
DDHCS: Distributed Denial-of-service Threat to YARN Clusters
based on Health Check Service

Wenting Li, Qingni Shen, Chuntao Dong, Yahui Yang and Zhonghai Wu
School of Software and Microelectronics & MoE Key Lab of Network and Software Assurance,

Peking University, Beijing, China

Keywords: DDoS, Hadoop, YARN, Attack Broadness, Attack Strength, Security.

Abstract: Distributed denial-of-service (DDoS) attack continues to grow as a threat to organizations worldwide. This
attack is used to consume the resources of the target machine and prevent the legitimate users from
accessing them. This paper studies the vulnerabilities of Health Check Service in Hadoop/YARN and the
threat of denial-of-service to a YARN cluster with multi-tenancy. We use theoretical analysis and numerical
simulations to demonstrate the effectiveness of this DDoS attack based on health check service (DDHCS).
Our experiments show that DDHCS is capable of causing significant impacts on the performance of a
YARN cluster in terms of high attack broadness (averagely 85.6%), high attack strength (more than 80%)
and obviously resource utilization degradation. In addition, some novel schemes are proposed to prevent
DDHCS attack efficiently by improving the YARN security.

1 INTRODUCTION

Hadoop is open source software based on scalability
and reliability. It can be used to process vast amount
of data in parallel on large clusters. Since then
Apache Hadoop has matured and developed to a
data platform for not just processing humongous
amount of data in batch but also with the advent of
YARN. It now supports many diverse workloads
such as interactive queries over large data with Hive
on Tez, realtime data processing with Apache Storm,
in-memory datastore like Spark and the list goes on.

For Hadoop’s initial purpose, it was always
assumed that clusters would consist of cooperating,
trusted machines used by trusted users in a trusted
environment. Initially, there was no security model –
Hadoop didn’t authenticate users or services, and
there was no data privacy (O’Malley et al., 2009);
(Kholidy and Baiardi, 2012). When moving Hadoop
to a public cloud, there are challenges to original
Hadoop security mechanisms. However, the research
on MapReduce and Hadoop has mainly focused on
the system performance aspect, and the security
issues seemly have not received sufficient attention.

A distributed denial-of-service (DDoS) is where
the attack source is more than one–and often
thousands–of unique IP addresses, it is an attempt to
make a machine or network resource unavailable to

its intended users, such as to temporarily or
indefinitely interrupt or suspend services of a host
connected to the Internet. The first DDoS attack
incident (Criscuolo, 2000) was reported in 1999 by
the Computer Incident Advisory Capability (CIAC).
Since then, most of the DDoS attacks continue to
grow in frequency, sophistication and bandwidth
(Hameed and Ali, 2015); (Kholidy et al., 2015).

Previous work has demonstrated the threat and
stealthiness of DDoS attack in cloud environment
(Sabahi, 2011); (Durcekova et al., 2012); (Ficco and
Rak, 2015). As a solution, (Alarifi and Wolthusen,
2014); (Karthik and Shah, 2014); (Mizukoshi and
Munetomo, 2015) have successfully demonstrated
how to mitigate DDoS attack with cloud techniques.
There also have been numerous suggestions on how
to detect DDoS attack. For example, using
MapReduce for DDoS Forensics (Khattak et al.,
2011), a hybrid statistical model to detect DDoS
attack (Girma et al., 2015); (Lee, 2011). Unlike in
cloud environment, DDoS attacks in BigData based
on Hadoop/YARN environment are more aggressive
and destructive, but there seems a lack of research.

One problem with the Hadoop/YARN system is
that by assigning the tasks to many nodes, it is
possible for malicious users submitting attack
program to affect the entire cluster. In this paper, we
study the vulnerabilities of Health Check Service in

146
Li, W., Shen, Q., Dong, C., Yang, Y. and Wu, Z.
DDHCS: Distributed Denial-of-service Threat to YARN Clusters based on Health Check Service.
DOI: 10.5220/0005741801460156
In Proceedings of the 2nd International Conference on Information Systems Security and Privacy (ICISSP 2016), pages 146-156
ISBN: 978-989-758-167-0
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

YARN. These vulnerabilities encountered in YARN
motivate a new type of DDoS attacks, which we call
DDoS attack based on health check service
(DDHCS). Our work innovatively exposes health
check service in YARN as a possible vulnerability to
adversarial attacks, hence it opens new avenue to
improving the security of YARN.

In summary, this paper makes the following
contribution.
 We present three vulnerabilities of Health Check

Service in YARN, including i) Resource
Manager (RM) is lack of Job Validation; ii) It is

easy for a user to make a job failed, which will
make the node transform into unhealthy state; iii)
RM will add the unhealthy nodes to the exclude
list, which means the decrease of service nodes
in the cluster.

 We design a DDHCS attack model, we use
theoretical analysis and numerical simulations to
demonstrate the effectiveness of this attack for
different scenarios. Moreover, we empirically
show that DDHCS is capable of causing
significant impacts on the performance of a
YARN cluster in terms of high attack broadness
(averagely 85.6%), high attack strength (more
than 80%) and obviously resource utilization
degradation.

