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Abstract: Distributed denial-of-service (DDoS) attack continues to grow as a threat to organizations worldwide. This 
attack is used to consume the resources of the target machine and prevent the legitimate users from 
accessing them. This paper studies the vulnerabilities of Health Check Service in Hadoop/YARN and the 
threat of denial-of-service to a YARN cluster with multi-tenancy. We use theoretical analysis and numerical 
simulations to demonstrate the effectiveness of this DDoS attack based on health check service (DDHCS). 
Our experiments show that DDHCS is capable of causing significant impacts on the performance of a 
YARN cluster in terms of high attack broadness (averagely 85.6%), high attack strength (more than 80%) 
and obviously resource utilization degradation. In addition, some novel schemes are proposed to prevent 
DDHCS attack efficiently by improving the YARN security. 

1 INTRODUCTION 

Hadoop is open source software based on scalability 
and reliability. It can be used to process vast amount 
of data in parallel on large clusters. Since then 
Apache Hadoop has matured and developed to a 
data platform for not just processing humongous 
amount of data in batch but also with the advent of 
YARN. It now supports many diverse workloads 
such as interactive queries over large data with Hive 
on Tez, realtime data processing with Apache Storm, 
in-memory datastore like Spark and the list goes on. 

For Hadoop’s initial purpose, it was always 
assumed that clusters would consist of cooperating, 
trusted machines used by trusted users in a trusted 
environment. Initially, there was no security model – 
Hadoop didn’t authenticate users or services, and 
there was no data privacy (O’Malley et al., 2009); 
(Kholidy and Baiardi, 2012). When moving Hadoop 
to a public cloud, there are challenges to original 
Hadoop security mechanisms. However, the research 
on MapReduce and Hadoop has mainly focused on 
the system performance aspect, and the security 
issues seemly have not received sufficient attention.  

A distributed denial-of-service (DDoS) is where 
the attack source is more than one–and often 
thousands–of unique IP addresses, it is an attempt to 
make a machine or network resource unavailable to 

its intended users, such as to temporarily or 
indefinitely interrupt or suspend services of a host 
connected to the Internet. The first DDoS attack 
incident (Criscuolo, 2000) was reported in 1999 by 
the Computer Incident Advisory Capability (CIAC). 
Since then, most of the DDoS attacks continue to 
grow in frequency, sophistication and bandwidth 
(Hameed and Ali, 2015); (Kholidy et al., 2015). 

Previous work has demonstrated the threat and 
stealthiness of DDoS attack in cloud environment 
(Sabahi, 2011); (Durcekova et al., 2012); (Ficco and 
Rak, 2015). As a solution, (Alarifi and Wolthusen, 
2014); (Karthik and Shah, 2014); (Mizukoshi and 
Munetomo, 2015) have successfully demonstrated 
how to mitigate DDoS attack with cloud techniques. 
There also have been numerous suggestions on how 
to detect DDoS attack. For example, using 
MapReduce for DDoS Forensics (Khattak et al., 
2011), a hybrid statistical model to detect DDoS 
attack (Girma et al., 2015); (Lee, 2011). Unlike in 
cloud environment, DDoS attacks in BigData based 
on Hadoop/YARN environment are more aggressive 
and destructive, but there seems a lack of research. 

One problem with the Hadoop/YARN system is 
that by assigning the tasks to many nodes, it is 
possible for malicious users submitting attack 
program to affect the entire cluster. In this paper, we 
study the vulnerabilities of Health Check Service in 
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YARN. These vulnerabilities encountered in YARN 
motivate a new type of DDoS attacks, which we call 
DDoS attack based on health check service 
(DDHCS). Our work innovatively exposes health 
check service in YARN as a possible vulnerability to 
adversarial attacks, hence it opens new avenue to 
improving the security of YARN. 

In summary, this paper makes the following 
contribution. 
 We present three vulnerabilities of Health Check 

Service in YARN, including i) Resource 
Manager (RM) is lack of Job Validation; ii) It is 

easy for a user to make a job failed, which will 
make the node transform into unhealthy state; iii) 
RM will add the unhealthy nodes to the exclude 
list, which means the decrease of service nodes 
in the cluster.  

