)                                              (d)

     FCM 

                                           (e)                                              (f)

Figure 6: Different techniques for parameterising the two underlying distributions present in Figure 3. The different colors 
in each of (a), (b), and (c) show range for clusters obtained using the 3 different techniques. (b), (d), and (f) show the 
corresponding TMFs.  
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5.2.2 Attribute with a Unimodal 
Distribution 

One example of the attributes that have unimodal 
skewed distribution is the AR attribute from the 
dining room, as illustrated in images on the left hand 
side of Figure 7 (i.e., 7 (a), 7 (c), and 7 (e)). The 
overall distribution shown in those images illustrates 
the skewed distribution for AR. Different colors in 
each of the images indicate the distributions related 
to the clusters that have been obtained using the 3 
different techniques. Figure 7 (b), (d), and (f) show 
results of generating TMFs for the distribution of the 
AR attribute using the 3 different techniques. As 
shown in Figure 7 (a), VBMS-RS correctly 
associated all data points with the only mode in the 
distribution. However, as shown in Figure 7 (c), MS-
RS has broken the distribution into two clusters. 
This difference is mainly because in VBMS, points 
that correspond to the tails of the underlying density 
will get a broader neighbourhood and a smaller 
importance. So, they will be included to main 
structures and hence, tail of distributions will not be 
broken  into   pieces.  This  is  unlike  MS,  where   it 

assigns a fixed global bandwidth to all data points 
and hence all points receive the same importance 
when estimating the PDF of data. 

As the distribution is unimodal, input value for 
the number of clusters in FCM was set to 1. From 
Figure 7 (e) we can see that although FCM has 
grouped all data points in the distribution into the 
stipulated one cluster, the support of the generated 
TMF in Figure 7 (f) is much broader than TMF 
generated by VBMS-RS which might lead to non-
specific responses for classification of the attribute 
values (i.e., every point is considered to be in the 
set). Also, when the application of generating TMFs 
is for classification of outliers, the generated TMF in 
this example is representing many rare observations 
(outliers) located between 4 and 6, and hence will be 
not able to correctly classify a new abnormal 
observation within that boundary. 

However, the TMF resulted from the proposed 
approach is not representing any data point for 
outside the normal range [0.5 , 3.5] and therefore, 
VBMS-RS method can obtain better classification 
results for normal points and better accuracy for 
handling outlier observations.  

VBMS-RS 

    (a)  (b) 

MS-RS 

   (c)  (d) 

FCM 

    (e)  (f) 

Figure 7: Using the 3 different techniques for parameterising distribution of the AR attribute for the dining room dataset. 
(a), (c), and (e) show the range for clusters obtained using the 3 different techniques, and (b), (d), and (f) show the 
corresponding TMFs.  
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5.2.3 Attribute with Multimodal 
Distribution 

An example of an attribute with multimodal 
distribution is Xc from the kitchen dataset. From the 
ground truth in examining the video data for this 
attribute there were three distinct places for Xc 
where the occupant performed most of the activities 
in the kitchen. As a result, PDF for this attribute has 
3 modes, each associated with a particular 
distribution and the 3 distributions overlap. 

Results of parameterising this attribute using the 
3 different techniques are shown in Figure 8. Input 
value for the number of clusters to be created by 
FCM was set to 3. It is clear from the results in 
Figure 8 that, VBMS-RS partitions the feature space 
into the right number of membership functions 
whereas using MS-RS and FCM were unable to 
separate the mixed distributions correctly. The 
difference between results for VBMS-RS and MS-
RS is due to the fact that, using VBMS, the data 
points lying in large density regions will get a 
narrower neighbourhood since the kernel bandwidth 
is smaller, but are given a larger importance. So 
when main distributions are mixed in the attribute 
feature space, VBMS can better separate those 
structures than MS. This finding is consistent with 
Comaniciu et al., (2001). 

From Figure 8 (f) FCM has partitioned the 
attribute feature space to be represented by three 
TMFs. However, the parameters for these three 
TMFs are different to those of the results from 
VBMS-RS. The reason is that FCM aims to 
minimise the distance of data points from their 
respective cluster centres. As a result the locations of 
centre of clusters are not always corresponding to 
the modes in distribution of data. Furthermore, as 
seen in Figure 8 (e), distributions with their modes 
located on pixel location 150 and 200, respectively, 
are represented by the same TMF. Hence, TMFs 
generated by this technique are not accurately 
representing data distributions in this attribute 
feature space. 

5.3 Results on Classification Accuracy 
using TMFs Produced by Different 
Techniques 

The characteristics of MFs generated by a particular 
technique have a direct impact on performance of 
the corresponding fuzzy rule set for classification 
purposes. In other words, a better technique to 
estimate the underlying distributions for attributes 
can lead to more representative MFs and hence a 

better classification accuracy of the corresponding 
fuzzy rule set. To investigate this, we conducted 
experiments in which we applied the output of the 3 
different MF generation techniques, including the 
proposed approach, to obtain a fuzzy rule set for the 
application of detecting abnormal activities in 
ADLs. As we had data from 5 rooms and each room 
was associated with 4 attributes with different 
number of modes in their corresponding PDF, we 
empirically set the number of clusters for FCM to a 
specific number (i.e., 3) to suite across all situations, 
a technique used typically by existing fuzzy 
approaches (Tajbakhsh et al., 2009). To obtain the 
classifier, we extracted the attributes (described in 
Section 5.1) from the training dataset associated 
with each location and developed the fuzzy system 
using the approach from (Pazhoumand-Dar et al., 
2015). A brief description of this approach is 
described below: 

The unsupervised ADLs monitoring approach 
proposed by (Pazhoumand-Dar et al., 2015) uses a 
set of attributes derived from Kinect camera 
observations and consists of two phases: training and 
monitoring.  