 We propose three improving methods against
DDHCS, including User blacklist mechanism,
Parameter check and Map-tracing.

The rest of this paper is organized as follows.
Section 2 discusses the background. Section 3
describes the vulnerabilities we found in YARN.
Section 4 presents DDHCS attack model. Section 5
demonstrates implementation of our attack model
and evaluates attack effect by MapReduce job.
Section 6 contains our suggestion to strength
security of YARN. Section 7 concludes the paper
and discusses some future work.

2 BACKGROUND

Health Check Service is a YARN service-level
health test that checks the health of the node it is
executing on. ResourceManager (RM) using health
check service to manage NodeManagers (NM). If
any health check fails, the NM marks the node as
unhealthy and communicates this to the RM, which
then stops assigning containers (resource
representation) to the node. Before we introduce
health check service, we should know about RM
component, NM States and triggering conditions.

2.1 YARN-ResourceManager

Hadoop has evolved into a new generation—Hadoop
2, in which the classic MapReduce module is
upgraded into a new computing platform, called
YARN (or MRv2) (Vavilapalli et al., 2013).

YARN uses RM to replace classic JobTracker,
and uses ApplactionMaster (AM) to replace classic
TaskTracker (Lee, 2011). The RM runs as a daemon
on a dedicated machine, and acts as the central
authority arbitrating resources among various
competing applications in the cluster. The AM is
“head” of a job, managing all life-cycle aspects
including dynamically increasing and decreasing
resources consumption, managing the flow of
execution, handling faults and computation skew,
and performing other local optimizations.

The NM is YARN’s per-node agent, and takes
care of the individual compute nodes in a Hadoop
cluster. This includes keeping up-to date with the
RM, overseeing containers’ life-cycle management
(Huang et al., 2014) monitoring resource usage of
individual containers, tracking node-health, log’s
management and auxiliary services which may be
exploited by different YARN applications.

There are three components connecting RM to
NM, which co-manage the life-cycle of NM, as
shown in Figure 1. They are NMLivelinessMonitor,
NodesListManager and ResourceTrackerService.
We discuss the three services as follows.

Figure 1: ResourceManager architecture.

1) NMLivelinessMonitor: This component keeps
track of each NM’s last one heartbeat time. Any
DataNode that doesn’t have any heartbeat within
a configured interval of time, by default 10
minutes, is deemed dead and expired by the RM.
All the containers currently running on an
expired DataNode are marked as dead and no
new containers are scheduling on it.

2) NodesListManager: This component manages a
collection of included and excluded DataNodes.

DDHCS: Distributed Denial-of-service Threat to YARN Clusters based on Health Check Service

147

It is responsible for reading the host
configuration files to seed the initial list of
DataNodes. The files are specified as
“yarn.resourcemanager.nodes.include-path” and
“yarn.resourcemanager.nodes.exclude-path”. It
also keeps track of DataNodes that are
decommissioned as time progresses.

3) ResourceTrackerService: This component
responds to RPCs from all the DataNodes. It is
responsible for registration of new DataNode,
rejecting requests from any
invalid/decommissioned DataNodes, obtain
node-heartbeats and forward them over to the
Yarn Scheduler.

2.2 Node States

In YARN, an object is abstracted as a state machine
when it is composed of several states and events
triggering transfer of these states. There are four
types of state machines inside RM—RMApp,
RMAppAttempt, RMContainer and RMNode. We
focus on RMNode state machine.

RMNode state machine is the data structure used
to maintain a node lifecycle in the RM, and its
implementation is RMNodeImpl class. The class
maintains a node state machine, and records the
possible node states and events that may lead to the
state transform (Huseyin et al., 2015).

As shown in Figure2 and Table1, each node has
six basic states (NodeState) and eight kinds of
events that lead to the transfer of the six states
(RMNodeEventType), the role of RMNodeImpl is
waiting to receive events of RMNodeEventType
type from the other objects, and transfer the current
state to another state, and trigger another behavior at
the same time. In subsequent articles, we focus on
the unhealthy state and decommission state:

Figure 2: Node state machine.

UNHEALTHY: The administrator configures on each
NM a health monitoring scripts, NM has a dedicated

thread to execute the script periodically, to
determine whether the NM is under healthy state.
The NM communicates this “unhealthy” state to the
RM via heartbeats. After that, RM won’t assign a
new task to the node until it turns to be healthy state.

DECOMMSSIONED: If a node is added to exclude
list, the corresponding NM would be set for
decommission state, thus the NM would not be able
to communicate with the RM.

2.3 Health Check Service

The NM runs health check service to determine the
health of the node it is executing on, in intervals of
10 minutes. If any health check fails, the NM marks
the node as unhealthy and communicates this to the
RM, which then stops assigning containers to the
node. Communication of the node status is done as
part of the heartbeat between the NM and the RM.