 We design a DDHCS attack model, we use 
theoretical analysis and numerical simulations to 
demonstrate the effectiveness of this attack for 
different scenarios. Moreover, we empirically 
show that DDHCS is capable of causing 
significant impacts on the performance of a 
YARN cluster in terms of high attack broadness 
(averagely 85.6%), high attack strength (more 
than 80%) and obviously resource utilization 
degradation. 

 We propose three improving methods against 
DDHCS, including User blacklist mechanism, 
Parameter check and Map-tracing.  

The rest of this paper is organized as follows. 
Section 2 discusses the background. Section 3 
describes the vulnerabilities we found in YARN. 
Section 4 presents DDHCS attack model. Section 5 
demonstrates implementation of our attack model 
and evaluates attack effect by MapReduce job. 
Section 6 contains our suggestion to strength 
security of YARN. Section 7 concludes the paper 
and discusses some future work. 

2 BACKGROUND 

Health Check Service is a YARN service-level 
health test that checks the health of the node it is 
executing on. ResourceManager (RM) using health 
check service to manage NodeManagers (NM). If 
any health check fails, the NM marks the node as 
unhealthy and communicates this to the RM, which 
then stops assigning containers (resource 
representation) to the node. Before we introduce 
health check service, we should know about RM 
component, NM States and triggering conditions. 

2.1 YARN-ResourceManager 

Hadoop has evolved into a new generation—Hadoop 
2, in which the classic MapReduce module is 
upgraded into a new computing platform, called 
YARN (or MRv2) (Vavilapalli et al., 2013).  

YARN uses RM to replace classic JobTracker, 
and uses ApplactionMaster (AM) to replace classic 
TaskTracker (Lee, 2011). The RM runs as a daemon 
on a dedicated machine, and acts as the central 
authority arbitrating resources among various 
competing applications in the cluster. The AM is 
“head” of a job, managing all life-cycle aspects 
including dynamically increasing and decreasing 
resources consumption, managing the flow of 
execution, handling faults and computation skew, 
and performing other local optimizations.  

The NM is YARN’s per-node agent, and takes 
care of the individual compute nodes in a Hadoop 
cluster. This includes keeping up-to date with the 
RM, overseeing containers’ life-cycle management 
(Huang et al., 2014) monitoring resource usage of 
individual containers, tracking node-health, log’s 
management and auxiliary services which may be 
exploited by different YARN applications. 

There are three components connecting RM to 
NM, which co-manage the life-cycle of NM, as 
shown in Figure 1. They are NMLivelinessMonitor, 
NodesListManager and ResourceTrackerService. 
We discuss the three services as follows.  

 

Figure 1: ResourceManager architecture. 

1) NMLivelinessMonitor: This component keeps 
track of each NM’s last one heartbeat time. Any 
DataNode that doesn’t have any heartbeat within 
a configured interval of time, by default 10 
minutes, is deemed dead and expired by the RM. 
All the containers currently running on an 
expired DataNode are marked as dead and no 
new containers are scheduling on it. 

2) NodesListManager: This component manages a 
collection of included and excluded DataNodes. 
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It is responsible for reading the host 
configuration files to seed the initial list of 
DataNodes. The files are specified as 
“yarn.resourcemanager.nodes.include-path” and 
“yarn.resourcemanager.nodes.exclude-path”. It 
also keeps track of DataNodes that are 
decommissioned as time progresses. 

3) ResourceTrackerService: This component 
responds to RPCs from all the DataNodes. It is 
responsible for registration of new DataNode, 
rejecting requests from any 
invalid/decommissioned DataNodes, obtain 
node-heartbeats and forward them over to the 
Yarn Scheduler. 

2.2 Node States 

In YARN, an object is abstracted as a state machine 
when it is composed of several states and events 
triggering transfer of these states. There are four 
types of state machines inside RM—RMApp, 
RMAppAttempt, RMContainer and RMNode. We 
focus on RMNode state machine. 

RMNode state machine is the data structure used 
to maintain a node lifecycle in the RM, and its 
implementation is RMNodeImpl class. The class 
maintains a node state machine, and records the 
possible node states and events that may lead to the 
state transform (Huseyin et al., 2015). 