During the training phase, the system first learns 
“normal” behaviour patterns of the occupant as a set 
of fuzzy rules. For each monitored location, normal 
behaviour patterns are learnt by finding frequent 
occurrences of attributes via the use of a fuzzy 
association rule mining algorithm (Kuok et al., 
1998). The antecedent part of each rule in the 
resulting fuzzy rule set for each monitored location 
represents a combination of fuzzy linguistic values 
describing a frequent behaviour of the occupant. The 
normal duration of that frequent behavior is shown 
in the consequent part of the rule. 

The monitoring phase takes the fuzzy rule set 
obtained from the training phase as input, and for 
each location, it classifies the current behaviour of 
the occupant as abnormal if it is not in the set of 
frequent behaviours. For more detail, we refer the 
reader to (Pazhoumand-Dar et al., 2015). 

Table 1 compares classification accuracy for 
fuzzy rules obtained using the output of the 4 
different MF generation techniques. More 
specifically, 40 sequences of different scenarios for 
normal and abnormal behaviour in the unseen test 
set (20 sequences for each category of normal and 
abnormal behaviour, respectively) were used to 
evaluate the accuracy of the fuzzy rule set obtained 
using the output of a particular technique and the 
resulting classification accuracy is reported in Table 
1. 

From Table 1 it can be observed that when we 
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use MS-RS to obtain TMFs for fuzzy rules, 6 of the 
test sequences, mostly representing an abnormal 
behaviour, were classified incorrectly. This is 
mainly because MS couldn’t distinctly separate 
overlapped distributions in feature space of 
attributes. Therefore, for some attributes two or 
more behaviour patterns belonging to different 
overlapped distributions were represented by the 
same TMF and hence represented by the same fuzzy 
rule. For example, distributions of AR for crouching 
on the kitchen floor (to pick up an object) and 
bending down (to manipulate objects inside the 
kitchen cabinet), while belonging to different main 
distributions in the attribute feature space, 
considered as belonging to the same cluster, and 
hence, the corresponding fuzzy rule set was not able 
to label a sequence for spending a long time sitting 
on the kitchen floor as abnormal behaviour. 

Classification that results from using FCM to 
generate TMFs produced accuracy of 78%. This is 
mostly because the test sequences involving normal 
behaviour patterns that were slightly different from 
their corresponding training patterns were 

misclassified by this classifier as abnormal. This was 
mainly because FCM broke main distributions for 
some attributes into pieces and consequently, for a 
particular activity, when most of training values 
belonged to a particular part of the distribution and 
the values for test sequences fell into another part of 
the distribution, the corresponding fuzzy rule for the 
activity could not be able to trigger and hence less 
accuracy of the classifier.  

We also evaluated the classification accuracy of 
the fuzzy rules obtained by applying the proposed 
approach without robust statistics and results are 
shown Table 1 denoted by VBMS. We observed that 
many test sequences for abnormal behaviour have 
been labeled as normal. In those sequences, the 
values of attributes were well outside of the normal 
range for the main distributions in the feature space 
of attributes. However, since the range of generated 
TMFs was wider than the range of main 
distributions, they included many outlier 
observations, and hence, outlier observations in each 
of those test sequences triggered a corresponding 
rule for a normal behaviour in the rule base to be

 

VBMS-RS 

(a)  (b) 

MS-RS 

(c)  (d) 

 

FCM 

(e)  (f) 

Figure 8: Results for using the 3 different techniques for parameterising distribution of Yc associated with the kitchen 
dataset. (a), (c), and (d) show the range for clusters obtained using the 3 different techniques, and (b), (d), and (f) show the 
corresponding TMFs. 
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fired and resulted in the test sequence being labelled 
normal. 

Table 1: Results of using the output of different MF 
generation techniques to obtain a fuzzy rule set for the 
application of detecting abnormal activities in ADLs. 

Method 
Normal 
behaviour 

Abnormal 
behaviour 

Overall 
accuracy 

FCM with 3 
clusters 

70% 85% 78% 

MS-RS 90% 80% 85% 

VBMS 100% 35% 68% 

VBMS-RS 100% 85% 92.5% 

From the last row of Table 1 we see that the rule 
set obtained from the results of VBMS-RS could 
classify 37 test sequences correctly and hence an 
accuracy of 92.5%. We observed that for almost all 
attributes, using the combination of VBMS and 
robust statistics yields in the resulting TMFs 
representing only the normal range for the main 
distributions in the attributes. Therefore, while 
outlier observations for abnormal behaviours were 
classified correctly, attribute values during most of 
sequences for normal behaviour were within the 
bounds associated with the generated TMFs, and 
hence, those sequences triggered a rule 
corresponding to a normal behaviour to fire. 

6 CONCLUSIONS 

In this paper, we presented an unsupervised MF 
generation method which learns the number of 
representative MFs for a dataset from the underlying 
data distribution automatically and sets up 
parameters associated with each MF. We performed 
comparisons between the results of the proposed 
approach and other techniques. In term of 
partitioning a particular attribute, results confirmed 
that the proposed approach generates membership 
functions that can separate the underlying 
distributions better. In comparing the results of 
different parameterization techniques in building 
fuzzy rules for classification of ADLs, we observed 
that the proposed approach allows us to achieve a 
better classification accuracy, thus showing a better 
performance for the proposed approach. Future work 
will involve extending the approach to address 
different types of membership functions. 
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