This service determines the health status of the
nodes through two strategies, one is Health Script,
Administrators may specify their own health check
script that will be invoked by the health check
service. If the script exits with a non-zero exit code,
times out or results in an exception being thrown,
the node is marked as unhealthy. Another one is
Disk Checker. The disk checker checks the state of
the disks that the NM is configured to use. The
checks include permissions and free disk space. It
also checks that the file system isn’t in a read-only
state. If a disk fails the check, the NM stops using
that particular disk but still reports the node status as
healthy. However, if a number of disks fail the check
(25% by default), then the node is reported as
unhealthy to the RM and new containers will not be
assigned to the node.

Table 1: Basic states and basic events of node.

States Describe Trigger Events
NEW The initial state of state machine -
RUNNING NM register to RM STARTED

DECOMMISSION A DataNode is added to exclude list DECOMMISSIO
N

UNHEALTHY
Health Check Service determines whether
NM is unhealthy

STATUS_
UPDATE

LOST
NM doesn’t heartbeat within 10 minutes, is
deemed dead

EXPIRE

REBOOTING
RM finds NM’s heartbeat ID doesn’t agree
with its preservation, RM require it to
restart.

REBOOTING

We focus on the Health Script, we note that if the
script cannot be executed due to permissions or an
incorrect path, etc. then it counts as a failure and the
node will be reported as unhealthy. The NM
communicates this “unhealthy” state to the RM,
which then adds it into exclude list. The NM will run
this Health Script continuously, once the state is

NEW

DECOMMISSIONED

UNHEALTHY

REBOOTED

RUNNING

LOST

STATUS_UPDATE

DECOMMISSION

EXPIRE

REBOOTING

EXPIRE

REBOOTING

CLEANUP_APP
CLEANUP_CONTAINER
RECONNECTED

DECOMMISSIONED

ICISSP 2016 - 2nd International Conference on Information Systems Security and Privacy

148

transformed into “healthy”, RM will remove it from
the exclude list, and reassign containers to the node.
The administrator can modify the configuration
parameter in yarn-site.xml.

3 VULNERABILITY ANALYSIS

3.1 Lack of Job Validation

The fundamental idea of MRv2 is to split up the two
major functionalities of the JobTracker into separate
daemons. The idea is to have a global RM and per-
application AM. An application is a single job in the
classical sense of Map-Reduce jobs.

Jobs are submitted to the RM via a public
submission protocol and go through an admission
control phase during which security credentials are
validated and various operational and administrative
checks are performed.

Figure 3: YARN rejects a MapReduce job.

RMApp is the data structure used to maintain a
job life-cycle in RM, and its implementation is
RMAppImpl class. RMAppImpl holds the basic
information about the job (i.e. Job ID, job name,
queue name, start time) and the instance attempts.

We found that only the following situations will
lead to APP_REJECTED (an event of RMApp state
machine) event, as shown in Fiture3:
1) The client submit a job to RM via RPC function

ApplicationClientProtocl#submitApplication ma
y throw an exception, it happens when Resource-
Request over the minimum or maximum of the re
sources;

2) Once the scheduler discovers that the job is
illegal, (i.e. users submit to the inexistent queue
or the queue reaches the upper limit of job
numbers), it refuses to accept the job.

RM validates resource access permission, but lack of
job validation about whether or not the job can
finish. The only event that causes the job to enter the
FINISHED state is the normal exit from the AM
container. We can submit a job to the cluster which
is bound to fail, RM allocates resources for it and
it’s running on corresponding NM. However, RM
doesn’t check whether the job can be successfully
completed.

3.2 Easy to Make a Job Failed

The MapReduce enforces a strict structure: the
computation task splits into map and reduce
operations. Each instance of a map or reduce, called
a computation unit, takes a list of key-value tuples.
A MapReduce task consists of sequential phases of
map and reduce operations. Once the map step is
finished, the intermediate tuples are grouped by their
key-components. This process of grouping is known
as shuffling. All tuples belong to one group are
processed by a reduce instance which expects to
receive tuples sorted by their key-component (Wu et
al., 2013). Outputs of the reduce step can be used as
inputs for the map step in the next phase, creating a
chained MapReduce task.

Each Map/Reduce Task is just a concrete
description of computing tasks, the real mission is
done by TaskAttempt. The MRAppMaster executes
the Mapper/Reducer task as a child process in a
separate JVM, it can start multiple instances in
order. If the first running instance failed, it starts
another one instance to recalculate, until this data
processing is completed or the number of attempts
reaches the upper limit. By default, the maximum
attempts are 4 times. The users can configurate
parameter in the job via
mapreduce.map.maxattempts and
mapreduce.reduce.maxattempts. MRAppMaster may
also start multiple instances simultaneously, so they
will complete data processing. In MRAppMaster,
the life-cycle of the TaskAttempt, Task and Job are
described by a finite state machine, as shown in
Figure 4, where TaskAttempt is the actual task for
the calculation, the other two components are only
responsible for monitoring and management.
To our best knowledge, in some cases, the task never
completes successfully even after multiple attempts.
And it is easy to make the failed job, for instance,
hardware failure, software bugs, process crashes and
OOM (Out Of Memory). If there is no response
from a NM in a certain amount of time, the
MRAppMaster makes the task as failed. We

DDHCS: Distributed Denial-of-service Threat to YARN Clusters based on Health Check Service

149

summarize the five conditions result in task failed as
follows:
1) Map Task or Reduce Task fails. It means the

problems of the MapReduce program itself
which makes the task failed. There may be some
errors in the user code.