As shown in Figure2 and Table1, each node has 
six basic states (NodeState) and eight kinds of 
events that lead to the transfer of the six states 
(RMNodeEventType), the role of RMNodeImpl is 
waiting to receive events of RMNodeEventType 
type from the other objects, and transfer the current 
state to another state, and trigger another behavior at 
the same time. In subsequent articles, we focus on 
the unhealthy state and decommission state: 

 
Figure 2: Node state machine. 

UNHEALTHY: The administrator configures on each 
NM a health monitoring scripts, NM has a dedicated 

thread to execute the script periodically, to 
determine whether the NM is under healthy state. 
The NM communicates this “unhealthy” state to the 
RM via heartbeats. After that, RM won’t assign a 
new task to the node until it turns to be healthy state. 

DECOMMSSIONED: If a node is added to exclude 
list, the corresponding NM would be set for 
decommission state, thus the NM would not be able 
to communicate with the RM. 

2.3 Health Check Service  

The NM runs health check service to determine the 
health of the node it is executing on, in intervals of 
10 minutes. If any health check fails, the NM marks 
the node as unhealthy and communicates this to the 
RM, which then stops assigning containers to the 
node. Communication of the node status is done as 
part of the heartbeat between the NM and the RM.  

This service determines the health status of the 
nodes through two strategies, one is Health Script, 
Administrators may specify their own health check 
script that will be invoked by the health check 
service. If the script exits with a non-zero exit code, 
times out or results in an exception being thrown, 
the node is marked as unhealthy. Another one is 
Disk Checker. The disk checker checks the state of 
the disks that the NM is configured to use. The 
checks include permissions and free disk space. It 
also checks that the file system isn’t in a read-only 
state. If a disk fails the check, the NM stops using 
that particular disk but still reports the node status as 
healthy. However, if a number of disks fail the check 
(25% by default), then the node is reported as 
unhealthy to the RM and new containers will not be 
assigned to the node.  

Table 1: Basic states and basic events of node. 

States Describe Trigger Events 
NEW The initial state of state machine - 
RUNNING NM register to RM STARTED  

DECOMMISSION A DataNode is added to exclude list DECOMMISSIO
N 

UNHEALTHY 
Health Check Service determines whether 
NM is unhealthy 

STATUS_ 
UPDATE 

LOST 
NM doesn’t heartbeat within 10 minutes, is 
deemed dead 

EXPIRE 

REBOOTING 
RM finds NM’s heartbeat ID doesn’t agree 
with its preservation, RM require it to 
restart. 

REBOOTING 

 

We focus on the Health Script, we note that if the 
script cannot be executed due to permissions or an 
incorrect path, etc. then it counts as a failure and the 
node will be reported as unhealthy. The NM 
communicates this “unhealthy” state to the RM, 
which then adds it into exclude list. The NM will run 
this Health Script continuously, once the state is 

NEW 

DECOMMISSIONED 

UNHEALTHY 

REBOOTED 

RUNNING 

LOST 

STATUS_UPDATE 

DECOMMISSION 

EXPIRE 

REBOOTING 

EXPIRE 

REBOOTING 

CLEANUP_APP 
CLEANUP_CONTAINER 
RECONNECTED 

DECOMMISSIONED 
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transformed into “healthy”, RM will remove it from 
the exclude list, and reassign containers to the node.  
The administrator can modify the configuration 
parameter in yarn-site.xml. 

3 VULNERABILITY ANALYSIS 

3.1 Lack of Job Validation 

The fundamental idea of MRv2 is to split up the two 
major functionalities of the JobTracker into separate 
daemons. The idea is to have a global RM and per-
application AM. An application is a single job in the 
classical sense of Map-Reduce jobs. 

Jobs are submitted to the RM via a public 
submission protocol and go through an admission 
control phase during which security credentials are 
validated and various operational and administrative 
checks are performed.  

 

Figure 3: YARN rejects a MapReduce job. 

RMApp is the data structure used to maintain a 
job life-cycle in RM, and its implementation is 
RMAppImpl class. RMAppImpl holds the basic 
information about the job (i.e. Job ID, job name, 
queue name, start time) and the instance attempts.  

We found that only the following situations will 
lead to APP_REJECTED (an event of RMApp state 
machine) event, as shown in Fiture3: 
1) The client submit a job to RM via RPC function 

ApplicationClientProtocl#submitApplication ma
y throw an exception, it happens when Resource-
Request over the minimum or maximum of the re
sources; 

2) Once the scheduler discovers that the job is 
illegal, (i.e. users submit to the inexistent queue 
or the queue reaches the upper limit of job 
numbers), it refuses to accept the job. 