2) Time out. It may be due to network delay to read
data out of time, or the task itself takes longer
time than expected. In this case, the long-running
tasks take up system resources and will reduce
the performance of the cluster over time.

3) The bottleneck of reading files. If the number of
tasks performed by a job is very great, the
common input file may become a bottleneck.

4) Shuffle error. If the map task completes quickly,
and all the data is ready to copy for shuffle, it
will lead to overload of threads and memory
usage of buffer in the shuffle process, which will
cause a shortage of memory.

5) The child process JVM quit suddenly. It may be
caused by the bug of JVM, which makes the
MapReduce code running failed.

We can easily make job failed using one of these
items, for instance, we write program with an
infinite loop, or we specify the timeout as 10
seconds, but submit a long-running job, which need
at least 2 minutes.

Figure 4: The job/task state transition.

3.3 Weak Exclude List Mechanism

As discussed in 2.3, NM runs health check service to
determine the health of the node it is executing on. If
the task failed more than 3 times in a node, the node
is regarded under the unhealthy state. When a
DataNode under unhealthy state, all the containers
currently running on this DataNode are marked as
dead and no new containers are scheduled on it.
Explicitly point out the default failure times in the
RMContainerRequestor class as follows:

maxTaskFailuresPerNode =
conf.getInt(MRJobConfig.

MAX_TASK_FAILURES_PER_TRACKER, 3);

NodesListManager maintains an exclude list - a file
that resides on the RM and contains IP address of
the DataNodes to be excluded. When NM reports its
unhealthy state to RM via heartbeat, RM doesn’t
check why and how it becomes unhealthy, but adds
it into exclude list directly.

Before that, RM calculates the proportion of the
nodes in exclude list, which gets parameter
information from MRJobConfig interface. When the
node number of exclude list is less than a certain
percentage (default is 33%), RM will add the node
into exclude list, otherwise the unhealthy node won’t
be added to exclude list.

Finally, the failure handling of the containers
themselves is completely left to the framework. The
RM collects all container exit events from the NMs
and propagates those to the corresponding AMs in a
heartbeat response. AM already listens to these
notifications and retries map or reduce tasks by
requesting new containers from the RM.

4 DDHCS THREAT MODELS

The adversary is the malicious insider in the cloud,
aiming to subvert availability of the cluster. As
discussed in Section 3, we discovered three
vulnerabilities of YARN platform, we can use the
health check service to submit easy failed jobs to
add DataNodes to exclude list, which will cause
service degradation and the reduction of active
DataNodes.

Considering the scenario in Figure 5, the normal
users and malicious users can submit jobs to the
YARN cluster. The jobs that normal users submitted
can finish completely, while the jobs that malicious
users submitted are the failed jobs, which will never
complete. We use the running process of an applicat-
ion to analyze the attack process. The steps are
detailed as follows:
1) Distributed attackers and normal users submit

applications to the RM via a public submission
protocol and go through an admission control
phase during which security credentials are
validated and various operational and
administrative checks are performed.

2) Accepted applications are passed to the scheduler
to run. Once the scheduler has enough resources,
the application is moved from accepted to
running state. Aside from internal bookkeeping,

ICISSP 2016 - 2nd International Conference on Information Systems Security and Privacy

150

this involves allocating a container for the AM
and spawning it on a node in the cluster.

Figure 5: DDHCS: DDoS attack based on health check
service.

3) When RM starts the AM, it should register with
the RM and periodically advertise its liveness
and requirements via heartbeat. To obtain
containers, AM issues resource requests to the
RM.

4) Once the RM allocates a container, AM can
construct a container launch context (CLC) to
launch the container on the corresponding NM.
Monitoring the progress of work done inside the
container is strictly the AM’s responsibility.

5) To launch the container, the NM copies all the
necessary dependencies to local storage. Map
tasks process each block of input (typically
128MB) and produce intermediate results, which
are key-value pairs. These are saved to disk.
Reduce tasks fetch the list of intermediate results
associated with each key and run it through the
user’s reduce function, which produces output.

6) If the task fails to complete, the task will be tried
for a number of times, saying 3 times; if all tries
fail, this task will be treated as a failure, and AM
will contact RM to set up another container
(possibly in another node) for this task, until this
task is completed or the MapReduce job is
terminated.