RM validates resource access permission, but lack of 
job validation about whether or not the job can 
finish. The only event that causes the job to enter the 
FINISHED state is the normal exit from the AM 
container. We can submit a job to the cluster which 
is bound to fail, RM allocates resources for it and 
it’s running on corresponding NM. However, RM 
doesn’t check whether the job can be successfully 
completed. 

3.2 Easy to Make a Job Failed 

The MapReduce enforces a strict structure: the 
computation task splits into map and reduce 
operations. Each instance of a map or reduce, called 
a computation unit, takes a list of key-value tuples. 
A MapReduce task consists of sequential phases of 
map and reduce operations. Once the map step is 
finished, the intermediate tuples are grouped by their 
key-components. This process of grouping is known 
as shuffling. All tuples belong to one group are 
processed by a reduce instance which expects to 
receive tuples sorted by their key-component (Wu et 
al., 2013). Outputs of the reduce step can be used as 
inputs for the map step in the next phase, creating a 
chained MapReduce task.  

Each Map/Reduce Task is just a concrete 
description of computing tasks, the real mission is 
done by TaskAttempt. The MRAppMaster executes 
the Mapper/Reducer task as a child process in a 
separate JVM, it can start multiple instances in 
order. If the first running instance failed, it starts 
another one instance to recalculate, until this data 
processing is completed or the number of attempts 
reaches the upper limit. By default, the maximum 
attempts are 4 times. The users can configurate 
parameter in the job via 
mapreduce.map.maxattempts and 
mapreduce.reduce.maxattempts. MRAppMaster may 
also start multiple instances simultaneously, so they 
will complete data processing. In MRAppMaster, 
the life-cycle of the TaskAttempt, Task and Job are 
described by a finite state machine, as shown in 
Figure 4, where TaskAttempt is the actual task for 
the calculation, the other two components are only 
responsible for monitoring and management. 
To our best knowledge, in some cases, the task never 
completes successfully even after multiple attempts. 
And it is easy to make the failed job, for instance, 
hardware failure, software bugs, process crashes and 
OOM (Out Of Memory). If there is no response 
from a NM in a certain amount of time, the 
MRAppMaster makes the task as failed. We 
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summarize the five conditions result in task failed as 
follows: 
1) Map Task or Reduce Task fails. It means the 

problems of the MapReduce program itself 
which makes the task failed. There may be some 
errors in the user code. 

2) Time out. It may be due to network delay to read 
data out of time, or the task itself takes longer 
time than expected. In this case, the long-running 
tasks take up system resources and will reduce 
the performance of the cluster over time.  

3) The bottleneck of reading files. If the number of 
tasks performed by a job is very great, the 
common input file may become a bottleneck. 

4) Shuffle error. If the map task completes quickly, 
and all the data is ready to copy for shuffle, it 
will lead to overload of threads and memory 
usage of buffer in the shuffle process, which will 
cause a shortage of memory. 

5) The child process JVM quit suddenly. It may be 
caused by the bug of JVM, which makes the 
MapReduce code running failed. 

We can easily make job failed using one of these 
items, for instance, we write program with an 
infinite loop, or we specify the timeout as 10 
seconds, but submit a long-running job, which need 
at least 2 minutes. 

 
Figure 4: The job/task state transition. 

3.3 Weak Exclude List Mechanism  

As discussed in 2.3, NM runs health check service to 
determine the health of the node it is executing on. If 
the task failed more than 3 times in a node, the node 
is regarded under the unhealthy state. When a 
DataNode under unhealthy state, all the containers 
currently running on this DataNode are marked as 
dead and no new containers are scheduled on it. 
Explicitly point out the default failure times in the 
RMContainerRequestor class as follows: 

maxTaskFailuresPerNode =   
conf.getInt(MRJobConfig. 

MAX_TASK_FAILURES_PER_TRACKER, 3); 

NodesListManager maintains an exclude list - a file 
that resides on the RM and contains IP address of 
the DataNodes to be excluded. When NM reports its 
unhealthy state to RM via heartbeat, RM doesn’t 
check why and how it becomes unhealthy, but adds 
it into exclude list directly. 