7) For each DataNode, which executes the failed
task, its health check service will add one to its
total number of failures. And if the DataNode
has failed more than 3 times, the node will be
marked as unhealthy. The NM reports this
unhealthy state to the RM, which then adds it
into exclude node lists.

8) Once the AM is done with its work, it should
unregister from the RM and exit cleanly.

Attackers repeat the procedure until the exclude list
has 33% nodes of the total number, aiming at
reducing the service availability and performance by
exhausting the resources of the cluster (including
memory, processing resources, and network
bandwidth).

5 EVALUATION

5.1 Experiment Setup

We set up our Hadoop cluster with 20 nodes. Each
node runs a DataNode and a NodeManager with an
Intel Core i7 processor running at 3.4 GHz, 4096
MB of RAM, and run Hadoop 2.6.0, which is a
distributed, scalable, and portable system. All
experiments use the default configuration in Hadoop
for HDFS and MapReduce except otherwise noted
(e.g., the HDFS block size is 128MB, max java heap
size is 2GB).

A. Attack Programs

Attack Setting. We consider a setting in which
attackers and normal users are concurrent using the
same YARN platform. It is well known that YARN
in public clouds makes extensive use of multi-
tenancy. We design three attack programs as
follows:

WordCount_A: We use WordCount benchmark in
Hadoop as our main intrusion program because it is
widely used and represents many kinds of data-
intensive jobs. We specify the timeout parameter as
10 milliseconds (named as WordCount_A).

Since the input file we used is the full English
Wikipedia archive with the total data size of 31GB,
the program can’t finish within the time limit.

BeerAndDiaper: We write an infinite loop in this
program and specify the timeout parameter as 10
milliseconds, which will fail to complete within the
time limit.

WordCount_N: We use an executable program, but
as a normal user, we can modify the configuration
file–map-site.xml in client. We change the value of
mapreduce.task.timeout from 1000 (ms) to 10 (ms).
We use the “hadoop dfsadmin -refreshNodes”
command to reload the configuration file. We
submit executable WordCount program (named as
WordCount_N) with large input file, since it can’t
finish in 10 milliseconds, it will be marked as failed.

B. Evaluation Index
First, we introduce the variable to be used as
follows. N denotes the total number of living nodes

DDHCS: Distributed Denial-of-service Threat to YARN Clusters based on Health Check Service

151

that a Hadoop cluster currently has; m denotes the
number of unhealthy nodes after DDHCS attack.
Here for simplicity, we assume that all of the nodes
in a cluster are identical. T denotes the start time
of the job, 	T denotes the end time, then we
calculate the total completion times under normal
circumstances as T=T -T , we repeat the jobs
for 20 times, recording the start time and finish time,
so we can obtain the average time under normal
circumstances as :

T=∑n
i=1Ti / n (1)

Similarly, we calculate the average time under
DDoS attack as:

T =∑n
i=1Ti′ / n (2)

Wherein, T denotes the total completion times
under DDoS attack, calculated by

T′ = T′finish - T′start (3)

We can characterize the scale of the addressed
DDHCS attacks in three dimensions: (i) attack
broadness, which is defined as b m/N; (ii) attack
strength, denoted as s, which in the portion of
resource occupied by the DDHCS attack in an
infected node. For example, given attack broadness
b=83.2%, and attack strength s=80%, a task will cost
as 1/ 1 s (here 5) times long as usual to
complete, with the probability of b. As shown in the
follow, we can go through a mathematical derivation
that attack strength is as follows:

s = (T
'
- T) / T

'
 (4)

(iii) resource degradation, we compare the CPU,
memory occupancy rate and network bandwidth
usage with and without DDHCS attacks, which can
read from the job logs.

5.2 Evaluations

To verify the attack effectiveness of our approach,
we test three programs mentioned above for
evaluating attack broadness, attack strength and
resource degradation. In the following section, we
describe the details of the experimental records.
A. Attack Broadness

As we discussed in 5.1, N denotes the total
number of living nodes that a Hadoop cluster
currently has; m denotes the number of unhealthy
nodes after DDHCS attack. We use b m/N to
describe the attack broadness. We investigate a
range of DDHCS intensities with three programs:
WordCount_A, BeerAndDiaper and WordCount_N,
running 100 times, 80 times, 60 times respectively.

We can check the unhealthy nodes and
decommission nodes in the cluster using the website
http://master:8088/cluster/apps. We record the
unhealthy nodes and decommission nodes after each
DDHCS attack, as shown in Table.2.

As we can see in Table.2, the experimental
results are the same as our research results. The
decommission nodes represent the nodes which are
added to exclude list, it accounts for less than 33%
of total nodes. The average attack broadness of these
three programs are 86.7%, 83.3%, 86.7%
respectively, we can see that the cluster becomes
unable to provide the services to its legitimate users.
B. Attack Strength

In this experiment, we run 4 benchmark
applications to cover a wide range of data-intensive
tasks: compute intensive (Grep), shuffle intensive
(Index), database queries (Join), iterative
(Randomwriter). We first run the 4 benchmark
applications 20 times before the DDHCS attack to
calculate the average running time, then we run three
attack programs 100 times separately as three attack
scenarios. After each attack scenarios we run each
benchmark 20 times again to calculate the average
running time after DDHCS attack.
Grep. Grep is a popular application for large scale
data processing. It searches some regular
expressions through input text files and outputs the
lines which contain the matched expressions.
Inverted Index. Inverted index is widely used in
search area. We implement a job in Hadoop that
builds an inverted index from given documents and
generates a compressed bit vector posting list for
each word.
Join. Join is one of the most common applications
that experience the data skew problem.
Randomwriter. Randomwriter writes 10GB data to
each node randomly, it is memory intensive, CPU
intensive and have high I/O consumption.

Firstly, we run each benchmark 20 times with no
DDHCS attack to summarize the average running
time	T. Then we run 100 times of the three attack
programs WordCount_A, BeerAndDiaper,
WordCount_N separately and record the running
time of each legal benchmark application after each
attack program. We summarize the average running
timeT ,T 	 , 	T , T
in Table.3, and analyze the attack strength. The
result shows that under each type of DDHCS attack,
the attack strength is more than 80 percent, and the
cluster performance is more degraded.

Figure 6 demonstrate the average running time of
the 4 benchmark applications with the increase of

ICISSP 2016 - 2nd International Conference on Information Systems Security and Privacy

152

Table 2: Summary of DDHCS Attack broadness.

Job type Times
Total
nodes

Unhealthy
nodes

Decommission
nodes

Exclude list
nodes rate

Attack
broadness

WordCount_A
100 20 18 6 30% 90%
80 20 18 6 30% 90%
60 20 16 5 25% 80%

BeerAndDiaper
100 20 17 6 30% 85%
80 20 17 6 30% 85%
60 20 16 5 25% 80%

WordCount_N
100 20 18 6 30% 90%
80 20 17 5 25% 85%
60 20 17 5 25% 85%

Table 3: Summary of the attack strength of 4 benchmark applications.

Average running time Attack strength

Grep
Inverted

Index
Join

Random
writer

Grep
Inverted

Index
Join

Random
writer

Normal 112.4s 86.4s 113.6s 71.3s 0%
 WordCount_A 726.7s 444.6s 745.2s 563.7s 84.5% 80.6% 84.8% 87.4%
DDoS BeerAndDiaper 737.8s 435.1s 751.3s 579.2s 86.1% 80.1% 84.9% 87.8%
 WordCount_N 733.1s 453.3s 749.5s 553.8 84.7% 80.9% 84.8% 87.1%

 (a)under WordCount_A DDHCS attack (b)under BeerAndDiaper DDHCS attack (c)under WordCount_N DDHCS attack

Figure 6: Job running time under 3 attack scenarios.

DDHCS attacks. We can see that as the increase of
the attack program running times, the average
running time of each benchmark applications
prolonged significantly, which means the cluster is
unable to provide service and the average time to
access user request is higher than normal.

C. Resource Degradation
In order to demonstrate these results, we run
additional experiments trying to compare the
resources degradation. We simulated a scenario with
BeerAndDiaper DDHCS attack. We run a range of
attack program intensities: 20 times, 40 times, 60
times, 80 times and 100 times. The CPU, memory
usage and network bandwidth usage before and after
BeerAndDiaper DDHSC attack are illustrated in
Figure 7, Figure 8.

In this scenario, most of the nodes are infected,
and resource consumption has a significant rise and
hence the YARN cluster performance is greatly
deteriorated, which makes YARN become unable to

provide the services to its legitimate users.

6 SUGGESTION AGAINST
DDHCS

Recent work has proposed many methods to detect
or prevent traditional DDoS attack, but these
techniques are not suitable for Big Data platform
(Gu et al., 2014); (Kiciman and Fox, 2005); (Specht
and Lee, 2004). According to the vulnerabilities of
our study, it is mainly because of legal users
submitting malicious programs to launch attacks
against YARN, we can’t make defense by predicting
user behavior. An important method to prevent
DDoS attacks against YARN is to enhance the
cluster. This requires a heightened awareness of
security issues and prevention techniques from all
YARN users.

DDHCS: Distributed Denial-of-service Threat to YARN Clusters based on Health Check Service

153

Figure 7: Summary of the CPU, memory occupancy rate
and network bandwidth usage before DDHCS attack.

Figure 8: Summary of the CPU, memory occupancy rate
and network bandwidth usage after BeerAndDiaper
DDHCS attack.

Since the root of this problem is that there lack
job inspecting mechanism by Hadoop/YARN, the
most straightforward recipe is to verify whether the
job succeeds within the time limitation. We
proposed three methods to strength YARN security
as follows:

User Blacklist Mechanism. Just like the node
exclude list mechanism, we could construct user
blacklist. As shown in Figure 9. When a user
submitted jobs fail more than 3 times, the user is
added into User blacklist. Every entry in the User
blacklist includes the User ID, IP address of a
blacklisted user, and a list of submitted jobs
associated with this user. A user that matches an
entry in the blacklists is placed on the isolated nodes
running text and cannot distribute his jobs on the
other nodes until he proves to be clean.