Before that, RM calculates the proportion of the 
nodes in exclude list, which gets parameter 
information from MRJobConfig interface. When the 
node number of exclude list is less than a certain 
percentage (default is 33%), RM will add the node 
into exclude list, otherwise the unhealthy node won’t 
be added to exclude list. 

Finally, the failure handling of the containers 
themselves is completely left to the framework. The 
RM collects all container exit events from the NMs 
and propagates those to the corresponding AMs in a 
heartbeat response. AM already listens to these 
notifications and retries map or reduce tasks by 
requesting new containers from the RM. 

4 DDHCS THREAT MODELS 

The adversary is the malicious insider in the cloud, 
aiming to subvert availability of the cluster. As 
discussed in Section 3, we discovered three 
vulnerabilities of YARN platform, we can use the 
health check service to submit easy failed jobs to 
add DataNodes to exclude list, which will cause 
service degradation and the reduction of active 
DataNodes. 

Considering the scenario in Figure 5, the normal 
users and malicious users can submit jobs to the 
YARN cluster. The jobs that normal users submitted 
can finish completely, while the jobs that malicious 
users submitted are the failed jobs, which will never 
complete. We use the running process of an applicat- 
ion to analyze the attack process. The steps are 
detailed as follows: 
1) Distributed attackers and normal users submit 

applications to the RM via a public submission 
protocol and go through an admission control 
phase during which security credentials are 
validated and various operational and 
administrative checks are performed. 

2) Accepted applications are passed to the scheduler 
to run. Once the scheduler has enough resources, 
the application is moved from accepted to 
running state. Aside from internal bookkeeping, 
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this involves allocating a container for the AM 
and spawning it on a node in the cluster. 

 

 

Figure 5: DDHCS: DDoS attack based on health check 
service. 

3) When RM starts the AM, it should register with 
the RM and periodically advertise its liveness 
and requirements via heartbeat. To obtain 
containers, AM issues resource requests to the 
RM. 

4) Once the RM allocates a container, AM can 
construct a container launch context (CLC) to 
launch the container on the corresponding NM. 
Monitoring the progress of work done inside the 
container is strictly the AM’s responsibility. 

5) To launch the container, the NM copies all the 
necessary dependencies to local storage. Map 
tasks process each block of input (typically 
128MB) and produce intermediate results, which 
are key-value pairs. These are saved to disk. 
Reduce tasks fetch the list of intermediate results 
associated with each key and run it through the 
user’s reduce function, which produces output. 

6) If the task fails to complete, the task will be tried 
for a number of times, saying 3 times; if all tries 
fail, this task will be treated as a failure, and AM 
will contact RM to set up another container 
(possibly in another node) for this task, until this 
task is completed or the MapReduce job is 
terminated. 

7) For each DataNode, which executes the failed 
task, its health check service will add one to its 
total number of failures. And if the DataNode 
has failed more than 3 times, the node will be 
marked as unhealthy. The NM reports this 
unhealthy state to the RM, which then adds it 
into exclude node lists. 

8) Once the AM is done with its work, it should 
unregister from the RM and exit cleanly. 

Attackers repeat the procedure until the exclude list 
has 33% nodes of the total number, aiming at 
reducing the service availability and performance by 
exhausting the resources of the cluster (including 
memory, processing resources, and network 
bandwidth). 

5 EVALUATION  

5.1 Experiment Setup 

We set up our Hadoop cluster with 20 nodes. Each 
node runs a DataNode and a NodeManager with an 
Intel Core i7 processor running at 3.4 GHz, 4096 
MB of RAM, and run Hadoop 2.6.0, which is a 
distributed, scalable, and portable system. All 
experiments use the default configuration in Hadoop 
for HDFS and MapReduce except otherwise noted 
(e.g., the HDFS block size is 128MB, max java heap 
size is 2GB).  

A. Attack Programs 

Attack Setting. We consider a setting in which 
attackers and normal users are concurrent using the 
same YARN platform. It is well known that YARN 
in public clouds makes extensive use of multi-
tenancy. We design three attack programs as 
follows: 

WordCount_A: We use WordCount benchmark in 
Hadoop as our main intrusion program because it is 
widely used and represents many kinds of data-
intensive jobs. We specify the timeout parameter as 
10 milliseconds (named as WordCount_A). 