A user should not be blacklisted forever. A
blacklisted user should be allowed to gain his/her
rights back if it can be verified that the user’s jobs
are no longer failed. This is realized as follows. Each
user in the blacklist is associated with a time-to-live
value. Periodically each job submitted by the user
runs test on the isolated nodes: if it still fails then the
user’s time-to-live value adds one, otherwise, it can
finish successfully, the value is reduced by one. The
user is removed from the User blacklist when its
time-to-value is down to 0.

Figure 9: User blacklist mechanism.

Parameter Check. We all know that MapReduce
program has a fixed structure. Consider the problem
of WordCount in a large collection of documents,
the user would write code similar to the following
pseudocode.

map(String key, String value):
// key: document name
// value: document contents
for each word w in value:
EmitIntermediate(w, “1”);
reduce(String key, Iterator values):
// key: a word
// values: a list of counts
int result = 0;
for each v in values:
result += ParseInt(v);
Emit(AsString(result));

In addition, the user writes code to fill in a
mapreduce specification object with the names of
the input and output files and optional tuning
parameters. So we can check these parameters
before the program execution. If we find that some
of the parameters are too high or too low compared
with the normal value, the MapReduce program is
not allowed to execute. For instance, the default
execution time are 10 minutes, if the user specifies it
as 10 milliseconds, this job will be rejected.

ICISSP 2016 - 2nd International Conference on Information Systems Security and Privacy

154

Map-tracing. Novel visualizations and statisti-cal
views of the behavior of MapReduce programs
enable users to trace the MapReduce program
behavior through the program’s stages. Also, most
previous techniques for tracing have extracted
distributed execution traces at the programming
language level (e.g. using instru-mented middleware
or libraries to track requests (Chen et al., 2002)
(Barham et al., 2004); (Koskinen and Jannotti,
2008), we can learn from them and generate views at
the higher-level MapReduce abstraction. Figure10
shows the overall flow of a MapReduce operation,
we mainly focus on the Map phase.

Figure 10: MapReduce execution overview.

We observed that, for each phase, the logs
faithfully repeat the observed distributions of task
completion times, data read by each task, size and
location of inputs, probability of failures and
recomputations, and fairness based evictions. So we
can trace the first 10% maps for each job, and if the
maps have some problems, such as, can’t finish
successfully, the cluster won’t assign resources for
the remaining tasks.

Finally, the DDoS attacks exist in multi-tenancy
environment, so it is important for a user to learn the
security and the resource usage patterns of other
users sharing the cluster. It is necessary for rational
planning the number of nodes that each user can use.

7 CONCLUSIONS

In this paper, we studied the vulnerability of YARN
and proposed a DDoS attack based on health check
service (DDHCS). We summarize three vulnera-
bilities and design three attack programs to
demonstrate how many nodes in a YARN cluster
can be invaded by malicious users. We evaluate the
attack effectiveness in a YARN cluster under
DDHCS attacks. Our study shows that these
vulnerabilities may be easily used by malicious users
to launch DDHCS attacks and can cause significant

impact on the performance of a YARN cluster. The
highest 90% of the nodes deny of service and attack
strength is more than 80%. Given this, we proposed
three methods to enhance YARN. Regarding future
research, we will move forward to strengthening the
security of YARN, realizing our three suggestions,
making good filter and defense. We will extend our
trust calculus for estimating and optimizing the
trustworthiness of cloud workflow for handing big
data.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge the support of
the National High Technology Research and
Development Program (“863” Program) of China
under Grant No. 2015AA016009, the National
Natural Science Foundation of China under Grant
No. 61232005, and the Science and Technology
Program of Shen Zhen, China under Grant No.
JSGG20140516162852628. Specially thanks to
Ziyao Zhu and Wenjun Qian for the support of
experiments.

REFERENCES

Alarifi, S., & Wolthusen, S. D. (2014, April). Mitigation
of Cloud-Internal Denial of Service Attacks. In Service
Oriented System Engineering (SOSE), 2014 IEEE 8th
International Symposium on (pp. 478-483). IEEE.

Barham, P., Donnelly, A., Isaacs, R., & Mortier, R. (2004,
December). Using Magpie for Request Extraction and
Workload Modelling. In OSDI (Vol. 4, pp. 18-18).

Chen, M. Y., Kiciman, E., Fratkin, E., Fox, A., & Brewer,
E. (2002). Pinpoint: Problem determination in large,
dynamic internet services. InDependable Systems and
Networks, 2002. DSN 2002. Proceedings. International
Conference on (pp. 595-604). IEEE.

Criscuolo, P. J. (2000). Distributed Denial of Service:
Trin00, Tribe Flood Network, Tribe Flood Network
2000, and Stacheldraht CIAC-2319 (No. CIAC-2319).
CALIFORNIA UNIV LIVERMORE RADIATION
LAB.