Since the input file we used is the full English 
Wikipedia archive with the total data size of 31GB, 
the program can’t finish within the time limit. 

BeerAndDiaper: We write an infinite loop in this 
program and specify the timeout parameter as 10 
milliseconds, which will fail to complete within the 
time limit. 

WordCount_N: We use an executable program, but 
as a normal user, we can modify the configuration 
file–map-site.xml in client. We change the value of 
mapreduce.task.timeout from 1000 (ms) to 10 (ms). 
We use the “hadoop dfsadmin -refreshNodes” 
command to reload the configuration file. We 
submit executable WordCount program (named as 
WordCount_N) with large input file, since it can’t 
finish in 10 milliseconds, it will be marked as failed. 

B. Evaluation Index 
First, we introduce the variable to be used as 
follows. N denotes the total number of living nodes 
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that a Hadoop cluster currently has; m denotes the 
number of unhealthy nodes after DDHCS attack. 
Here for simplicity, we assume that all of the nodes 
in a cluster are identical. T  denotes the start time 
of the job, 	T  denotes the end time, then we 
calculate the total completion times under normal 
circumstances as T=T -T  , we repeat the jobs 
for 20 times, recording the start time and finish time, 
so we can obtain the average time under normal 
circumstances as : 

 

T=∑n 
i=1Ti / n (1)

 

Similarly, we calculate the average time under 
DDoS attack as: 
 

T  =∑n 
i=1Ti′ / n (2)

 

Wherein, T  denotes the total completion times 
under DDoS attack, calculated by  
 

T′ = T′finish - T′start (3)
 

We can characterize the scale of the addressed 
DDHCS attacks in three dimensions: (i) attack 
broadness, which is defined as b m/N; (ii) attack 
strength, denoted as s, which in the portion of 
resource occupied by the DDHCS attack in an 
infected node. For example, given attack broadness 
b=83.2%, and attack strength s=80%, a task will cost 
as 1/ 1 s  (here 5) times long as usual to 
complete, with the probability of b. As shown in the 
follow, we can go through a mathematical derivation 
that attack strength is as follows: 
 

s = (T
'
- T) / T

'
 (4)

 

(iii) resource degradation, we compare the CPU, 
memory occupancy rate and network bandwidth 
usage with and without DDHCS attacks, which can 
read from the job logs. 

5.2 Evaluations 

To verify the attack effectiveness of our approach, 
we test three programs mentioned above for 
evaluating attack broadness, attack strength and 
resource degradation. In the following section, we 
describe the details of the experimental records. 
A. Attack Broadness 

As we discussed in 5.1, N denotes the total 
number of living nodes that a Hadoop cluster 
currently has; m denotes the number of unhealthy 
nodes after DDHCS attack. We use b m/N  to 
describe the attack broadness. We investigate a 
range of DDHCS intensities with three programs: 
WordCount_A, BeerAndDiaper and WordCount_N, 
running 100 times, 80 times, 60 times respectively. 

We can check the unhealthy nodes and 
decommission nodes in the cluster using the website 
http://master:8088/cluster/apps. We record the 
unhealthy nodes and decommission nodes after each 
DDHCS attack, as shown in Table.2. 

As we can see in Table.2, the experimental 
results are the same as our research results. The 
decommission nodes represent the nodes which are 
added to exclude list, it accounts for less than 33% 
of total nodes. The average attack broadness of these 
three programs are 86.7%, 83.3%, 86.7% 
respectively, we can see that the cluster becomes 
unable to provide the services to its legitimate users. 
B. Attack Strength 

In this experiment, we run 4 benchmark 
applications to cover a wide range of data-intensive 
tasks: compute intensive (Grep), shuffle intensive 
(Index), database queries (Join), iterative 
(Randomwriter). We first run the 4 benchmark 
applications 20 times before the DDHCS attack to 
calculate the average running time, then we run three 
attack programs 100 times separately as three attack 
scenarios. After each attack scenarios we run each 
benchmark 20 times again to calculate the average 
running time after DDHCS attack. 
Grep. Grep is a popular application for large scale 
data processing. It searches some regular 
expressions through input text files and outputs the 
lines which contain the matched expressions. 
Inverted Index. Inverted index is widely used in 
search area. We implement a job in Hadoop that 
builds an inverted index from given documents and 
generates a compressed bit vector posting list for 
each word. 
Join. Join is one of the most common applications 
that experience the data skew problem. 
Randomwriter. Randomwriter writes 10GB data to 
each node randomly, it is memory intensive, CPU 
intensive and have high I/O consumption. 

Firstly, we run each benchmark 20 times with no 
DDHCS attack to summarize the average running 
time	T. Then we run 100 times of the three attack 
programs WordCount_A, BeerAndDiaper, 
WordCount_N separately and record the running 
time of each legal benchmark application after each 
attack program. We summarize the average running 
timeT  ,T 	 , 	T , T  
in Table.3, and analyze the attack strength. The 
result shows that under each type of DDHCS attack, 
the attack strength is more than 80 percent, and the 
cluster performance is more degraded. 

Figure 6 demonstrate the average running time of 
the 4 benchmark applications with the increase of 
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Table 2: Summary of DDHCS Attack broadness. 

Job type Times 
Total 
nodes 

Unhealthy 
nodes 

Decommission 
nodes 

Exclude list 
nodes rate 

Attack 
broadness 

WordCount_A 
100 20 18 6 30% 90% 
80 20 18 6 30% 90% 
60 20 16 5 25% 80% 

BeerAndDiaper 
100 20 17 6 30% 85% 
80 20 17 6 30% 85% 
60 20 16 5 25% 80% 

WordCount_N 
100 20 18 6 30% 90% 
80 20 17 5 25% 85% 
60 20 17 5 25% 85% 

Table 3: Summary of the attack strength of 4 benchmark applications. 

 
Average running time Attack strength 

Grep 
Inverted 

Index 
Join 

Random 
writer 

Grep 
Inverted 

Index 
Join 

Random 
writer 

Normal 112.4s 86.4s 113.6s 71.3s 0% 
 WordCount_A 726.7s 444.6s 745.2s 563.7s 84.5% 80.6% 84.8% 87.4% 
DDoS BeerAndDiaper 737.8s 435.1s 751.3s 579.2s 86.1% 80.1% 84.9% 87.8% 
 WordCount_N 733.1s 453.3s 749.5s 553.8 84.7% 80.9% 84.8% 87.1% 

 
        (a)under WordCount_A DDHCS attack          (b)under BeerAndDiaper DDHCS attack      (c)under WordCount_N DDHCS attack 

Figure 6: Job running time under 3 attack scenarios. 

DDHCS attacks. We can see that as the increase of 
the attack program running times, the average 
running time of each benchmark applications 
prolonged significantly, which means the cluster is 
unable to provide service and the average time to 
access user request is higher than normal. 

C. Resource Degradation 
In order to demonstrate these results, we run 
additional experiments trying to compare the 
resources degradation. We simulated a scenario with 
BeerAndDiaper DDHCS attack. We run a range of 
attack program intensities: 20 times, 40 times, 60 
times, 80 times and 100 times. The CPU, memory 
usage and network bandwidth usage before and after 
BeerAndDiaper DDHSC attack are illustrated in 
Figure 7, Figure 8. 

In this scenario, most of the nodes are infected, 
and resource consumption has a significant rise and 
hence the YARN cluster performance is greatly 
deteriorated, which makes YARN become unable to 

provide the services to its legitimate users. 

6 SUGGESTION AGAINST 
DDHCS 

Recent work has proposed many methods to detect 
or prevent traditional DDoS attack, but these 
techniques are not suitable for Big Data platform 
(Gu et al., 2014); (Kiciman and Fox, 2005); (Specht 
and Lee, 2004). According to the vulnerabilities of 
our study, it is mainly because of legal users 
submitting malicious programs to launch attacks 
against YARN, we can’t make defense by predicting 
user behavior. An important method to prevent 
DDoS attacks against YARN is to enhance the 
cluster. This requires a heightened awareness of 
security issues and prevention techniques from all 
YARN users. 
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Figure 7: Summary of the CPU, memory occupancy rate 
and network bandwidth usage before DDHCS attack. 

 

Figure 8: Summary of the CPU, memory occupancy rate 
and network bandwidth usage after BeerAndDiaper 
DDHCS attack. 