Durcekova, V., Schwartz, L., & Shahmehri, N. (2012,
May). Sophisticated denial of service attacks aimed at
application layer. In ELEKTRO, 2012 (pp. 55-60).
IEEE.

Ficco, M., & Rak, M. (2015). Stealthy denial of service
strategy in cloud computing. Cloud Computing, IEEE
Transactions on, 3(1), 80-94.

Girma, A., Garuba, M., Li, J., & Liu, C. (2015, April).
Analysis of DDoS Attacks and an Introduction of a
Hybrid Statistical Model to Detect DDoS Attacks on
Cloud Computing Environment. In Information

DDHCS: Distributed Denial-of-service Threat to YARN Clusters based on Health Check Service

155

Technology-New Generations (ITNG), 2015 12th
International Conference on (pp. 212-217). IEEE.

Gu, Z., Pei, K., Wang, Q., Si, L., Zhang, X., & Xu, D.
LEAPS: Detecting Camouflaged Attacks with
Statistical Learning Guided by Program Analysis.

Hameed, S., & Ali, U. (2015). On the Efficacy of Live
DDoS Detection with Hadoop. arXiv preprint
arXiv:1506.08953.

Huang, J., Nicol, D. M., & Campbell, R. H. (2014, June).
Denial-of-Service Threat to Hadoop/YARN Clusters
with Multi-Tenancy. In Big Data (BigData Congress),
2014 IEEE International Congress on (pp. 48-55).
IEEE.

Huseyin Ulusoy, Pietro Colombo, Elena Ferrari, Murat
Kantarcioglu, Erman Pattuk. (2015, April). GuardMR:
Fine-grained Security Policy Enforcement for
MapReduce System. ASIA CCS’15.

Karthik, S., & Shah, J. J. (2014, February). Analysis of
simulation of DDOS attack in cloud. In Information
Communication and Embedded Systems (ICICES),
2014 International Conference on (pp. 1-5). IEEE.

Khattak, R., Bano, S., Hussain, S., & Anwar, Z. (2011,
December). DOFUR: DDoS Forensics Using
MapReduce. In Frontiers of Information Technology
(FIT), 2011 (pp. 117-120). IEEE.

Kholidy, H., & Baiardi, F. (2012, April). CIDS: a
framework for intrusion detection in cloud systems. In
Information Technology: New Generations (ITNG),
2012 Ninth International Conference on (pp. 379-
385). IEEE.

Kholidy, H., Baiardi, F., & Hariri, S. (2015). DDSGA: A
Data-Driven Semi-Global Alignment Approach for
Detecting Masquerade Attacks. Dependable and
Secure Computing, IEEE Transactions on, 12(2), 164-
178.

Kiciman, E., & Fox, A. (2005). Detecting application-
level failures in component-based internet services.
Neural Networks, IEEE Transactions on, 16(5), 1027-
1041.

Koskinen, E., & Jannotti, J. (2008, April). Borderpatrol:
isolating events for black-box tracing. In ACM
SIGOPS Operating Systems Review (Vol. 42, No. 4,
pp. 191-203). ACM.

Lee, Y., Kang, W., & Lee, Y. (2011). A hadoop-based
packet trace processing tool (pp. 51-63). Springer
Berlin Heidelberg.

Lee, Y., & Lee, Y. (2011, December). Detecting ddos
attacks with hadoop. InProceedings of The ACM
CoNEXT Student Workshop (p. 7). ACM.

Mizukoshi, M., & Munetomo, M. (2015, May).
Distributed denial of services attack protection system
with genetic algorithms on Hadoop cluster computing
framework. In Evolutionary Computation (CEC), 2015
IEEE Congress on (pp. 1575-1580). IEEE.

O’Malley, O., Zhang, K., Radia, S., Marti, R., & Harrell,
C. (2009). Hadoop security design. Yahoo, Inc., Tech.
Rep.

Sabahi, F. (2011, May). Cloud computing security threats
and responses. InCommunication Software and
Networks (ICCSN), 2011 IEEE 3rd International

Conference on (pp. 245-249). IEEE.
Specht, S. M., & Lee, R. B. (2004, September).

Distributed Denial of Service: Taxonomies of Attacks,
Tools, and Countermeasures. In ISCA PDCS (pp. 543-
550).

Vavilapalli, V. K., Murthy, A. C., Douglas, C., Agarwal,
S., Konar, M., Evans, R., & Baldeschwieler, E. (2013,
October). Apache hadoop yarn: Yet another resource
negotiator. In Proceedings of the 4th annual
Symposium on Cloud Computing (p. 5). ACM.

Wu, H., Tantawi, A. N., & Yu, T. (2013, June). A self-
optimizing workload management solution for cloud
applications. In Web Services (ICWS), 2013 IEEE 20th
International Conference on (pp. 483-490). IEEE.

ICISSP 2016 - 2nd International Conference on Information Systems Security and Privacy

156