Since the root of this problem is that there lack 
job inspecting mechanism by Hadoop/YARN, the 
most straightforward recipe is to verify whether the 
job succeeds within the time limitation. We 
proposed three methods to strength YARN security 
as follows: 

User Blacklist Mechanism. Just like the node 
exclude list mechanism, we could construct user 
blacklist. As shown in Figure 9. When a user 
submitted jobs fail more than 3 times, the user is 
added into User blacklist. Every entry in the User 
blacklist includes the User ID, IP address of a 
blacklisted user, and a list of submitted jobs 
associated with this user. A user that matches an 
entry in the blacklists is placed on the isolated nodes 
running text and cannot distribute his jobs on the 
other nodes until he proves to be clean.  

A user should not be blacklisted forever. A 
blacklisted user should be allowed to gain his/her 
rights back if it can be verified that the user’s jobs 
are no longer failed. This is realized as follows. Each 
user in the blacklist is associated with a time-to-live 
value. Periodically each job submitted by the user 
runs test on the isolated nodes: if it still fails then the 
user’s time-to-live value adds one, otherwise, it can 
finish successfully, the value is reduced by one. The 
user is removed from the User blacklist when its 
time-to-value is down to 0. 

 

Figure 9: User blacklist mechanism. 

Parameter Check. We all know that MapReduce 
program has a fixed structure. Consider the problem 
of WordCount in a large collection of documents, 
the user would write code similar to the following 
pseudocode. 

map(String key, String value): 
// key: document name 
// value: document contents 
for each word w in value: 
EmitIntermediate(w, “1”); 
reduce(String key, Iterator values): 
// key: a word 
// values: a list of counts 
int result = 0; 
for each v in values: 
result += ParseInt(v); 
Emit(AsString(result)); 

In addition, the user writes code to fill in a 
mapreduce specification object with the names of 
the input and output files and optional tuning 
parameters. So we can check these parameters 
before the program execution. If we find that some 
of the parameters are too high or too low compared 
with the normal value, the MapReduce program is 
not allowed to execute. For instance, the default 
execution time are 10 minutes, if the user specifies it 
as 10 milliseconds, this job will be rejected. 

ICISSP 2016 - 2nd International Conference on Information Systems Security and Privacy

154



Map-tracing. Novel visualizations and statisti-cal 
views of the behavior of MapReduce programs 
enable users to trace the MapReduce program 
behavior through the program’s stages. Also, most 
previous techniques for tracing have extracted 
distributed execution traces at the programming 
language level (e.g. using instru-mented middleware 
or libraries to track requests (Chen et al., 2002) 
(Barham et al., 2004); (Koskinen and Jannotti, 
2008), we can learn from them and generate views at 
the higher-level MapReduce abstraction. Figure10 
shows the overall flow of a MapReduce operation, 
we mainly focus on the Map phase. 

 

Figure 10: MapReduce execution overview. 

We observed that, for each phase, the logs 
faithfully repeat the observed distributions of task 
completion times, data read by each task, size and 
location of inputs, probability of failures and 
recomputations, and fairness based evictions. So we 
can trace the first 10% maps for each job, and if the 
maps have some problems, such as, can’t finish 
successfully, the cluster won’t assign resources for 
the remaining tasks. 

Finally, the DDoS attacks exist in multi-tenancy 
environment, so it is important for a user to learn the 
security and the resource usage patterns of other 
users sharing the cluster. It is necessary for rational 
planning the number of nodes that each user can use. 

7 CONCLUSIONS 

In this paper, we studied the vulnerability of YARN 
and proposed a DDoS attack based on health check 
service (DDHCS). We summarize three vulnera-
bilities and design three attack programs to 
demonstrate how many nodes in a YARN cluster 
can be invaded by malicious users. We evaluate the 
attack effectiveness in a YARN cluster under 
DDHCS attacks. Our study shows that these 
vulnerabilities may be easily used by malicious users 
to launch DDHCS attacks and can cause significant 

impact on the performance of a YARN cluster. The 
highest 90% of the nodes deny of service and attack 
strength is more than 80%. Given this, we proposed 
three methods to enhance YARN. Regarding future 
research, we will move forward to strengthening the 
security of YARN, realizing our three suggestions, 
making good filter and defense. We will extend our 
trust calculus for estimating and optimizing the 
trustworthiness of cloud workflow for handing big 
data. 
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